commodore 64
adventures

A guide to playing and writing adventures

mike grace

commodore 64
adventures

A guide to playing and writing adventures

mike grace

First published 1983 by:

Sunshine Books (an imprint of Scot Press Ltd.)
12—13 Little Newport Street,

London WC2R 3LD

Copyright © Mike Grace
Reprinted 1983

ISBN 0946408 11 4

Allrightsreserved. No part of this publication may be reproduced, storedin
a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording and/or otherwise, without the prior
written permission of the Publishers.

Cover design by Graphic Design Ltd.
Illustration by Ian Craig.
Typeset and printed in England by Commercial Colour Press, London E7.

To Gill

And Pluck till times
and times are done

The silver apples of the moon.
The golden apples of the sun.

W. B. Yeats.

PROGRAM NOTES

A number of functions on the Commodore 64, as with other
Commodore machines, are dictated by ‘control characters’ which
are contained in ordinary strings and take effect when the string is
printed. Control characters can normally be recognised by the fact
that they are inverse characters (the colours of the background and
foreground are reversed in the character position). The functions
under the control of such characters include cursor position, print
colour, inverse (RVS) on and off, cursor home and clear screen.

The following table shows the control characters as they appear in
the programs in this book:

black |

white a

red i

AT

PUrele

T i

blue o

dellow s .
orange H|

brawn L

light red [/
ared 1]|

ey & o

Commodore 64 Adventure

ligkt Sreen N

ligkt blue

Ay 3 4
s DT ®
rowe of f A
P L)
b (oYY el
i3kt]
left []

CONTENTS

Foreword

Part 1

1 TheMysteryandtheMagic

2 Movingaroundan Adventure
3 Objectsand Commands

4 Pitfallsand Perils

Part 2

5 WritingthePlot

6 SettingtheScene

7 Doyouneedhelp?

8 Spritesand Sound Effects
9 Wheredowego fromhere?
10 Pickingupnicely now

11 Notthatway

12 Nicedayforadip

13 Totalk of manythings

14 Akissintime

15 Lookingtothefuture

Afterword
Appendices

A Tableof Variables for Nightmare Planet

B TheLine Numbers

C Overall Flow Chart for Nightmare Planet

Page
11

15
25
43
59

71

85

93
101
119
137
149
161
177
189
201

203
207

209
215

Contents in detail

CHAPTER 1

The Mystery and the Magic

The beginnings of Adventure, what is an Adventure game, Dungeons and
Dragons, tips on playing Adventures, thinking about writing your own.

CHAPTER 2

Moving around an Adventure

Drawing and interpreting maps, converting your map to a grid, some pro-
gramming hints, entering your locations into your program.

CHAPTER 3

Objects and Commands

Using arrays, entering objects into the grid, basic string handling, inven-
tory, get and drop routines.

CHAPTER 4

Pitfalls and Perils

Adding excitement into your Adventure, programming perils, using varia-
bles to indicate hazards, solving your problems.

CHAPTER 5

Writing the Plot

Beginning the story, selecting an environment, choosing your quest,
deciding on the hero, selecting the main characters, writing a synopsis, a
simplified map, how to storyboard your plot.

CHAPTER 6

Setting the Scene

Theinitial concept, designing a title, starting to program, general guides on
programming text.

Commodore 64 Adventure

CHAPTER 7
Do you need help?
Providing instructions for your games, LOADing and SAVEing to tape.

CHAPTER 8

Sprites and Sound Effects

Designing and creating sprites, moving sprites around, Victor and the
Mealy Bug, selecting sound effects, adding sound to your responses.

CHAPTER 9

Where do we go from here?

Creating the map for Nightmare Planet, entering the locations, moving
around the Adventure.

CHAPTER 10

Picking up nicely now

Airlocks and things, manipulating strings, adding to the inventory, getting
and dropping things.

CHAPTER 11
Not that way
The six basic perils, displaying perils, preventing escape from the locations.

CHAPTER 12

Nice day for a dip

Killing routines, the eel peril, using variables to prevent movement, a gene-
ral structure for Adventure perils.

CHAPTER 13

To talk of many things

Now you see Aurora — now you don’t, dealing with quicksand, a dinosaur
and a snake, climbing trees, adding time loops.

CHAPTER 14

A Kiss in Time

Help routines, shooting and firing, coping with the command eat, the
ultimate kiss.

Contents in Detail

CHAPTER 15
Looking to the future
Extending your game, it’s really up to you.

FOREWORD

This book is about Adventure games and how to write your own. Although
primarily a ‘how to doit’ book I have also tried to capture the excitement of
playing this type of game and sprinkled quite a few hints and tips which
should help Adventurers (novice and expert alike) to enjoy indulging in
their passion.

When I started I was a fairly inexperienced programmer (I suppose I still
am to an extent) and the thought of writing a game which contained any
depth and mystery seemed formidable. I am glad to report that despite the
apparent complexity and length of the final program it was quite easy —
once I had solved the basic mechanics of constructing a framework for my
program. My thanks go to David Lawrence who nudged me in the right
direction on occasions when everything seemed to be getting too much.
Thus, even if you are a newcomer to programming, this book is well within
your capabilities.

Whilst the book will obviously enable you to enter and then play my own
game — Nightmare Planet — it will also (and of more value in the end) give
you a blueprint for creating your own Adventureright fromscratch. Itisnot
justa ‘copy meand play it’ book at all — and I suspect that for many Adven-
turers the thrill of creating your own masterpiece (to baffle and amaze your
friends) is the ultimate satisfaction in programming and playing.

In the process of writing I have learnt about the Commodore 64 — a
superb machine for Adventurers. The amount of memory gives plenty of
scope for a complex and extensive plot and the graphics capabilities (whilst
not really utilised in atext Adventure) willadd that touch of professionalism
to your game which make a program look and feel good.

The book is divided into two sections. The first covers the mechanics of
creating a framework for your Adventure —how to construct locations and
move between them, how to pick up objects and move them around your
framework, and how to create hazards and perils for your player to encoun-
ter. This section contains a sample program called ADVENTURE GAME
which is purely a simplified framework to illustrate the concepts (which can
be used again and again).

Thesecond section deals with creating the plot, writing the story, and pro-
gramming into your 64 an Adventure — from conception to completion.
The program Nightmare Planet (which will appear at first to be frightenin-
gly long) is set out throughout the various chapters in modular form to help

11

Commodore 64 Adventure

you when you start creating your own. Whilst it is possible to sit down and
key in the whole thing in one marathon session (!!) if you work through
chapter by chapter entering it a stage at a time it will help in planning your
own program later.

Whilst this book can be read on the train or by the fireside it is really a
book to be used beside the 64 or with a pencil and several reams of paper to
play with. Certain pages contain charts or diagrams that [have found inva-
luable in my own planning — and if you have access to a photocopier I
would suggest you take your own copies to help you. Whatever else though
— have fun!

When I started (as I said before) [was really just an enthusiastic player of
Adventures. By the time I’d finished I had become a better programmer and
without doubt a better player as well. In fact my enthusiasm seemed to
increase with each chapter I wrote.

My thanks go to Commodore for making a 64 available, to David Law-
rence for his guidance and help, and to my family for their patience and their
helpful suggestions whilst they were testing my Adventure.

12

Part1

CHAPTER 1
The Mystery and Magic

Chest heaving, sweat dripping down his bronzed body, muscles aching as if
he had been stretched on the rack for a week, Karon teetered on the edge of
a vast precipice that had appeared under his feet as if by evil design rather
than a trick of nature. His eyes flickered behind him, hearing the dogs.
Surely they would reach him in mere moments?

But which way to turn? How to escape? Behind him the armed might of
the Emperor Draloor and his thrice accursed Zamrian hunting dogs (who
were able, it was rumoured, to track a man through the very ocean itself)
were closing in. To his left and right the walls of the mountains, a mere hun-
dred paces or more, might well have been just feet away for all the cover they
afforded. And ahead yawned a chasm — a natural cleft in the valley floor
too wide to jump for even his mighty thews.

Trapped. Too late now to regret his indiscretions in the courtyard with
Darleen (and how was he to know the wench was the emperor’s daughter if
she did not tell him?). He hefted his mighty broadsword into his right
hand, and turned to face his pursuers.

At his feet a small gold ring sparkled in the evening sunlight, catching his
attention. He stooped to pick it up — then with a suddenness the dogs were
upon him.

The above passage could well be from a book of heroic fantasy (another
name for sword and sorcery — a form of fantasy writing popularised in the
1930s in the pulp magazines of that era), or part of the screenplay for a
film. It could be the breakdown for a comic-book, or even the start of a
game called Dungeons and Dragons. Or, of course, it could be a scene from
an Adventure game.

Chances are if you’re reading this book you already know about Adven-
ture games and have probably played a few — but as the choice of this type
of software is still pretty sparse for the Commodore 64 you may not if the
64 is your first computer.

Then again you may have heard or read about Adventures — but not
really quite managed to take the time to key one in from a magazine (quite a
marathon task) or better still succeed in playing a game through to the
bitter end. Yet the concept of Adventure games has pretty much a universal

15

Commodore 64 Adventure

appeal and Adventurers are on the increase everywhere.

Dungeons and Dragons

If you are a newcomer to the role-playing concept I will spend just a few
moments of introduction. Adventure games are so-called because they
involve YOU — the player — in an adventure of one sort or another.
Instead of just watching as a spectator (as in the film or book) you actually
become the hero or heroine and to a certain extent you control your own
destiny within the game. At no time can you be sure of a happy ending,
more likely the opposite.

The concept was originally spawned from another type of role-playing
game devised in the early 1970s called Dungeons and Dragons. Unlike most
board and card games the players use their minds and imagination to move
around a fantasy world created by the Dungeonmaster (someone in control
of the game rather like the Banker in Monopoly) and also assume the role
of various characters to add to the authenticity of the game. At first this use
of the imagination of the mind was all that was needed, but later versions
have tended to pander to a larger potential market by bringing in a board to
give the players a tangible focus for their attention. This has the effect (in
my opinion) of stifling the creative powers of the participants unlike the
microcomputer. Perhaps this is one reason why adventures are gaining in
popularity today.

An example of a game might well take the following pattern:

The players select various roles: an elf, a wizard, a warrior, a princess, a
jester, etc. (Most of the original games centred around the fantasy world of
fairy-tales and folklore — with a strong bias towards Tolkien’s Lord of the
Rings).

The Dungeonmaster creates the main plot of the game (usually some
time before the players arrive). He will have drawn an intricate map of
rooms (these are the dungeons) around which the players will move. He
will also have created various treasures for them to collect and perils that he
will spring upon them once they arrive in a particular room in his map. (See
Figure 1.1).

The game begins. Each player takes a turn at moving — usually either
east, west, north, south, up or down. As the player moves into a room so
the Dungeonmaster will report on the type of room, the objects to be found
there, and if applicable, the peril.

The player must then use his wits and imagination (as well as his skill in
playing the game) to either battle and defeat the peril or escape (preferably
with the object).

The appeal of the game is a combination of the mystery and magic of the
fantasy world plus the tremendous scope of the human imagination. No

16

Chapter I The Mystery and Magic

Figure 1.1 A map from a Dungeon and Dragons game

13

G

1‘12
M ”

g10 2 3

=¢]

J|lo| ol s

R OR SONTIA e R b =

i
. Dead-end passage.
13.

Entrance in a well in the garden.

Room with a map, sword and knife.

Space warp to level 6.

Cell with a giant spider guarding treasure.

Cell with six vicious goblins.

Empty cell.

Empty cell — door springs shut behind you.
Wizard’s room. You need magic (level 4) to escape.
Shaft leading down to level 2. Slippery ladder.
Room with a wizard’s hat. Only controllable with powerful magic
(level 8).

Dungeon. No escape from here.

Vast throne-room with giant statue with ruby eyes. On removal of a
ruby the statue comes to life.

17

Commodore 64 Adventure

danger of ever playing the same game twice — for the variety of possi-
ble plots is extensive. It is rumoured that some games continue for
weeks on end as hardened players delve even deeper into the maze of
tunnels and traps that the Dungeonmaster has devised.

The beginnings of Adventure

Also back in those early years the idea of introducing the game to
computers took root in the minds of the mainframe programmers.
There is a legend of computer operators trapped in front of their main-
frames — eyes red-rimmed and bleary from lack of sleep as they
wander lost around the vast complexes of passages and locations.
Whatever the truth the game has not only continued under the takeover
of the micro — it has blossomed — gaining in popularity with each
passing year.

The main difference between the original Dungeons and Dragons con-
cept and the Adventure game is that the latter becomes more personal and
(in our time-conscious society) more acceptable. It is possible to save most
games to tape part way through and return to them later. You don’t need to
collect a few people together to play. And somehow the computer has
become a worthy opponent to beat — by hook or by crook!

