

172 Finishing Touches

As we have already discussed, the finishing details are what make a computer
game look right. Good pictures and varied text give a polished, professional ap
pearance but can be tedious to produce. However, techniques currently in use in
the industrial world can come to the rescue.

Wide acceptance of computer graphics in industry has come through the de
velopment of computer-aided design (CAD). Automobiles and aircraft have been
designed with the aid of computers for several years, not only because of cost
reductions but also because of the other benefits that come from computer
modelling - automatic drafting, fabrication, and simulation. A design flaw found
by a computer can prevent a costly recall of an entire automobile model line or
avoid a hazardous situation in an aircraft.

Computers can be used to design all kinds of other products such as dress
patterns, house plans, electrical circu its, landscapes, and so on, all with potential
benefits beyond the original intent. Given a computer model of a house, the
machine can easily produce an accurate list of the components needed to build it.
With the proper program and data base, a landscape plan can be simulated into
the future to see how the property will look after the trees and bushes have
grown. Even the colors of the flowers in April, May, and June can be evaluated
w ithout the expense and time needed to look at the real garden.

The basic elements of a CAD system are useful in generating the graphics for
computer games. A CAD program was used to develop the opening frame for
The Magic Cave shown in the color illustrations. A tree, ivy leaf, or flower was
modelled one time. After the design was accepted, the program generated a sub
routine that would replicate the tree, leaf, or flower in the location and scale
specified in the subroutine calling sequence. In this way it was possible to pay
attention to detail in the original design and then to get a lot of use out of the
images by specifying only translation and scaling values.

Digitizing

Since everyth ing is expressed numerically inside a computer, the programmer can
not simply tell it to display a leaf or tree on the screen. The object must be de
fined precisely by mapping its outline-choosing significant points and assigning
X,Y values to them. Usually, this is done with a digitizer, a machine that re
cogn izes the posit ion of a pointer or joystick and passes the coordinate values to
the computer. An inexpensive semiautomatic digitizer is easy to build .

As shown in the illustration of a digitizer, sliding the two plastic rulers to a
point on a drawing and reading the X and Y values where they cross will give a
point value that can be entered into the computer and subsequently converted
from inches into actual units (miles, feet, and so on) based on the scale of the
drawing being dig itized.

An easy- to-build sem1automat1c a·

I

I

-!CK , LERO Y,
LEARFACE or

OJ(» 8J Ill j OJ
ton ts

I\ , ~

I j l
I \

j \
I ' 2 3 4 5 6

•ng a letter on a 6 x 8 grid

t'\

0123 456

. defined by the structure 2, 3, 5, 2,
0. 90

173 Computer-Aided Design

Text Definition
Only a few types of geometric element are needed to represent a model. At a
minimum, most models can be represented by points, lines, circular arcs, and cir
cles. To make a readable engineering drawing, some text is also necessary.

A point can be represented by an X,Y pair of numbers. A line requires the
X,Y values of the endpoints of the line. A circle is defined by its radius and the
X,Y location of its center, and a circular arc also requires a starting and ending
angle.

Customized text is much more complicated. In addition to the letters, num
bers, and punctuation, such things as the height and width of each character, the
angle of the text line, the slant of each character, and the character font are
important. "Font" is the design of the set of characters, several of which are
shown here, ranging from very simple to rather ornate. (See Font Tables at the
end of the book.)

The easiest to implement is the Stick font, because all the characters are com
posed only of lines. The Leroy font requires circular arcs, Clearface uses elliptical
arcs, and Gothic also requires that polygons and pairs of arcs be filled with ink.
So it would seem that five different data structures are required for the four
fonts : lines, circular arcs, elliptical arcs, filled polygons, and filled elliptical arcs.
Since a circular arc is the same as an elliptical arc in which the major and minor
radii are of the same length, only four types need to be defined.

Each character must be defined in a way that is independent of its ultimate
size, because in one case the user may want characters 0.1 inches high for a nor
mal page of text while in another he may be making a poster and want letters
two inches high. It is reasonable to decide arbitrarily that each character will be
defined on a grid and that a typical character will be six units wide and eight
units high, as the letter shown defined on the grid here.

To define the letter in terms of the straight lines representing it, lines are
drawn from 0,0 to 3,8 to 6,0. Then a line is drawn from 1,2.333 to 5,2.333. In
many cases, connecting lines can be drawn, so the data structure to define a se
quence of connected lines may consist of the data type code for a line, say the
number 1, followed by the number of X,Y pairs defining the endpoints of the
lines, as follows:

10 DATA "A"
20 DATA 1 , 3 ,0,0 , 3 ,8 , 6 , 0
30 DATA 1 ,2, 1 ,2. 333 ,5,2.333
40 DATA - 1

Line 10 is used to define the fact that the following codes represent the capi
tal letter A. On line 20, the first number specifies a line sequence. The second
number specifies that three pairs of points comprise the sequence. The remaining
six numbers are the actual pairs X1,Y1 = 0,0, X2,Y2 = 3,8, and X3,Y3 = 6,0. The
next number must be a data type code again, and it is. The first number on line
30 specifies another line sequence, this time with only two points,
X1,Y1 = 1,2.333 and X2,Y2 = 5,2.333. So the next number is again a data type,
this time the number - 1, which is the "end of character" code.