The first variations tended to concentrate on text-only Adventures, per-
haps appearing a trifle dull to the optically-battered fan of arcade games
with an emphasis on graphics. And yet it is this very lack of images that
gives the genre its appeal — for words can help us conjure up a far more
vivid scene in our mind than graphics ever can. Until the programmers can
produce pictures that look as good as a Walt Disney cartoon (and it’s not
too far off) I still prefer text Adventures to their graphic counterparts.

Don’t let me put you off graphic Adventures though, for there are some
around now which take on a completely different slant from the text-based
versions, as long as they are not confused with a hybrid version where a
character is manoeuvred around a ‘graphic’ number of locations with a
joystick). My main objection is the use of valuable memory (that could be
used to create a longer adventure or more hazards and objects along the
way), and the graphics still tend to be a poor second to my own visualis-
ation of the fantasy world that most Adventurers favour. But then I
haven’t played The Hobbit yet!

Because of my preference I have concentrated on the text-only type in
this book. Having said that there are many good graphic versions around
which are fun to play — I just put them in a different category.

I can’t really leave this extremely brief introduction without mentioning
Scott Adams, probably the best known name in the world of Adventures
for the micro, who originally wrote his game for the TRS-80 and has subse-
quently adapted them for several popular machines (including the VIC 20

18

Chapter I The Mystery and Magic

so it is possible the 64 will follow). These games have set the standard which
many others have followed — and I have unashamedly copied the style
with my own Adventure.

Hints on playing Adventures

Although most Adventurers learn the tricks of the trade the hard way — by
experience — there are quite a few standard ways of helping the novice
(and let’s face it — the experienced player as well at times) to improve his
game. Like every hobby, occupation or sport, a bit of practice and a
smidgeon of knowledge tends to increase enjoyment rather than spoil it.

However if you like to save yourself and make your own discoveries —
skip this section altogether.

Maps

I will be spending some time on maps in Chapters 2 and 9, so I will just
add here that maps aren’t essential but definitely help you to understand
where you are in the Adventure. I always draw them on a large piece of
paper and I tend to move from location to location at the start just planning
where everything is.

It is worth noting the position of objects, where doors are, any special
conditions (such as a light coming from a dark tunnel that you haven’t
explored yet) and any other clue. As almost everything you see on the screen
has some relevance add it to your map. Try to use a piece of paper ten times
larger than you’d think. You’ll find it’s too small.

In the really complex maze type of game with corridors, turning, levels,
up and down, etc., it can get confusing. One way of trying to plot your
progress is to carry various objects into the maze and drop them at strategic
locations. When you return to the same location the object should be there
and you can clarify exactly where you are.

Objects

There is a golden rule in Adventures — always pick up everything you can.
It’s a good idea, as most games tend to have an object there for a reason
(however obscure) and you can be sure you’ll need it sooner or later. The
real problem comes with a limit on your inventory as it needs skill to select
the best objects to carry into the appropriate locations.

Anadded problemisthesneaky practice of needing certain objects two or
three times — for example a gun or knife. Another little tip here — in some
games you may need to repeat an action. For example in Adventure Land
(The first of Scott Adams’ games) you find a lamp and on the command
RUB LAMP a genie appears with one set of helpful comments. If you rub
the lamp a second time then a second and more helpful response is
displayed. But beware a third. . .

A favourite trick in games is to create a place where it is too dark to see.
You will usually find a lamp, a torch, matches or some other object with

19

Commodore 64 Adventure

which to illuminate the scene — often somewhere else in the Adventure.
But again there may be a snag — such as a time limit on the light, a draught
that blows your match out, batteries that expire. . ..

Most games include an inventory — and a simple hint here is to check
your inventory when you start the game as you may find you’re already
carrying something. So don’t wait until you pick up objects before
checking.

Looking around

Some Adventures will let you LOOK around, and this is often necessary to
discover objects or clues. Always try a LOOK if your game lets you on
arriving at a new location. Other times the command LOOK will just
display your location (as in my own game — Nightmare Planet).

With experience the computer response often gives you a clue as to what
you can expect. Various games contain individual responses as a standard
reply, for example I DON’T KNOW HOW TO for a verb that isn’t in the
vocabulary. You can use this to your advantage when playing. For example
if you should come to a door and type OPEN DOOR and get the response I
DON’T KNOW HOW TO OPEN then it’s obvious the keyword is some-
thing else, perhaps UNLOCK or just GO DOOR. However if the response
is YOU CAN’T DO THATYET then you can be pretty sure OPEN is
arecognised word but you need something else before you will be allowed
to open the door — perhaps a key.

Thinking of writing your own Adventure

I suppose we should start really with why people want to play Adventure
games before thinking about writing one. I have already hinted at some of
the reasons — the magic of our fairy-tale youth when fairy queens could
grant three wishes and everything became all-right or fearsome giants
could strike terror into our vivid nightmares as we lay in the dark. There’s
something primaeval about the world of fantasy and horror that has a uni-
versal appeal to people the world over — after all who doesn’t prick up
their ears when a good ghost story is being told (especially one reputed to be
true).

So Adventure games (rooted in the dark and mysterious) carry this
attraction in their very bones and we like to feel a part of it. And herein lies
the second (and more important I suspect) fascination — the element of
playing a part in the actual story. Role-playing is in its infancy (several
books which draw heavily on the Dungeons and Dragons theme are already
available). But we are still a long way from the science-fiction concept of
plugging our minds into a ‘dream-recorder’ so that we can dream an
Adventure of our choice where we become the hero or villain. But we are
getting there.

We may not have total involvement yet but the micro-computer has defi-

20

Chapter 1 The Mystery and Magic

nitely helped the move along in the right direction. With careful program-
ming the player appears to have a variety of decisions to make which will
direct the progress of the story — and as it unfolds so the feeling of taking
part in a scenario is increased.

Weall like to be in control if we can — and this is where writing your own
game takes on an attractive perspective. YOU can control the story — YOU
candecidethe environment — YOU createthe characters — YOU can make
up puzzles and riddles to infuriate your hapless player — YOU are in con-
trol. And without a doubt the feeling of achievement in producing a work of
art (I may be putting my head in the proverbial noose by calling a computer
game a work of art — but it is a creative act which causes enjoyment so I feel
justified!) is worth all the effort.

Making a start

Let’s end this chapter on a more practical note. You have decided to have a
go at writing your own Adventure — but where do you begin?

If you want to start planning your story straight away I suggest you turn
to Chapter S as the next section of the book deals with programming con-
cepts. But before you do — it’s not a bad idea to have a general plan clear in
your mind first.

Flowchart 1.1 is an imaginary flow chart describing the basics of creating
an Adventure.

Block 1 starts by setting various variables (such as the position of the
player) and dimensioning the arrays. (If you are a little unclear about
arrays then it’s not worth worrying at this stage. Any explanation I make
such as thinking of them as the pages of a book or a railway timetable will
probably only confuse you — and to be honest it’s not necessary to under-
stand them to write an Adventure.)

Block 2 is really just a method of printing a display on the screen which
will contain the necessary information. This usually consists of a short
description of where you are followed by any objects or perils that may be
around. Also this stage of the program will check to see if you are in certain
locations where special conditions apply (for example you may find when
you enter a particular room the door is locked behind you and you cannot
escape that way).

Block 3 asks the player for an input (usually by displaying the message
WHAT SHALL I DO NOW?) and then waits for an answer.

Block 4 is a simple check to see if the input is valid. If not the program
will give a standard reply (such as I DON’TKNOW HOW TO DO THAT!)
and then repeat the input message in Block 3.

Block 5 is the real meat of the program where all the different responses
(such as HELP or GO NORTH) are interpreted and then acted upon. The
program then loops back to Block 3 to await the next input.

Of course there is a little more to writing a complete game than this —

21

22

Commodore 64 Adventure

Flowchart 1.1 A basic Adventure

IF
INPUT
INVALD|

SET VARIABLES

DIMENSION ARRAYS|

DISPLAY LOCATION
READ DATA

CHECK FOR ANY
SPECIAL
CONDITIONS

l

ASK PLAYER
FOR INPUT

l

INTERPRET INPUT
CHECK IF INPUT
VALID.

IF NOT VYALID
RETURN TD INPUT

l

ACT ON INPUT
IF INPUT (5 A

PIRECTION THEN /

EXECUTE MOVEMEM
OTHERWISE
EXECUTE
APPROPRIATE
REPLY

IF
INPUT
VALID

Chapter I The Mystery and Magic

but the essence is there. Now we can get on with the business of serious
programming.

Although I have mentioned moving to Chapter 5 for a few ideas on
creating your own story — unless you are an experienced programmer the
little extra time it will take working through Chapters 2—4 will be well
worth it as they contain a straightforward explanation of the basic mechan-
ics of structuring your program. I suspect that Adventures need pre-plann-
ing more than most.

23

CHAPTER 2
Moving around an Adventure

We need to understand the basic mechanics of an Adventure Game before
starting to look at creating our own masterpiece containing many loca-
tions, plenty of perils, objects galore scattered around — and all the other
goodies that create the fun (and the frustration) of programming and play-
ing. Before starting to switch on the 64 it’s important to have an idea of
what the game is to be about. This applies equally well to the simple exam-
ple I have created to illustrate various procedures as to the marathon game
in the second section of the book.

Probably the first most important feature of an interesting game is that
you have a variety of locations — and that you can move about them in a
consistent manner. To do this you need a map.

Maps — how to draw and interpret them

Whilst it is possible to play the whole of an Adventure without a map
almost every game will be more rewarding and easier if you can chart your
progress as you go along. In fact one of the easiest ways of starting any
game is to move from location to location noting down where you are and
which exits lead to new areas. A LOCATION in Adventures can mean any
area, for example a room, the top of a tree, inside a lift, outside a window,
etc.

In one of Scott Adams’ Adventures The Count, you wake up in bed. In
your room is a window. If you type GO WINDOW (and it is already open)
then you move to a new LOCATION on the window ledge. If you then go
DOWN (using a method I will not divulge) you move to another LOCA-
TION in a window box which in turn leads into another room in the castle.
In each case the window ledge and the window box count as separate
LOCATIONS.

Doubtless there are as many different ways of actually drawing a map as
there are people to draw them — but the method I have found easiest seems
pretty simple so I will use it to illustrate the maps throughout the book.
Whenever I am starting a new Adventure I draw my first LOCATION in
the centre of the page as a box containing the appropriate word. I always
use the centre of the page at this stage as I do not know if I am going to be
travelling east, north, south or west yet.

25

Commodore 64 Adventure

Having drawn the box I note the exits I am allowed (most Adventures do
help by telling you which exits are available — but some wait for you to

type
GO NORTH

before replying
YOU CANNOT GO THAT WAY

and then wait for you to try the next direction). Personally I find this latter
approach a time-waster (as it serves no useful purpose to keep trying dif-
ferent directions until you hit the lucky one). I then mark arrows (one way
only at this stage) going from my LOCATION in the appropriate
direction.

Figure 2.1 Drawing your map 1

HOUSE

Figure 2.1 shows the start of an Adventure where I have found myself in a
house and have been told I can go NORTH or EAST.

The next stage is to go in one of the possible directions — and then note
the new LOCATION. In the imaginary example having keyed in NORTH
or just N (as most Adventures will allow you to use only the first letter of
each direction) we find ourselves on a path and now the possible exits are
WEST or SOUTH (see Figure 2.2).

At this stage I can add an arrow going back from the path to the house (in
most Adventures if you can go one direction into a new location you can
usually move back again — but not always) and a new arrow moving
WEST.

This process continues until eventually I will have mapped out most of
the obvious LOCATIONS and can now start to move around them.

Not all Adventures have obvious LOCATIONS and in most of them the
directions UP and DOWN are added to the points of the compass, making
the initial map quite difficult to design as it may have several levels as well.
An example of this must be one of the best known Adventures of all —
Adventure Land by Scott Adams — where the initial map contains only a
handful of LOCATIONS. Itis only after discovering a certain ‘tree’ which,

26

Chapter 2 Moving Around an Adventure

Figure 2.2 Drawing your map 2

PATH

I

HOUSE

once climbed, reveals a way DOWN into a maze of passages and caverns
that the full extent of the map can be drawn.

As I mentioned earlier one snag with this is that when you start you do
not know where the possible LOCATIONS are — so it is possible to find
yourself going off the page (see Figure 2.3). A little redrawing of the map is
all that is required.

Converting the map to a grid

The essence of all Adventure games is the ability to move around from
place to place, and there are several ways of achieving this on a computer.
Probably the simplest is to convert your map into a grid and then give the
computer the information to allow it to accept certain areas of the grid (the
actual locations) as places it can move into. If these areas have a reference
number then it is quite easy to persuade the computer to ‘move’ into that
area and display the location.

This is probably easier to understand with a diagram, (see Figure 2.4):

In Figure 2.4(a) our map is ready for conversion. There are six locations
(numbered 1 to 6 for convenience at this stage) starting with a field, then
moving along a path to a house. To the east of the house is a forest, then we
move south to a plain and finally a lake.

Figure 2.4(b) has now placed that map onto a 5 x 5 grid (I could have
used 4 x 4 for the purpose of this example, but as I wanted to allow room
for you to experiment by adding your own locations I decided to use the
5x5). The conversion is a straight placement of the squares — leaving 19
squares blank for the moment. One of the advantages of this method is that
it is easy to expand or change your map as you go along.

27

Commodore 64 Adventure

Figure 2.3 Drawing your map 3

28

PATH

HOUSE

I

FOREST

]

FORE

PLAIN

FORE

Figure 2.4a Converting your map to a grid

FIELD

Chapter 2 Moving Around an Adventure

2. PATH

1

3. HOUSE

4. FOREST

5. PLAIN

6. LAKE

29

Commodore 64 Adventure

Figure 2.4b
I) 3 4 5
FIELD | PATH
A
6 7 vV |8 q 10
HOUSE " | FOREST
A
I 12 13V 4 IS
PLAIN
i
16 17 8 v |4 20
LAKE
2l 22 23 24 25

Moving about in the grid

You should have noticed in Figure 2.4(b) that the various locations now
have a different reference number. For example the house (number 3 in
Figure 2.4(a)) is now number 7. This allows us to give the computer a
simple formula to ‘persuade’ it to allow us to ‘move’.

If we are in Location 7 and we wish to move south then we need to move
into Location 13. Similarly if we are in Location 13 south takes us to Loca-
tion 18. The formula x = x + 5 will take us south — if x = 8 then south will be
8+ 5 which =13. Using the same idea going north will be a subtraction
—x=x-—5will move from 18 back to 13. East will be x = x + 1 whilst west is
the reverse, x=x—1.

In a 4 x 4 grid the formula would be x = x + 4 for south and x =x — 4 for
north. Obviously east and west remain the same regardless of the grid size.

30

Chapter 2 Moving Around an Adventure

The last consideration for movement is how to prevent the computer
moving into a location that isn’t there — for example east or west from
the plain (LOCATION 13). The solution is to fool the computer by
telling it that LOCATION 14 doesn’t exist — by giving that square a
value of 0.

This will become clearer once we start the actual programming — but
for now Figure 2.5 should demonstrate how we know exactly what to tell
the computer to achieve the process of movement from one location to
another.

Figure 2.5 The basic grid for Adventure Game

l. - (0 (0 (0
FIELD PATH

o y 4 8. (0 0
HOUSE | FOREST

0 o) 13, o (o
PLAIN

o o 18. (0] (0
LAKE

o) o (0 o o

Starting to program your Adventure

Now — at last — we can start programming. Before describing the first
module I would like to pass on a few hints about programming in general
that I feel are worth mentioning at this stage. Experienced programmers
can skip this bit as there is nothing revolutionary here — but I know
from my own experience that some of the simplest tricks of the trade are
often not mentioned as it may be assumed they are so simple that
everyone must know about them.

31

Commodore 64 Adventure

1. Keep saving the program

This is such old hat that I hesitate to mention it — except that everyone is
caught out and when you’re in the thick of a program it’s only too easy to
forget. At one stage in Nightmare Planet (the Adventure game in the
second section of this book) a thunderstorm crashed my 64 and about an
hour’s hard work was lost. Another time the disk drive suddenly corrupted
my program and also (neat trick this) my backup as well — because I had
automatically made the backup without checking. Now I keep a backup of
the previous version as a spare to fall back on should this happen.

If the thought of all that SAVEing and VERIFYing irks you — look at
Hint 2.

2. A neat time-saver

If you have a disk drive repeated SAVEing and VERIFYing of your pro-
gram becomes tedious if you don’t know this little gem of a trick. Before I
read about this routine I was unaware that you could overwrite your pro-
gram on disk (as happens automatically on tape) and so I was SAVEing my
new version under a different name and then changing the name back after
SCRATCHING the original version.

At the start of every program type this little module:

1. GOTO3
2. SAVE “@0:NAME”,8:VERIFY‘‘NAME"’ ,8:STOP
3. REM

If you type the name of your program between the quotes then every time
you wish to SAVE the version you just type GOTO 2 and the 64 does the
rest. Of all the tips I’ve picked up this is one of the best and I’m indebted to
David Lawrence.

3. Test your modules

When I first began to copy programs from books and magazines I would sit
down in front of my computer and bash away — trying to get as much Basic
into the memory as I could in one go. It was rather as though I had an
imaginary deadline to meet and couldn’t waste a second.

Naturally I made mistakes and then tracking them down became a time-
waster par excellence! However if you check each section of the program as
often as you can (having saved it to tape or disk) to see if it is working you
will pick up these mistakes along the way (which is much less frustrating
and saves on time).

32

Chapter 2 Moving Around an Adventure

4. Use the screen for editing and copying

When you start programming from books and magazines it’s often easier
to just copy line by line and the idea of screen use to save time can be
neglected. To understand how best to use this idea look at the beginning of
Module 1.1. and you will see that I have used a lot of REM statements and
‘:” statements to space out the program and give it a polished appearance.
If you just type line 100 once and line 101 once then it’s easy to change the
101 to 99 (remember to add or delete a “*’ if the line number changes from 2
figures to 3 or from 3 to 4) and press RETURN. The new line is placed into
memory without retyping all those stars or ‘:” statements.

This system will also work well in lines 800 to 830 in Module 1.3.

My sample program contains only a few variables — outlined below:

Table 2.1 Variables used in Adventure Game

P The Position of the current location
P2 The rosition of the new location

0B% InteZer value of Obiect in Obiszct Array
NB% Sin%le word descriPticn of Oblect
SI$¢ Long descrirtion of Obiect for Location

1% Command exPected from Plader
VEE Verh P/ ected in a2 2 word command from plaser
HO$ Moun expected in a2 2 word command from Plaser

-’+

Sk Local variable used to split 1
I Lorcal wvariable .o count, objects in the Obiect Array

The direction HORTH
The direction SOUTH
The direction SOUTH
The direction WEST

=ZEomom=

SWx Set at 2 when the swamP has been negntiated
MW: Set at 2 when the monster has been killed

IY Inventory counter

The location descriptions

Having drawn up the locations on our map we need a display to come up on
the screen when we move into each place so that the player knows where he
is. Again for this simple example I have used the shortest description possi-

33

Commodore 64 Adventure

ble just to enable you to see how the game works. In the second section of
the book this part of the program is perhaps the greatest byte-eater of all as
the various descriptive passages used to give an atmosphere to the whole
story take up quite a large chunk of memory. However as the feel of your
game will rely on your ability to make the player become involved in each
location this is memory well spent — and in my opinion a good Adventure
game will trade plenty of memory to keep that atmosphere at the expense
of items such as extra objects or graphics.

MODULE 1.1

+
EA:module 1.1", 8 verify" module 1.
oF

-
o
"

t

0
WE
&

l'__'ll—l-f\;ll—‘
1‘- W

l\mmu

il
29 rcm#####**m#*########*#*###*####**#*#
bR EEE T E
188 rem adventure Qame
101 rem¥E¥EEEEEEEEEEEEEEREeEiRsErsrisss
FXEEER AR EE
5931 ¢
5392
SEEE pemEEEEEEEEEEEEEEEEEEFEEEEEEEERE RS
g EELEEE T
9734 rem deszcriPtion of wvarious locati
ONE
ST remEEEEEEEEEEEEEEEEERER RS EERER R R
####ﬁ*###*
9296
9397 rem##***##*#*#*###*#
S9593 rem lozation 1
DY renEEEEEEEEEREREEEEE
SEEEa Print"ieow are in a field,"
AL n=Ee=22=00y=0 " 9ota 5HOH
GELT remERREiEr R e iR
A1 rem location 2
SE1S remEREsEEEErEEEriiE
028 print"ibow are on a Path."
BE3E n=8'e=0: =7 w=1'90to 503
BEIT rem¥EErERiEiiiEiiiiy
939 I e location ¥
BEZY remEEEEEEEEEE Rk

34

Chapter 2 Moving Around an Adventure

a4l pPrint"ikou are in a3 houze,"
BESA =2 e=8 =0 w=@ 3oto 506
EEAST e m A

BESE e location 2

EASE remEEEEsisssssiseisy

EEEE Print"iMoy are in a forest,"
EAYHE n=0'e=E z=13 yw=7 aoto S8
FETT? remEEFESEEEEEssriees

EATE rem locaticon 13

RATS e s e hn g e

EEEE Print"ikou are on 3 Flain.”
REFA =8 e=@:z=18 " w=@'39o0to 566
EEST remEEEEEEEEEEEEEEEE¥

EESE rem location 18

BEY remEEEEEEEEEEiEEEEy

G188 Print"ibow are ba a lake,"
G118 n=13 =0 =@ w=8 ' 9cto 5605

Lines 99—101: These supply the titles for the program. Please do look at
Number 4 in my section on hints before programming this (and all the
other REM lines) to save time and effort.

Lines 5991—5992: The colon sign acts as a REM statement and is purely a
method of separating the areas in the printout for neatness.

Lines 6000—6010: The first line prints out the description of the location.

Line 6010is the key to correct movement so I will clarify what is happening.
If you look back at Figure 2.5 you will see that Location 1 is the field. The
only exit possible is east to Location 2 (the path). Thus line 6010 states that
N =0 (you cannot go north) that E =2 (you can go east to Location 2) and
both South and West =0 (you cannot go south or west).

Finally this line tells you to GOTO 500 which will display the possible
exits from this location (see Module 1.3).

Lines 6020—6110: The rest of the program completes the different PRINT
statements for the different locations and the appropriate instructions for
allowing movement into the locations in a north, east, south and west
direction.

35

Commodore 64 Adventure

MODULE 1.2

1 aotos

2 ozaveEA module 12" 8 werife"module 1.
2" aEiatap

aSorem

2ar

prd o e

2ES r=m##+###+$#+++++#+*+++++t+++#*#+*##
EEE R EEEEEEEEELERE B E R

218 rem zet FPosition

211 remEEEEEEEEERE AR R R R R
#+++++#¥+++*#+###+##+

P

23@ St 20

EACT I

T A o o o e e
PR EEEE R RS L EEREEEE

2AE rem set location

IS e ey o e s e e e e e
LR L ***#**######*####*

248 p=pZ

258 iF P21l then on Bosobo SEERE, SEZE, .8
CHEL B ERSE, SEER LB, B

1t I I D R | thEh o P10 Soto BB SEREE, @
SELE LR ELER A3

27E if paz2e then on P20 Soto @.BLE.8.8

Lines 220—230: This sets the position that we will arrive in upon RUNning
the program. P is the variable POSITION and if we allocate a value of 7
then the first message to appear on the screen will relate to Location 7 —
the house.

Of course we could decide to start anywhere in the Adventure — not just
in the house. After you type in Lines 240—270 you can experiment by
changing P=7 to P =13 and then you will start on the plain instead of the
house.

Line 240: This line is really a little difficult to explain at this stage — so just
type it in and forget about it for the moment. All you need notice is that it
introduces another variable — P2 — and then immediately makes it equal
to P.

Lines 250—270: These are the lines which tell the 64 how to display the
appropriate message on the screen. Using the ON. . GOTO statement as a
method of selecting the correct line number the program takes the value of

36

Chapter 2 Moving Around an Adventure

P (which we have set at 7 in line 220) and starts in line 250. If Pislessthan 11
(which it is) then it stays in this line and works along until it reaches the 7th
number (which happens to be 6040). You then drop right through the pro-
gram until you reach 6040 and find the line: PRINT ‘““YOU ARE IN A
HOUSE”’. Thus the correct display for P =7 appears on the screen.

If P had been a number greater than 11 (say 13) then the program drops
into line 260 and as P is less than 21 it takes the statement ON P — 10
(13— 10 which equals 3) GOTO the 3rd number in the line (which happens
to be 6080).

If you enter Modules 1.1 and 1.2 and then RUN them you should get the
display “YOU ARE IN A HOUSE.” on the screen followed by the error
message UNDEF’D STATEMENT ERROR IN 6050. This is because you
have told the computer to GOTO line 500 which doesn’t exist yet.

LIST the program again and change line 220 to read P = 18 — then RUN
it again. This time you should get the display ‘““YOU ARE BY A LAKE.”’
and then the error message. Before entering the next module change the
value of P back to 7.