Data type 2 will represent an elliptical or circular arc. Definition of such an
element requires the location of the arc's center, XO,YO, the radius on a line par-

174 Finishing Touches

allel to the x-axis Rx, the y-radius Ry, and the in itial and final angles a1 and a2.
So data type 2 always consists of seven values- the structure

2,3,5,2, 3 ,0,90

defines the arc shown here on a grid.
Data type 3 will be used to describe a filled , or solid, figure . Following the

type code is the number of pairs of points defining the figure and then the pairs
themselves. If the figure is a closed polygon, the last pair will be the same as the
f irst. Thus, the structure

3,5,2.3.2.6.4,6,4,3,2,3

represents the closed polygon shown on a grid .
Data type 4 defines a pair of elliptical arcs, the space between which is filled .

This structure always consists of nine numbers: the type, XO,YO, the mutual center
of the arcs, Rx1 and Ry1 of the inside arc, a 1 and a2 and Rx2 and Ry2 of the out
side arc. For example

4,3,1.5,1,2 . 5,0 , 90,2 , 2.5

defines the elliptical arc shown on a grid.
To simplify processing, Rx1 s Rx2, Ry1 s Ry2, and a1 <a 2. To draw a counter

clockwise arc from 270 degrees to 90 degrees, a 1 = - 90, not 270, and a2 = 90.

Text Sequence

To generate a text sequence, the user will want to be able to specify the actual
text, the font, the height, and the width of each character in the sequence, plus
some other variables. For instance, as shown by the accompanying sequences, it
may be useful to italicize (slant) the characters, or to display the sequence at an
angle, or even to rotate each character about its center, or any combination of
the above.

Since some characters are typically wider than others, it is a good idea to
express in the data base the location of the center of each character. This not
only allows rotation about the center of the defined character space but also
specifies the relative width of the overall character. A W is much wider than an I,
for example, while an A is somewhere in between, as demonstrated by the com
parison here of these letters on the grids.

So it is necessary to add the center point of each character to the data base;
thus the definition of the Stick A becomes:

10 DATA "A" ,3,4
20 DATA 1,3,0,0,3,8,6,0
30 DATA 1,2,1,2.333,5,2 .333
40 DATA - 1

8

7

6

5

4

3

2

0

8

7

6

5

4

3

2

0 I 2 3 4 5 6

Elliptical arc defined by the strua~·
3, 15, 1, 2.5, 0, 90, 2, 25

ABC
ltaltcized sequence of characters

Angled sequence of characters

<(COU
Individually rotated sequence of
characters

A
B c

Character string rotated 270, inc
characters rotated 900

nson of relative widths of charac-
·the same height

175 Computer-Aided Design

s s s
7 7 7

6 6 6

5 5 5

4 4 4

3 3 3

2 2 2

0
0 I 2 3 4 5 6

Font Table Storage and Retrieval

A complete font table will consist of all the upper- and lower-case letters, ten
digits, and punctuation characters. A unique data code will indicate the end of
the table, in case a character is not found in the font. In this case, the character
will be replaced by a "space." The end-of-table code used in the following exam
ples is any number less than - 1.

Note that the sample programs deal with a font as though it were expressed
in the program in DATA statements. Since the four fonts together require that
about 64,000 characters be represented in DATA statements, it is not acceptable
to retain fonts in this way in most personal computers. Instead, the fonts should
be written on an external storage medium such as disk and accessed from there.

Given a text string in 8$, how can the stroke table for each character be
found in the font table? It is necessary to isolate one character at a time (into C$
in the example) and progress through the table until the position of the charac
ter in the font table is found . If the stroke table is kept on disk, each character
can be related to its disk address by a list in memory and thereby be accessed di
rectly.

Several parameters must be known to process a found character:

X,Y the location of the lower left-hand corner of the position on the screen of
the first character in the input string 8$

H the height of the character in inches

W the width of the character in inches

S the angle of slant of a character

A the angle of the text sequence

8 the angle of rotation of each character about its center

Here is a program for looking up a character in a font table.

Look Up Character in Font Table Program Code

RESTORE

REPEAT
READ A$

IF A$ < > C$ THEN
READ N,N

REPEAT
READ T

Begin at the top of the font table

Read a character

If not the sought character,
skip over the values describing it

4000

4010
4020

4030
4040

4050
4060