Having created the locations and told the computer how to get to them
we now need to add the element of movement and also give the player an
INPUT so that he can tell the 64 which direction to move in.

MODULE 1.3

s

03 PO
- W
b

< ot

EB o e 1.3 8 iwerif e "module 1.
]

]
x:l‘l

Al

3 I‘"]

27

=e
CUENNE R R EEEEE R LR ELEE S L EEEEEEE EEEEEEE
o S
A5E rEm dizPlay direction oftions
491 remEEERE R R R ok e e o
EEEEEEEEEREEEEE L ELL DR
S8E Print"@ou can Qo'
518 if ned then Print" noebkl"s
52@ it &8 then Print" sast")
28 1Y =28 then Print" ootk
443 if weld then print" west")
943
Sde o
GEYMNSENE R ER PR R R LR EEER LR RS E L EE £
LEEEEREEREEEEEEELELE ST
S e instructions sukbeoutines

1.‘l

=

37

Commodore 64 Adventure

549 remEEEEEEEEEEEEEEREEEEEEEEEEEEER SRS
eFE L EFEEERELEE LR S E

S98 Print chr®dl3)

SeE inPut"instrochions "1

rar

ras

FeEN - PR B EE S SRR EREFEEE R ELEEEEE EELE L L
LR EEEEFEELEEEEEEEE £ 0

THE pem mivement subrontine

RN bR EE R EEEFEEFREEERSEELLLELEE L EEE £
##+*#+*f#####¥+++##++

SEE IF 1F8="n" and n>xB then =P~ oot 2
A

2818 if i%="e" and e
44

S8 1f iF="z2" and s>
4

238 1f 1F="w" and wxd then r2=F-1 90t
4

[Lo hprd
el

|"|f"aH &

B39 remEEEEEEEEEEEEEEE R R R R
EEREEEEEEEERELEEEE LS

S e if v location Pozsible in dir
ection

b L A A
0 A e

=258 printiPrint"sorry - wou o cantt 2o tha
Loway HIMianko 2560

Y]

L]

then p2=p+1:30to

)

then P=p+5: a90to

Eay

HA

Lines 500—540: These lines display the possible exits. Thus if N is greater
than 0 the 64 will print NORTH and so on. Note the use of the semi-colon
at the end of lines 510—540 which prevents the directions being printed on
separate lines — and the space at the beginning of each statement in quotes
which allows each word to have a space between it.

Lines 550—560: Line 560 is a straightforward INPUT. However if we did
not put line 550 first which prints a carriage return then the word
“INSTRUCTIONS ?”’ would follow on the end of the line containing the
exits (because of the semi-colon in lines 510—540). If you want to see this
happen type in line 560 and leave out 550 first time you try it.

Lines 800—830: Here is the real kernel of the whole program — the actual
movement. Using the formula I described earlier these lines check I$ and
then check if the move is a legal one (in other words if you type in ““N’” and

38

Chapter 2 Moving Around an Adventure

N =0in that location then the computer will reject this line). Providing the
move is legal there is a swift calculation changing the value of P to P2 —the
new location.

Let’s follow this through. If P =7 (Location 7 — the house) and we type
N for north, then in line 800 the 64 checks if N = 0. If you glance at Module
1.1 you will see the variable N has been set to 2 in line 6050 — so the move is
alegal one. Now the formula gives the variable P2 the value of P— 5 (7—5)
which equals 2. Finally the line gets a GOTO instruction to line 240.

Now we can understand why line 240 is here, for before we can move we
must change P2 back to P so that the following lines can understand where
to ‘move’ to. Now we have the variable P equalling 2 — and by looking at
line 250 we can see that we now GOTO line 6020 — which happens to be the
display for Location 2 — the path.

Line 850: The final line in the module. Suppose we were in Location 7 (the
house) and we asked the computer to go west. This is an illegal move as in
line 830 W =0. The computer drops to the next line which is a standard
response YOU CAN’T GO THAT WAY followed by a return to the
“INSTRUCTIONS”’ input to repeat the request.

If you have typed in the whole program correctly you should find you
can move around with complete freedom. It’s not exactly an exciting
procedure — but it does illustrate the principle of getting from one place to
another in your Adventure game.

The flow chart for this part of the program is illustrated in Flowchart 2.1.

Other methods of movement that can be used involve data statements and
arrays. Whilst saving on memory I prefer to use the method I’ve outlined
because of the ease of alteration in a large program. In fact when I was
writing Nightmare Planet, the Adventure in the second section of the
book, I changed several locations and also the direction between locations
to improve the plot.

A second consideration with this method is the ability to prevent
movement easily — something I shall refer to in detail later. For the
moment consider Figure 2.5 again and imagine that we want to be able to
move from Location 2 to Location 1 in one direction only — from east to
west. It is a simple matter to alter lines 6010 and 6030 as follows:

6010 N=0:E=0:S=0:W=0:GOTO 50
0 (note E=2 in the original program)
6030 N=0:E=0:S=7:W=1:GOTO 500
Although this action would trap the player in Location 1 (every exit is
now 0) the point is that in a situation where there was another exit it would
be possible to pass from the path into the field — but not back out again.

39

Commodore 64 Adventure

Flowchart 2.1 Movement in the locations

SET P

(‘ (POSITION)

1 | P=p2

¥

.| ON P GoTO
LOCATION

J

SET UP
VARIOUS
LOCATIONS

|\

A

DISPLAY
POSSIBLE
EXITS

'

INPUT ‘
INSTRUCTI
1%

¥

MOVEMENT
PROCESS

|

-

-
<
Q

40

Chapter 2 Moving Around an Adventure

This flexibility is possible using DATA statements — but quite a lot harder
to implement.

The next stage in our Adventure is to start to place some objects into the
various locations — and then be able to move them around. As a final note
— don’t forget to SAVE to tape or disk the program so far as you will be
building on this framework in the next two chapters.

41

CHAPTER 3
Objects and Commands

In the last chapter we created five Locations for our Adventure and
discovered how to move around between them — and you must have
noticed that after entering and using this program you soon find it a little
boring.

So let’s liven it up a little by placing a few objects into the locations, and
then learn how to pick them up, move them around, and drop them again. I
will also describe how to collect an Inventory (a record of what objects you
arecarrying) and start to analyse the various commands a player may input.

Objects in arrays

As Isaid before arrays can cause confusion and an understanding of what is
going on is not essential to programming your Adventure game — but it
helps. The way I visualise arrays is to think of a variable (let us say X) which
we know is going to change its value during the course of the program.
However we want to assign certain values to X in a sequence rather thanina
random fashion — and also we want to know at any time what each value
represents.

Todothis wecan write X as X(1) where 1 is the first value of X, X(2) where
2isthe second value, and so on. The figure in brackets is known as the subs-
cript of X.

Figure 3.1 A simple array
X(1)
X(2)
X(3)
X(4)
X(5)

Figure 3.1 clarifies this. We can think of the array as consisting of anumber
of boxes under the same main heading of X — where X(1) is the first box,
X(2)isthe second, and so on. (A point to note here is that the 64 will number

43

Commodore 64 Adventure

the first box 0 if you don’t instruct it otherwise — eg Box 1 is X(0), Box 2 is
X(1) and so on. I find this confusing so I tend to start my own arrays with
X(1) for simplicity).

Having created our array we can then assign values to our variable X and
the result can be seen in Figure 3.2.

Figure 3.2 A simple array containing values for X

x| 3
x(2)| 14
X(3)| 22
38
73

X(4)
X(5)

Now let us turn to our program Adventure Game. We need to decide what
objects to place into the game — and in which Locations to place them.
Figure 3.3 is the grid again that we used for our map and I have put a
“KNIFE”” in Location 1 (the field): a ““GUN’’ in Location 7 (the house) and
a “JEWEL” in Location 13 (the plain).

Figure 3.3 The grid for Adventure Game containing objects

. 2. 0 o o
FIELD PATH
|KN|FE l
(o) 7 8. (o] o
HOUSE | FOREST
GUN
(o] o 13. (o] (0]
PLAIN
EWEL
(o} (o) 8. o o
LAKE
(0] (0] (0] o (@)

Chapter 3 Objects and Commands

We can set up the array for these three objects as in Figure 3.4.

Figure 3.4 The array of objects in Adventure Game

. | OB% (1) KNIFE
2. | 0B% (2) GUN
3. | 0B% (3) TJEWEL

Note that I have assigned the objects the variable name OB% (the % signi-
fies an integer value — ie a whole number). Thus when we talk about
OB%(1) we are talking about the KNIFE whilst OB%(2) is the GUN and
OB%(3)is the JEWEL. Now we can ‘talk’ to the 64 about these objects and
manipulate them around our locations — so when we type in the word
KNIFE it is understood by the computer as OB%(1).

MODULE 1.4

2 =anve"BA mocdule 1ed" @ e iy modnle 1.
F0

145

143 rem#**##*##*###*++#*+##¥#++#####++#+
LEEEEEEEFEREL T LR E T E

198 rem set P arrass for obiects

151 remEFEEfiEseeissieisiikksiriiiffses
EEEEEEEEEELE TR LT LT EE

168 dim okdcSr, obES 2158050

178 for i=1 to 3iread obXiil.ob$cin, =1%C
10 imenh

188 data 1.knife.a knife iz luwin3g here
198 data 7.9un,qour 2un 15 here
208 data 13, dewel.on the arognd lies a
PI,.I.- l

287
288 ¢

289 Pem####*##*##ﬁ###*###*#**#***###*#ﬁ#
EEEEEEEEEEE L LR L EE T E
298 rem Lo Frint obiect in aPProfriate
laocation
NP R EEEEEER LR R R EL EEFE LR

45

Commodore 64 Adventure

S 0 o

SEE for i=1 to 20if obXCir=p then Print
2i%Ci0

218 next

Before starting to program again please note that the modules in this
chapter are supposed to be added to the modules in the last chapter and will
not work if keyed in on their own.

Module 1.4 sets up the arrays for our example and then prints the appro-
priate display on the screen.

Line 160: This is the line which sets up the arrays in this program. DIM
stands for DIMension and is the instruction to the computer telling it you
are going to set up your arrays. Strictly speaking you don’t need to DIM in
thisexample asthe 64 can handlearraysupto 11 (that meansa DIM of (10) as
you start with a 0 remember) so you would only need to use it for DIM
X(100) say or DIM X(30) — but I might well be adding some objects later on
in the larger Adventure so it’s best to put a DIM statement in.

OB%(5) gives us five possible values for the objects — OB$(5) gives us
five names — and SIS(5) gives us five descriptions. We will only be using
three for the moment and lines 180—200 are the DATA statements that go
with this line.

Line 170: Astandard linetelling the programto READ the dataoneitemata
time, and linking each string with the integer value. So when the 64 encoun-
ters OB%(1) it will either print out ‘‘KNIFE”’ or ‘A KNIFE IS LYING
HERE”’.

Lines 170—200: Often data is placed at the beginning or end of the program
but for clarity I have placed it here. Two points to note are:

1. The integer value is the same number as the Location Number.
2. The actual words in SI$ are quite important and should be used with
care.

I canillustrate this last point by changing the value of SI$ for OB%(2) —
the ‘gun’ — from ‘““YOUR GUN IS HERE”’ to “YOUR GUN IS LYING
ONTHETABLE”. Now this second phraseis fine on first playing the game
— for on entering Location 7 you will see the following display on the
screen:

YOU ARE IN A HOUSE
YOUR GUN IS LYING ON THE TABLE

But suppose you pick up the gun and take it to the forest — then have to

46

Chapter 3 Objects and Commands

drop it there for some reason. On returning to the forest at a later date you
would see the display:

YOU ARE IN A FOREST
YOUR GUN IS LYING ON THE TABLE

This is obviously ridiculous and will make your game look amateurish —
which is why we have to write the rather more bland but acceptable ‘““YOUR
GUN IS HERE”’.

Lines 300—310: These lines will actually display the string SI$ under the
Location description providing the object is in that Location. When an
object is in a particular Location then OB%(I) is given the value of that
Location. If you look at Lines 180—200 you will see this.

Thus (every time) the Location changes the 64 will scan the array OB%
starting at OB%(1) and working through to OB%(3) and if any of these
numbers are the same as the Location number (which we set as P) then it will
PRINT SIS for that number. This gives the appearance that the object is in
that Location.

The NEXT in line 310 sends the program back to look for OB%¢(2) and
OBY%(3) and if they are in the Location as well they will also be displayed.

Important note

When you first keyed in the game in Chapter 2 all the lines describing the
exits for the Locations (Lines 6010, 6030, 6050, 6070, 6090 and 6110) ended
inGOTO 500. You must now change these from GOTO 500to GOTO 300as
we are directing the program to this Section of Module 1.4 to allow the
appropriate object string to be displayed onthescreen. Inthelast chapter we
had not yet written this section and so had to direct the program to Line 500
instead.

Please alter the value after the GOTO from 500 to 300 (now) to allow the
program to work when you test it.

If you have keyed in your program correctly so far it should look like Pro-
gram 1.1 and if you RUN it now you should be able to move around your
Locations and see the knife, gun and jewel displayed in the appropriate
sites.

Program 1.1
1 @otod

2 save"BAprogram 1.1 8 verife"Frosran
1.1": 8 5tap

2 rem

33 remFEEEEEEEEEEEREEEE R R
FREREEREAER AR

188 rem adventure [ame

47

Commodore 64 Adventure

191 remEfEEEfEEEdEEEiR R EEEREEREEEEs
EE R EERE L EELEEEEE SR

287

288

2A9 remEREEEEEEREEEEEEEEEREREERE R R R
FEEEEEREREEEERE R AR

218 rem set Pozition

211 remEEREEEEREEEEEEEEEREERE R R
EEREEFEEEEEEELEE L LR E

228 p=7

238 soto 256

235 ¢

Lol

G O o e
EE L e EEEE LR LT EE E L

235 rem set location

239 remEEEREEEEEEEEERERERERR R R R R A
bR EEEEEREEEEE L EE S E]

248 p=pZ

258 1t P41l then

4N
1
=

Foaoto SEEE, SE2E

i
:;
i
&l

s B

=i
= -

it
==
M

[y
RN T
PR
rY -
— iy

=
1t
s
o~
= &
F I

n P=18 2oto @8, 68353,0

fra

=
=
T
=
2
=
Ky
=

SRS

if PC2E then on P28 Soto @,8.8,8.8

o

OO Q0 O) ST

W3-

P o L

1 Py A Al e e
EFEEEEEE R AT EREEEL L L E 2

G268 rem dizfPlay direction oPtions

491 remEEEEEEEEEEEEREEREEREEEEEEEREER RN
EEEEEEREEEE LR R RS

288 print"woun can 90",

218 if n>8 then Print" nortkh";

928 if exd then Print" easzt";

2AE if =228 then Print" sounth".

248 1if wrE then Frint” west"

L S

SdE

e E R RS EEEE LR R R L ERELLR FFE TR TN
EE R EEELEEEELEE L L 0

S4E rem ingtructions subroutine

24 prenEEEEEE R R R R R R
FHEEEEERE R

298 Print chedF 130

48

Chapter3 Objects and Commands

Sal inPut"instructions "iiF

Tav

Tag

TEY penEEEEEEEE R R ERE AR ok
FEFEEEEEERE R

TE8 rem moneement subroutine

Tl remEEEFEEfiieEiitiEEEFEEEREEEEeesies
**¥¥*+#####+####¢#+#+

=28 if iF="n" and nx@ then PE=p-3iaoto
4

218 if iF¥="e" and
4

28 if iF="=" and s
4

8238 1if iF="w" and B then pIZ=p-1:
i

837

gae

R E L e F R EEEEEEEERE LR EELEEEREL
FEFEEE R EEEEEE R

248 rem if no location Posszible in dir
ection

241 remFEEEERkEE R R R R R
P PR PR EREREEFEEFEEEEE]

298 Print Print"sorre - @ou can’t S0 tha
fowas !1"iaoto 256

o991

92

e E R FE EERELEERRERFEELELEEEEEEEL LS
pe i dEEFEERE L EEEELE R]

5994 rem dezcribtion of the wariowz 1o
cations

L E s 2 A R EEEELEEEEELELELEFEEE L EE L
#*#*########**+**##+#

SRR

9997 remﬁ*#*#######*###*#

5998 rem location 1

ST e AR

AAEE Print"iow are in & field."

BELE =@ e=2"s=0 =030t 506

GALTY remFEEEEEi e

FELE rem location 2

Bl TS g el e e

ERZA Print"ikow are on a Path."

RN

@ then Pe=R+]iaoto &

|T|
o=

i
O]

i
LN
-
b

then PE=p+35 20t

(W]

iy
ot
i

2

]

49

Commodore 64 Adventure

n=Ee=s@s=? hy=] taoto DEHE
Skttt EEEEEEEEEE L

=40 location 7

bt pEt RS EREEEEEEE
Frant"fkbou are in 3 honse.
BESE n=2 e=Ez=0 w=0" 390t 583
BAST remEEEEssEiiiisEsges

ERASE e location 2

EESS renfEEEEEEEREEEEREEE

EEEE Print"fkow are in a fores
BETE n=0e=@0 =12 w=7 " 20tc DEE
BETT rem¥EEEffEiEfEssEy

BETE rem location 13

FATI pard ok e

EASE print"ikouw are on 3 Plain.”
GBAZA n=5e=@1 =120 w=A 90t DU
BAST remEREEfEEseEiEErieg

L Gl (o O
W Q0] &

BBl

&
Y
=

O Jv i Oy

BESE e location 18

EEIT remEEEEEEEEEEEREEEEE

E1EE Print"ikbow are by 3 lake,"
118 m=15 e=0" =0 w=G"9cto SEE
Basic string handling

At this stage we need to begin to understand a little of how the 64 can
manipulate strings of text because we shall be dealing with sentences and
words — and most important of all we need to know when the player givesus
a poor or invalid response.

String handling can be quite confusing to the beginner — so I will confing
myself to the commands that relate specifically to the Adventure game. If i
you want to find out more then either Commodore’s own Introduction to‘
BASIC or one of the otl er books or articles around should help you expand.
on your knowledge. |

MODULE 1.5

i

LU LR TR
= Lol

o
Y]

EAmodule 1.5 i verify mocdule 1.

._- u'
e
HETI (R

s P
[na

bEy Ty O L0 O0 P

Q0 OO O
N b

1 A A A AR A A

L
o

Chapter 3 Objects and Commands

FEEEEEEERE R R

EEE e check =in9le letter directions
for 1%

GRS F R EFRREEEEREEEEEREEEFLELEEELELE L
e EFEEEEEERELEEEE 4

faﬂ 1+ 1$"'T|"Jl"1$"'"F>"Clr”1$""""ul’"i‘f-=”l.-,l" 1'h
e SaE

19 gat- =S

937 :

SaE

9?9 rem#i##*######**##***#*#++##+++#+#+#
Er R FERE R EERELEEE L L E

S4@ e check simn9le lebber command fo
[

RSNt PR F AR A AL EEE LR R L LR R EEE R L
tE st E X EEEREEEEEL L L L

958 if iF="1i" then 2P0

SEE 1f iF="h" then 2188

957

e Pt

959 rem*###**ﬁ*#####**#####*#*#**###*#**
LR E R L LR LD EEEE S

296 remn zubrontine to check fFor two wo
riz

G2 pemEEEEEE R
FEEEEERER AR

1868 for i=1 to lendif

1818 if micdEcif, i, 10=""" fhen 1184

1E2E ne=t

16828 print"please can Hou = bwo words"
fgoto D58

Lines 700—710: We have already established that the 64 will respond to the
commands N, E, S or W (lines 800—830in Module 1.3). These two lines will
point Direction Commands (north, east, etc) to the Movement Routine in
Lines 800—830 and all other commands to the next section in this module
(lines 950—960) where they will be checked as valid commands.

Lines 950—960: These just take you to the INVENTORY or HELP sections
of the program further down.

Lines 1000—1030: We have exhausted our possible single word or single
letter commands — and so we must check if the player has input 2 words or

51

Commodore 64 Adventure

not. Thislittleroutine checks theinput foraspaceandifit doesn’t find oneit
PRINTS the message ‘‘PLEASE USE TWO WORDS.”’.

Line 1000 scans the whole of the input I$ as follows: LEN(I$) is the total
length of the string given as a number (eg GO would be the number 2 whilst
GO NORTH would be the number 8 as it counts the space as one number).
Thusiftheinputis GO NORTH thisline becomes FOR I = 1 TO 8 and the 64
will start at 1 (the first letter which is ‘““G’” in this case) and work through the
string to 8 (the last letter which is ““H’’).

Line 1010 looks fora ‘‘ ’’ (space) as the string is being scanned. MID$
means it looks in the ‘middle’ of the string — starting at position I (which
starts at 1 and works through to 8) and then looks for a single character
(because of the figure 1 in the command MID$(1$,SP,1)). If it finds a single
space then it drops through the program to Line 1110. If it goes right
through the string without finding a space then Line 1030 PRINTS out the
appropriate message ‘“‘PLEASE USE TWO WORDS”’ and the program
loops back to Line 550 to wait for another input.

This can be illustrated by the simple flowchart in Flowchart 3.1.

The next module contains the most complex-looking commands concerned
in string-handling — but as with other sections it isn’t really as hard as it
looks.

MODULE 1.6

1 aotod

2 save"BE:module l.e", @ iwerifdmodule 1.
BB atop

3 e

Lia?

l@sa

LEE3 e m R R R A A A

AR R

1828 rem subrontine o covwert 1% into
ved and noF

TRSL e oy o o A o e

PR EEEFEEF AR EE L ELE L L

1188 for sp=1 o lentifd

1118 if micECif,z=p.10=" " then 1138

1128 nex=t

1128 ved=leftF i¥. 2p-12

1148 moE=rightEFCis, ClentiFr—sp)

Lines 1100—1120: These lines scan the length of I$ again (as did Line 1000in

Module 1.5) only this time the variable SP (for SPACE) is used. We know
there will be a space as the loop in Lines 1000— 1020 either found one or sent

52

Chapter 3 Objects and Commands

Flowchart 3.1 Basic string handling

INSTRUCTIONS
f—-’

1$

YES GOTO
— | MOVEMENT
ROUTINE
LS GOTO
1$°IorR'H \ YES | INVENTORY
OR HELP
ROUTINES
GOTO
YES | NEXT PART
OF PROGRAM

|No

DISPLAY
“PLEASE USE ,
TWO WORDS"

53

Commodore 64 Adventure

the program back to the input INSTRUCTIONS again. Now we want to
find out where that space is and call the part of I$ in front of the space VE$
(VERB) and the part of I$ behind the space NO$ (NOUN).

Line 1130: This is the line that identifies the part of I$ before the space. It is
fairly easy to work out using an example. If the command I$is GO NORTH
then the space will be at number 3 (three units along). Thus VE$ isthe LEFT
part of I$ that comprisesthe first two letters (SP — 1is 3 — 1 which = 2) which
is GO.

Line 1140: Now for therest of I$. We take the RIGHTS function of I$ (the
right section) and split it — but this time we use the full length of the string
(LEN(I$)) and subtract the space. So using GO NORTH again LEN(I$)is8
(seven letters plus one space) and NOS is the right part of I$ starting at the
8—3) 5th letter — which is the N or NORTH.

Thus we have split GO NORTH into VE$ of GO and NO$ of NORTH. It
may seem a little complicated — but we need to be able to recognise both
VES$ and NOS$ later in the program.

Testing the program

If you RUN the program now you should find it looks pretty much the same
asitdid afteryouhad added the objectsinto their Locations at the beginning
of this chapter.

We can test the string-handling modules by typing any instruction which
the program will not recognise. Try typingin FLY or LEAP and you should
get the response “PLEASE USE TWO WORDS”’.

Totest Module 1.6 we need to type in any two words (try EAT CHEESE)
and then come out of the program by pressing RUN/STOP and RESTORE.
Now type in direct mode PRINT VE$ and the computer should print
“EAT”’. Now, still in direct mode type in PRINT NO$ and this time
“CHEESE’’ should appear on the screen. If it doesn’t then check carefully
to see if you have made any mistakes before moving on to the next module,

Try typing I or H and you’ll get an error message, but we are about to
correct all that by adding the INVENTORY and HELP routines. More
excitingthough arethe GET and DROP routines which will finally enableus
to pick up that knife or that gun and carry it around.

Adding and taking away
MODULE 1.7

Chapter 3 Objects and Commands

3 rem

1187 ¢

1128

1189 rem$fEEEEEEEfEEEEEEEEEEEEsEsiisiss
EpetEEEE RS EREEEE

1198 rem abrontinge Lo =can for warion
z yed commands

1191 pemEEEffisEirerEseeeeeeiiiigik g
EEEE R AR ELREREEFEEEEE

12688 ifvef="g9et"crvefd="grab"orved="take"
orved="carry "then ZZE8

1218 ifved="drofP "orwved="1loze"orved="1gav
g'"then 23EE@

1228 ifwet="kill"then 2500

1228 print Print"i do not knoow bow o M
wediaoto 556

1987

1982

1989 renm¥SFFEEEEEErEefifiEEEsEseEesiss
FEEEEEERREEERE SRR RS

1998 rem ivwentore section

1991 rem$REEEEEEEEEEEEEERE R EEEEREEES
pErEEFEEEEEEEEELELEEE L

ZBAE Print"wour inventords iz " iw=H

2818 for i=1 to 2

2828 if obxiir==1 then Print obhFidiwv=i
vl

2838 next

2848 if iw=A then Print"notkhina"

2858 aoto SEE

2m37

2aze

239 remEREEEEEEEEEEREEEEEREEEREEERERE S
EER R

2898 rem helpr szection

2E91 PemEFEEEEEEEREEEEEEEEEEEEEER R
bp i et i iR EEREEEEEE L

2188 if p=13 then Print"aou could ftra ki
Tlin2 it"'acto 558

2118 Print"not much helP here 1i7m afraid
aoto 550

2187

2igg ¢

2189 remEEEEEEEEEEEREEEEEEEEEEEERRER RN

55

Commodore 64 Adventure

EE R FELEEELEEEELEREE &2

2198 rem et zubrootine

2191 remEEEREEERE RN Rk

R EEFERERELEEEREE R L LS

22BE for i=1 to 2

2218 it ob®F(ild=nof then 2230

~9 et

"1:11 ifobutir==1 then Print"wco we Qo
ST o 1% 1

258 ifobdCirCP thenkPrink"it izn't here

A Print"ok" obEdli=-1

gotu S

e

-1

=Rt RIROR

oM ERIMR
0D~ S ® O

—r

o

o

&

=

00 OO 1 Oyl

AR ARV S (%
TR Ll O (N

rpm###****#i**#f+#¥*+++++#+##+++#+#
#i+#################$

2228 rem drobP sukbroutine

2231 remER R R R
EFEEFEEEEELEE LR EEL £

2288 for i=1 to 3

«D

2218 if ob®Cid=noF then 2338

2328 next

2338 ifobXol -1 then Print"@ou haven 't
ot it raoto SEE

2248 print"ok" okncl =k

2308 9oto DOG

Lines 1200—1230: Having split I$ we now need to be able to recognise
certain likely commands and act accordingly. For this example program I
have just selected a very few but in Nightmare Planet the number of possible
verbs becameso large that I found I hadn’t left enough spaceand hadtodoa
little renumbering.

Line 1230is just a standard response if the program encounters a command
it doesn’t recognise before returning to the Instructions input — so if you
typed in CLIMB the response would be ‘I DO NOT KNOW HOW TO
CLIMB”.

Line 2000: If you had typed in I as a response then the program would go to

this line and PRINT the display ‘“YOUR INVENTORY IS ”’: then the
variable IV is set to 0.

56

Chapter 3 Objects and Commands

Lines 2010—2030: This small loop scans the array for the object data. If
OB%(I) s true (in other words — 1) then the 64 will print OB$ (the name of
the object). Every time a new object is added IV is increased by 1. This is of
more value in a program where you might wish to restrict the number of
objects the player can carry at any one time (I have written just such a
routine in Nightmare Planet).

Lines 2040—2050: Line 2020 used the IF statement to check if OB% was true
(= —1). If not then the program drops to Line 2040 and prints ‘“NOTH-
ING” IF IV =0. Then it loops back to the display for exits in Line 500.

Line 2110: At this stage there is no help required — so this line just gives the
“H”’ command a place to go.

Lines 2200—2260: The GET routine follows the same procedure as the
INVENTORY routine except that it checks if NO$ is the same word as the
object in the Location (OBS$) and then either informs you that you already
have it if OBS is already in the Inventory or that the object isn’t there if
OB%< > P. In Line 2250 the condition OB%(I) = — 1 puts the object into
the inventory to be read in Line 2020.

Lines 2300—2350: Again the .ame routine, except this time Line 2340
replaces the object into the new position P.

If you now RUN this program (don’t forget to SAVE to tape first) you
should find that you can ‘get’ the objects and if you then return to that loca-
tion they will appear to have gone. If you now ‘drop’ them somewhere else
then upon leaving the location and returning the object will be displayed.
Finallyif you check your inventory having picked something up it should be
in there.

There’s quite a sense of achievement having got this far — because now
some of the possibilities of what you can do with your program should be
opening up. I recommend you spend a short time playing around with the
listing, adding other objects in other locations by changing the DATA
statements in Lines 180—200. You can add more objects by changing the
FORI=1TO 3 and if you have more than five objects the DIM statements
as well.

For those of you who like flow charts I have included mine at this stage in
Flowchart 3.2. It looks a little complicated now, but is the same chart as in
Figure 2.6 with the contents of this chapter added.

In the next chapter we will start to add a new dimension by introducing a
couple of ‘perils’ for our player.

57

Commodore 64 Adventure

Flowchart 3.2 Adventure Game including objects

SET UP
ARRAYS
SET P TO
POSITION
P=P
~ -
ON P SET UP
GOTo |—=| VARIOUS
LOCATION LOCATIONS
- B>
1YES
DISPLAY
POSSIBLE |-— (86rEcy
EXITS

t
(g
Ll 3
{
§YES

hEs
INVENTORY
MOVEMENT GET DROP
PROCESS s ROUTINE. ROUTINE
LES L L L)
VALID
{No
N DISPLAY

58

CHAPTER 4
Pitfalls and Perils

The story of Romeo and Juliet is hardly new — boy meets girl, they fall in
love, parents will not let them marry, they run off together, and then
through misunderstandings tragedy strikes. What turns this story into one
of universal appeal and has led to so many variationsis theamount of obsta-
clesand problems the hero and heroine encounterin their brief relationship.

It is the same in all of life — the spice we seek often comes when things
start going wrong — especially in our fiction and fantasy. And Adventure
games are no exception!

We need to start thinking about the various problems and perils that our
Adventurer is going to meet on his travels around our Adventure. Afterall,
wandering around a number of locations just picking things up and
dropping them again is hardly awe-inspiring and it is the solving of riddles
and escaping from perils that makes playing Adventures so appealing and
frustrating.

Perils come in all shapes and sizes (and a variety of colours as well). Some
are fairly straightforward — like a monster coming at you — a Sorcerer
casting a spell on you — falling down a hole — and so on. Some are a little
more subtle — ariddle you must answer to achieve your prize — a maze that
has trapped you and cannot find the exit — and countless others.

Let’sstick with the obvious and discover how to fit a few into our example
program.

Thinking of your problems

Like most programming the most difficult part is thinking problems up in
the first place — which is why I am sticking with the obvious for the
moment. When I was creating my example program I decided to liven it up
by introducing a swamp (or quicksand) into Location 2 (the path) and a
monster in Location 18 (the lake). These can be added to our map as in
Figure 4.1.

Having got the perilsinto the plan I needed a solution as well and so I decided
that to escape from the monster you would need to have ‘picked up’ the gun
(in other words it would be in the INVENTORY) and if you had the jewel in
Location 13 then its magic would protect you from the swamp. Pretty mun-
dane stuff — but it is only an example to demonstrate the principle.

Solet’sgoback to the keyboard to see how we deal with adding and escap-
ing from perils.

59

Commodore 64 Adventure

Figure 4.1 Grid for Adventure Game with perils

l. 2. (o) (0] (o
FIELD PATH
KNIFE iaaunﬁﬁ
(o) 7 8. (@) o
HOUSE | FOREST
GUN
(0] (o} 13. o (0,
PLAIN
JEWEL
(@) (@) 18. (o) O
LAKE
(o) (o) (o) (0] (0]
MODULE 1.8
1 sotol
osane"EmE modu e 1B Eiverif e moduls 1.
s Estop
3 remn
187
1Ul

1@ rwm#**+¥#*++##***######+###+##+###++
A o R

118 rem et P wariakles

111 remfks i s E R R e ek lfh g onFfokr s
#**#+¢##*#######ﬁ#*#

124 "1,1*’ =i

tl:il

285

383 r#m+#+##+f¥####*#*#######*######**##
LEEE R bR AR AR LS

60

Chapter 4 Pitfalls and Perils

398 prem to zearch for locations with P
Erils

EENGE R 2 EREREEEEELEL LR EFEEREEEEEEE B LS
Ee R E R R R R E S EE LSS E

4 if P=2 and =wgdxe then
418 if P=1% and mwesre then
587

988

989 remEEEEREEEEEEEEEEREREE RN RS RN R
ti e R R EEEREEEELLELL £ 4

336 rem special conditions Lo Prevent
directions odisplau

et F EE AR EEEELEELLELEREEELEEEEEEEEE B0
pe e AR EELEEEEEEREE L

BEE 1f P=2 and swiilxe bthen 208
Bl if P=18 and mwdd>2 then 208
827

BaEg

Rt PR ER R EEEREEEEE L EEELEEELEELLE L
FEEREER R SRR R R

238 rem subrovtine to Prevent mowvement
to gzcare Peril

91 e o ol o
brE R EEREEL R EEEE L

SEE iFiF="n"orif="e"oriE="s"arif="10"then
Print"can't do that,.set V1" aoto35E
RFRE7

RAGE

BISY remEEEEEEREEEEEEEEEEEEEEEEEER R
(e LI FFELEEEELE

EA9E rem dizPlay rPerils

AT remEEEEEEEEEREEEEEEREE R R
FEEFEEFEEEE R R E R R

FEEE print"wou khave fallen inko a quicks
and"

fale goto 558

7E28 Print"a monster aPFearszs in the lake

TEZE aoto 550

7
f

=) =
Dl Y
HE R Y]

Ry

Thismoduleis really anumber of tiny modules strung together which will fit
in between the other parts of the program that you have already entered and
saved to tape.

61

Commodore 64 Adventure

Line 120: These two variables are the key to telling the 64 what to do whenit
comes to a special condition (in other words a peril or similar unusual
situation). By giving SW% and MW % (standing for Swamp and Monster)
an arbitrary value of 2 once the peril has been defeated I can ‘switch on’ or
‘switch off’ the parts of the program that refer to these special conditions,

Thus we start by giving them a value of 0 (it could have been anything of
course) so that if the computer meets the peril it will ‘switch it on’. (If you
find this a little confusing just read on — it should become clearer).

Lines 400—410: Now we actually meet the peril. If the program is in Loca-
tion2 or Location 18 thenit looksto seeif SW % in Location 2and MW % in
Location 18 are set at 2. However we have just set them to Oin Line 120 —so
the program jumps to Lines 7000 or 7020 respectively.

Lines 600—610: Now that we have placed the player into a hazard we must
prevent him from moving out of the Location by just typing N or S (or elseit
would be rather easy to escape). Line 600 is for Location 2 and notes thatif
SW% does not equal 2 (and it will equal 0 until you have defeated the prob-
lem) then you bypass the movement routine and GOTO Line 900. Line 61(
does exactly the same thing for Location 18. Once you do defeat the peril
thenthe variable SW % will be set to 2 — resulting in this part of the program
being ignored and the usual procedure of movement being allowed again,

Line 900: The program checksto seeif the player did try and escape from the
location by typingin N, S, E or W. If he did then this line will print the mess-
age “CAN’T DO THAT .. YET!!” and loop back to the INSTRUC
TIONS? input message. No matter how many times the command for going
etc. is given it will be impossible for the player to escape our little hazard.

Lines 7000—7030: These lines just display the peril on the screen then retu
to the instructions module in Line 550.

MODULE 1.9

-
= 3

save"BE module 1.2 2 verife " module 1.
s wl

p

27A ifiF="zwim" or 1F="float" and P=2 th
en <488

1228 ifved="kill"thenzSaa

2188 if p=18 thenPrint"9ou could ey kil
ling it"‘goto 558

62

Chapter 4 Pitfalls and Perils

Thisis a ‘filler’ module of three lines which will insert themselves into parts
of the program but were not applicable earlier.

Line 970: One of the more difficult parts of Adventure programming is
trying to think of all the various responses that the player might make to try
and escape from his predicament once he has encountered a hazard. I will
expand onthisin great depthin the program Nightmare Planet in the second
section of the book — but this line is put here to demonstrate the point.

I assumed that, having fallen into a swamp, two of the most likely
responses would be SWIM or FLOAT. Soinanticipation this line states that
iftheresponseiseither SWIM or FLOAT (and the Locationis 2 as wedo not
want the escape response coming up in the wrong Location — it would look
stupid!!) then the program is directed to Line 2400 which is a special section
for the Swamp Peril (see Module 1.10).

Line 1220: This is the same principle as Line 970 but is in the section of the
program looking at VERB (VE$) commands as you would almost certainly
write KILL SOMETHING. In fact if you do write KILL onits own the pro-
gram will respond with ‘“‘PLEASE USE TWO WORDS”’. Try it and see. As
beforethisline directs the programto Line 2500if your response to the mon-
ster in the lake is to try and kill it.

Line 2100: This line joins the HELP section of the program. It seems sensi-
ble to try and help the player at times, so if he arrives in Location 18 and
types H this line will display the message ‘“YOU COULD TRY KILLING
IT”’ before looping back to the “INSTRUCTIONS’’ command.

Traditionally help routines are vague and puzzling in Adventure games,
but there are times when the player will be eternally grateful for a hint at a
hard part of his struggle. Of course you can give false information or even
deliberately lead the player towards his doom — it seems all is fairin Adven-
tures!!

MODULE 1.10

1 9oto3

2 save"BR imodule 118" 2 verife " module 1
LAY Esthap

3 rem

2387

2388

2389 remEREEEREREEEEEREEkiikRef i E ek
te iR EEEEREFEELEE

2398 rem swamP subrontine

63

Commodore 64 Adventure

S e A A A A e
FEEEEEEEEEEE R R AR
2488 if obHc3i=-1 then Print"okaw - wou

s lved" L srs=g i aotn SEE

2418 print"wonre too heaws without the
m34ic dewel. donvwe zunk 1"istop
=457

348q

2489 remERERERREEEEEE SRR R R
Egi e i LR EEEEEEE S

A4S e kill subrootine
29431 remEEEEEEEEEEREEEREEERREERERREERE RN
FEEREEEEEREERRE SR
25EE if P18 then 2348
2318 1F ohHc2i==1 then Print"ok" muH=2:%
mhn SEE
2928 1if obddlr=-1 then print"with Just a

knife 7 wou must be doking M iactoS5E
2338 Print"i haven 't fobt anything to kil
1 it with !"aoto 558

2248 Print"kill what 7" :gctol@E

We have reached the final module of my example program — two little
sections which deal with the two perils we have set up. If you look at lines
2400 and 2520 you will note that I have set the variables SW% and MW % to
2oncethe peril has been successfully passed — which will allow the playerto
move out of this location and will ensure that when he visits it again the peril
will not be displayed.

Lines 2400—2410: If you have entered the right response (having fallenin
theswamp)in Line 2400 first the program checksif you have the magic jewel
in your possession. OB%(3) is the jewel if you remember and when
OB%(3)=1thenwedo haveitinthe Inventory. If thisis so the program wil
display the message ‘““OKAY — YOU SURVIVED”’ —set SW % to 2 —and
loop back to Line 500 (to display possible exits now that we can move out o
the Location). If we were writing a more complex program and wanted
check for further perils we would need to loop back to Line 400 to check f
other special conditions at this point.

Line 2410is the standard response if the player has not got the jewel in hi
Inventory and upon receiving the instruction to SWIM or FLOAT wi
display the gloomy reply ‘“YOU’RE TOO HEAVY WITHOUT THE
MAGIC JEWEL. YOU’VE SUNK!”’ and then END the program. Thi
message will at least give the player an idea of what he needs to do next ti
around. Note the number of spaces between the word MAGIC and JE

64

Chapter 4 Pitfalls and Perils

(six). Thisis because it improves the display on the screen and does not break
up the words so that part of JEWEL appears on one line and part on the
next.

Lines 2500—2540: These deceptively simple lines hide quite alot of thinking
and most of the principles of peril programming that I have used in Night-
mare Planet.

First we need to deal with a response of KILL that does not involve the
monster in the lake. Line 2500 simply diverts the program past all the other
responses to Line 2540 which is a standard reply for the KILL command in
any other location.

Now we are left with the player commanding KILL MONSTER in Loca-
tion 18. I have only worked out three possibilities in this program:

1. The player has the gun (and may have the knife).
2. The player has the knife only.
3. The player has neither.

In Possibility 1 (the player has the gun) Line 2510 notes that OB%(2) is in
the INVENTORY and makes the response ‘‘OKAY’’ then sets MW % to 2
and returns the player to the game. Now he can escape from the location
(note we have said GOTO 500 and not GOTO 550) and return safely at
another stage. If the player had the knife as well as the gun it wouldn’t have
made any difference, of course. As long as OB%¢2) is true this line is exe-
cuted.

In Possibility 2 Line 2520 recognises that fact but will not let the player
escape. So we PRINT an appropriate reply and then loop back to the
INSTRUCTIONS command.

Finally in Possibility 3 (no gun or knife) there is a standard reply ‘I
HAVEN’T GOT ANYTHING TOKILL IT WITH” before looping back.

It is important to have Line 2500 or else Line 2530 would be displayed if
you wrote KILL in any other Location.

Some of the ideas and programming techniques I have introduced in this
chapter merely scratch the surface of the construction of agood Adventure.
In fact this part of your program will certainly take up the least space but
take the most time to prepare and to debug afterwards. Thinking up areally
intriguing and frustrating problem for your game and then seeing it work
when someone else tries to fathom their way out of it is probably the most
satisfying aspect of writing a good Adventure.

To help understand basic problem programming I have added a flow dia-
gram which should apply to all cases in outline. (See Flowchart 4.1)

65

Commodore 64 Adventure

Flowchart 4.1 Perils in Adventure Game

SET UP
VARIABLES

0‘

{No

MOVEMENT
ROUTINE

RETURN
PROGRAM

If you have entered Adventure Game correctly along the way it should be
possible to move freely from location to location until you encounter a peril
— and then be stopped from moving out unless you have the appropriate
response or appropriate object in your inventory. You should be able to

66

Chapter 4 Pitfalls and Perils

pick up objects and when you return to that location the object will not be
displayed. Alternativelyif youdropanobject thenonreturningtothatloca-
tion the object should now be displayed after the location description.

Totest your understanding of the principlesinvolved why not trytoadd a
new location and a new object init. You can try to add several locations and
a couple of new perils as well.

Don’t be afraid to experiment — both on paper and on your 64. Time
spent on this now will greatly ease both your understanding of the second
part of the book and your own ability to write your own original Adventure
later.

67

Part 2

CHAPTER 5
Writing the Plot

Most of the books and articles on programming will tell you that writing any
type of software should follow certain well-defined paths and Adventure
games should be no exception. I have found that despite the obvious desire
to sit down at the keyboard and start programming right away this is one
time when the advice — think first — is vital.

I know this is irksome — in fact the attraction of the hardware is a fatal
flaw in my own programming — but unless you do force yourself to work
out the bulk of your story on paper first all you’ll achieve (besides creating
problems for later) is an extra few weeks rewriting your program again and
again.

The story (or perhaps a better word would be plot) is critical to both the
success of the game and the structure of the program. In many ways the
process of creating a suitable Adventure is similar to the methods that film-
makers use when constructing a film (a concept I will return to later in the
chapter), and I found this was the most exciting stage in my program. You
need to both create the basic theme (write the story in other words) and then
visualise it as though viewing it through the eyes of your audience.

Part of the thrill of most Adventure games I’ve played has been the feel of
participation of actually taking part in the scenario. If it is to be successful
this must be due to a combination of features which I will expand on in this
chapter but just summarise at this stage to set your mind to thinking about
them now — whilst starting to create the beginnings of your story.

The success and satisfaction of your game will depend on:

1. Your ability to use words to create images of your story.
2. The depth and plausibility of your plot.
3. The imagination of the person playing the game.

With regard to the last point you don’t have any control over the skill and
imagination of potential players, but as it appears that Adventure players
are often fans of science fiction and fantasy then it seems a reasonable
assumption that they will have a well-developed imagination — so I think
we can take Point 3 for granted. The other two features now take on a more
important role.

71

Commodore 64 Adventure

Beginning the story

As I mentioned before Adventure games still tend in many cases to follow
the style of the original versions created for mainframe computers or the
well-known Scott Adams games — they have a bias towards the dungeons
and dragons, science fiction, fantasy or horror theme. A quick scan of any
magazine will throw up a variety of titles such as Mysterious Castle, Dra-
cula’s Lair, Island of Doom, Tale of the Dragon, and many more. Of course
youdon’t haveto follow this trend and there are several games with a totally
different storyline, (escaping from an asylum, looking for the right hus-
band/wife, attempting to slip out for a night on the town) which add a
welcome touch of originality for the hardened player, but as the fantasy
theme is such a popular one (and one I personally enjoy) I have based my
own on the familiar space opera type of plot.

I read once there are no original plots for stories — only different
variations. Of course it’s true, but Star Wars is a perfect demonstration of
the ability to take a simple plot and transform it into a smash hit! In all our
stories we need some type of quest or goal to be achieved (find treasure,
rescue a princess, escape from a dangerous situation, discover the meaning
of a puzzle, etc.). We need arecognisable hero or heroine (in the Adventure
game the player takes on that role) and usually either a villain or some other
conflict for our main characters.

When I wrote my own story I used the following steps:

. Select the environment (eg fantasy, horror, sf).

. Choose a quest or goal (eg find treasure, escape from a wizard).
Decide on the role of the hero/heroine.

Select the main characters (eg wizard, vampire, countess).

. Write a synopsis of the story.

Draw a simplified map with a few basic locations.

Storyboard the plot.

N AW~

It may sound as though there is a lot of hard work before even touching
the keyboard, but many of the stepsin writing your story will follow so natu-
rally that it becomes a fascinating and challenging goal in itself. And, as|
have already mentioned at length, short-circuiting this step will either pro-
duce extra work later or result in an unsatisfactory product in the end.

Select the environment

The traditional type of Adventure game which borrows heavily on the fan-
tasy world of Tolkien and related writers, abounds with elves, dragons, sor-
cerors, castles dripping with magic and mystery and similar things. Perhaps
it really is the nostalgia of the fairy-tales of our youth that partly explains
this popularity — perhaps a deeper reason, but for the budding Adventurer

72

Chapter 5 Writing the Plot

the range of possibilities opened by selecting this environment adds a zest
and originality less likely in the more mundane world. After all — anything
is possible in your story!

Sword and sorcery is a branch of this type of environment which substi-
tutes the more magical aspects for violence. In this genre (typified by the
writings of Robert E Howard and his splendid hero Conan) the world is a
dark and savage place where spells and sorcery are real and your prowess
with the sword is your only real asset. Whilst being an excellent medium for
adaptation to Adventure gaming the lack of enchantment found in the
Tolkien world is my main reason for preferring fairytale fantasy Adven-
tures.

Traditional horror themes are also extremely popular with Dracula play-
ing a star role in many of these Adventures. Again the imagination of the
programmer is unleashed with a variety of stimulating possibilities —
people who suddenly become vampires, crypts full of dark and dank tunnels
where the unexpected can leap out as you turn a corner, a time limit on
escaping before you turninto a vampire etc. This environment lendsitself to
haunted houses with a number of rooms for you to move around, descents
into Hell to confront the devil and reclaim your soul, escape from voodoo
islands where zombies attack at every turn, werewolves, devil-worshippers,
and countless more. To me this type of environment is the best for variety
when thinking of a plot.

Another world packed with possibilities (and so far relatively ignored by
writers) is the one of the comic strip hero. Superman, Batman and others
have been demonstrating a variety of different themes over decades, (still
thesame basic plots but dressed differently) and a few quick ideas that come
tomind are A-man (Adventure-manif you haven’t already guessed) chasing
super-villain Bugman all over Commodore City before Bugman reveals his
secret identity, or A-man rescuing Lois Left$ from the evil Interface who is
planning to take over the world. I’m sure this is one genre with a wealth of
possibilities.

There are plenty of other situations you can use as I have mentioned, the
detective solving the crime, the innocent caught up in the world of
espionage, the castaway on a desert island. You only need tolook at the pro-
grammes on the television, the books in the fiction section at your library or
the films being shown at your local cinema to find immediate ideas for your
story. And, of course, there is science fiction.

I’ve left science fiction until now because this is the environment I have
chosen for my own adventure — Nightmare Planet. Purist SF fans would
probably argue that Nightmare Planet is more space operathan true SF, but
for the sake of simplicity I regard all stories with a background of time and
space as science fiction. Again possibilities are pretty extensive, time travel
to rescue the good Doctor who has been flung into the far future by his
premature tamperings with a time machine, battles against the aliens plann-

73

Commodore 64 Adventure

ingtoinvadethe Earth, searching a post-nuclear planet for life after the hol-
ocaust. It was into this type of general environment that I decided to place
my story.

Choose a quest or goal

It might seem strange to place this before any thought of the story itself, but
asthe whole idea of an Adventure game is to solve a puzzle, find an answer,
achieve a goal — so the main consideration right from the start must be to
decide what your own goal will be.

When I first began to work out Nightmare Planet 1 had only one goal —to
rescue the Princess Aurora. Asthe story expanded during the programming
stage I added a second goal — to find the energy crystal and bring it back to
the spaceship. This added to the difficulty of the game and extended the
scope of the Adventure quite considerably but was not really an essential
part of the original story. Thus, despite the importance of choosing your
goal, it is possible to amend it later or as I did — add to it.

Don’t be tempted to start to work out fine detail at this stage. For exam-
ple, suppose you have decided to make your goal FIND THE TREASURE
inside the Castle of Doom. As yourimagination begins to work out the story
you also start thinking of whether to add a score to the game, adding 10
points for every item of treasure. Whilst your mind is thinking of this you
could become diverted into adding the concept of subtracting points for
various problems encountered which your player hasn’t solved in a particu-
lar time limit. From this you may decide that you will need a display of the
score on the screen all the time — so you sit down in front of the 64 and begin
to work out the graphics of your scoreboard. . .

The essence of good storywriting at this stage is simplicity. The frills will |

come later once you begin to program. 1

Decide on the role of the hero

This — quite simply — places the player into the scenario. Asinvolvementin
the adventure is the key to good playing you need to make your potential
player feels as if he is the hero.

You have two main choices here:

1. Your player acts as himself thrown into the fantasy world. ‘
2. Your player takes on the role of the fantasy hero.

I don’t think it matters too much which you decide — as long as you makeit
clearright from the start of the game. In my own case wanted the herotobe
the pilot of a battered but reliable spaceship (shades of Han Solo) who made
his living as a freight-operator.

74

Chapter 5 Writing the Plot

Select the other characters

Of course the other characters in the plot will depend on the story you are
writing, so this stage should really be considered at the same time as creating
the actual story itself. But as most of these stages are slightly artificial. . .
(whatreally happensis that as you think of your story you will automatically
bethinking of the hero, thelocation, the villain, etc.) it is easier to have some
kind of structure which ensures that you don’t leave anything out.

The main characters must be accomplices, people to rescue, villains, and
assorted types toadd local colour or act asred herrings or clue-givers. Night-
mare Planet is fairly lacking in characters because of its location — an alien
planet which contains various perils rather than villains — so the only other
real character is the Princess Aurora.

One aspect of writing this type of game is the obvious problem of sexism.
In any story where the player takes the role of a man trying to rescue a
womanit could be argued that this game will only appeal to males, especially
atcertain stages of the plot, (this will be obvious to anyone who has played it
already!). Whilst I have not done so for the purpose of this book — it would
beasimple matter to include a prompt at the beginning of the game askingif
the player is male or female. Upon receiving the appropriate response the
game would then set various variables so that the Princess could become a
Prince and the player become a female space pilot. To me this adds an
element of flexibility to Adventure games lacking in other media such as
books and films.

Write a synopsis of the story
Ideas can occur at the strangest of times, ofteninthe bath, late at night, or as
in my case on the train. As I rattled down from Manchester to London one
dull May morning the whole plot came to me quite unexpectedly and
quickly, and I scribbled it down there and then. This formed the synopsis —
which remained the same in basic content throughout the creation and pro-
gramming of the whole game.

My synopsis was as follows:

You are the pilot of a spaceship on a mission to deliver the beau-
tiful Princess Auroratothe planet Zen where sheisto be married
tothetyrant Ruler. You have falleninlove with Aurora but dare
not tell her.

A sudden power failure or meteor storm causes you to crash
on astrange, uncharted planet. You successfully land your ship
but black out during the crash.

When you awaken you discover the ship has been entered
from outside and the Princess has been captured. You have to
set out and rescue her.

75

Commodore 64 Adventure

The atmosphere on the planet is poisonous so you are forced
to wear your spacesuit at first, but along the way you chance
upon an alien plant with strange fruit which (when eaten) allows
you to breath the air safely. You cross a vast desert to a ruined
city in your travels, but all you find there is a giant snake which
attacks you.

You eventually come to a huge forest and continue your
search. You become lost, and after some time climb a tree to see
where you are. To the south you see smoke curling in the air —
life of some sort. On the way to the area you are attacked by a
dinosaur, obviously the planet has not developed very far along
the evolutionary trail yet, and eventually you find a village of
mud huts belonging to the natives who inhabit this part of the
land.

Youhave found Aurorawhois considered by the nativesto be
a Goddess. They threaten you when you try to take her away —
and it is only when you kiss her and show them you are her
intended mate that they will let you both escape.

On the way back to your ship you discover that Aurora really
loved you all along (there was obviously magic in your kiss!!)
and you fly away together to a blissful future at the edge of the
Galaxy.

It may not be great literature — but the essence of my plot is all there. As|
began developing the story so I added refinements and improvements along
the way but surprisingly little. Much of the story is pretty obvious, but in
some ways this addsto the feeling of satisfaction of the player. We often like
to feel that the film we are watching or the book we arereadingis ‘right” —in
other words we expect certain events to occurin a particular situation — and
it adds to the satisfaction when we are indeed proved to be correct. So I
didn’t try to be too original or too way-out.

Drawing the initial map

I have already covered the basics of maps in an earlier chapter — but at this
stage in the creation of a real Adventure it is necessary to describe yet
another type of map which will be converted later into the grid form out-
lined in Chapter 2.

You need some idea of the geographical relationship of the various loca-
tions in your adventure to help you avoid making mistakes in your planning
later on. I found this was simpler if I just drew a very basic map (see Figure
5.1) which placed the various locations into ‘real space’ rather than
attempting to fit them into a grid.

76

Figure 5.1 Initial map for Nightmare Planet

I. RUINED CITY

!

Chapter 5 Writing the Plot

2. DESERT 3. LAKE
—
4. FOREST 5. SPACESHIP
6. ROAD 7. SWAMP 8. RIVER
—

|

9. NATIVE
VILLAGE

77

Commodore 64 Adventure

At this stage I kept the number of locations pretty small (in fact it varied
from 7 to 9 at the beginning) because I knew I would be expanding certain
sections quite considerably later. In the final version both the ruined city
and the forest contained about 11 different locations each — allowing me
freedom to place the objects and perils as I went along.

The discipline of drawing this map is a great help in developing the story,
for as I began to think of the objects and perils I would start to place in spe-
cific locations so I found the skeleton of my original plot developing layers
of clothing. Figure 5.2 shows the start of this, and an analysis of my own
story should illustrate how it helped me.

This map can now be expressed in the form of a table (Table 5.1) whichisan
excellent way of collecting your thoughtsat this stage in the planning of your
Adventure.

Table 5.1

LOCATION1 RUINEDCITY Peril: Snake
Object: Rope (to be used in swamp)

LOCATION2 DESERT Object: Fruit on bush (to be eaten)
LOCATION3 LAKE Peril: Eel
LOCATIONS5 SPACESHIP Peril: Poisonous air

Object: Spacesuit (to wear outside

ship)
Object: Blaster (to kill snake and
dinosaur)
LOCATIONG6 ROAD Peril: Dinosaur
LOCATION7 SWAMP Peril: Quicksand
LOCATIONS8 RIVER Object: Knife (to kill eel)
LOCATIONY9 VILLAGE Peril: Hostile natives

Object: Princess Aurora

This table needs some explanation, because in planning the initial mapI
was also planning the difficulty of the Adventure. Let’s take a simple exam-
ple:

In LOCATION 1 (the ruined city) lies a rope which is essential to escape
the quicksand in the swamp (LOCATION 7) later on. But to GET the rope
you first have to KILL the snake — and you cannot do that unless you
remembered to GET the blaster before leaving LOCATION 5. Once you
reach LOCATION 9 (the native village) you cannot rescue Aurora without
KISSING her. But you cannot KISS her unless you remove your spacesuit

78

Chapter 5 Writing the Plot

Figure 5.2 Initial map for Nightmare Planet with objects and perils

1. RVINED CITY

GIANT
SNAKE

ROPE <+—

!

2. DESERT

FRUITG—

1

4. FOREST

I

5. SPACESHIP

PO
AR

BLASTER <+—
SPACESUIT ¢—

I

6. ROAD

DINOSAUR

7. SWAMP

QUICKSAND

I

q. NATIVE
VILLAGE

UNFRJENDL $

PRINCESS AURORA

3. LAKE

EEL

8. RIVER

KNIFE<—

79

Commodore 64 Adventure

and if you REMOVE your spacesuit before EATING the fruit in LOCA-
TION 2 (the desert) then you will die in the poisonous atmosphere.

(nb the words in capitals in these examples refer to commands that you will
be giving the 64 in your game.)

Having drawn the initial map and given some thought to the plot the next
stage is to start to storyboard your Adventure.

Storyboard the plot

Essentially I'm a visual person. I love films, I prefer illustrated stories to
prose (that means comics) and when it comes to writing I tend to see the fin-
ished product in my mind’s eye before I put finger to word-processor!

Soit was natural for me to begin to write my Adventure by using a techni-
que of story-boarding similar to the process a director will often use when
planning out a film in the early stages.

A storyboard s just a collection of visual images portraying the storyona
collection of boards — a strip cartoon of the film in other words. Obviously
writing a computer program relying heavily on text is not the same as shoot-
ing an epic, but if I was to use a similar principle then what I wanted was to
‘see’ first what the player would see on his computer screen. I needed to
imagine the layout of text on the screen — and to picture some of the possi-
ble responses of my potential player so I could begin to think about the
framework of my plot.

At first this technique may seem a bit of a time-waster — after all who
wants to sit around writing imaginary responses to “WHAT SHALL I DO
NOW?”’ on bits of paper when there’s a keyboard to play with — but in my
own case I found this part of my construction extremely valuable.

I'suspect it was because I was able to begin to ‘thought-launder’ (a phrase
I’ve borrowed from a good friend of mine because it so aptly describes the
process). This means that I was forced (by the act of writing down various
ideas and replies) to think much more deeply about both my plot and also
my locations. I began to get ideas which would serve me in good stead later.
In short — I was really thinking about the story. Figure 5.3 might explain
what [mean.

The wording on my very first storyboardisalittletoo long for the amount of
memory in the 64, but it captures the feel of the game. And although the
actual wording I will use later in the program is different, at this stage oneor
twoideas wereemerging that I would uselater —ideas I might have used had
I not gone through this process first.

A simple example is the “‘personal robot Proteus’’ who has survived the
crash and as it says on the screen ‘“... can aid you in your search for
Aurora.”’

80

Chapter 5 Writing the Plot

Figure 5.3 Inside the spaceship

Location: Inside your Spaceship.

You awaken with a throbbing head amidst the wreckage of the
contents of your cabin. As you stagger to your feet suddenly the
memory of your spaceship losing control comes back to you.

Your mission — to deliver the beautiful Princess Aurora to the
Planet Thoth, where she is to be married to the ruler Zorn-Ramok, a
cruel man who sees the union in terms of its polictical value.

Your problem — you have fallen in love with the Princess and,
unknown to her, guided your ship into the lonely outposts of the
Galaxy in an attempt to persuade her to forget her promise to marry
Zorn-Ramok and escape with you.

But fate has played a hand in your plans, for your ship was damaged
by a sudden ion storm and it was all you could do to steer for an
uncharted planet in the outer limits of the known Galaxy and attempt
a landing

Now you recover amidst the damage of your battered spaceship.
Around you lie the contents of your locker, your spacesuit, galaxy
charts, your blaster, and the signs of an obvious struggle. But Aurora
has gone.

Your airlock is registering that it has been opened from the outside
then resealed. Your only blessing is that Proteus, your personal
robot, is undamaged and can aid you in your search for Aurora.

WHAT SHALL WE DO NOW?

I first hatched the idea of having a little robot who would be around to
comein with acomic comment or quip on this screen — my first storyboard.
Thisidea would change and develop, to become Victor the robot (a sprite in
the 64) who drops down from the top of the screen at various moments
throughout the game. I wonderif I’d have thought of Victorif Thadn’t spent
the time thinking and writing up this first screen back at the beginning?

81

Commodore 64 Adventure

Figure 5.4 Beside a huge river

LOCATION: Beside a huge river.

The jungle clears and suddenly you stand on the banks of a huge
river, a vast stretch of water almost like a sea, yet moving swiftly past
your feet with the speed of a tumbling stream.

Too far to cross by swimming, you feel disheartened. To have come
so far only to be thwarted now.

Around you lie the rocks and debris of an ancient age, looking as
they have done for thousands of years. You sit for a spell, gazing
across that vast swiftly-moving river, before deciding to make your
way back.

Figure 5.5 Inside the forest

LOCATION: Forest

You wander into a vast forest, filled with trees as tall as skyscrapers
with trunks as thick as houses.

Everywhere the air is thick with insects, darting and flashing in the
sunlight filtering through from above. Occasionally a small animal
will run from cover across your path and disappear in the forest.

As you walk on you realise that you are going ever deeper, for the air
is becoming colder and the light fading as the trees become thicker
and closer together. Soon any sign of a pathway has gone, and you
are left to fight through bush and bramble.

You are lost. With a chill you realise there is no way you can
remember the way forward or back. And behind you are strange
noises, as if something huge is following you slowly and with
certainty.

The two screens in Figure 5.4 and Figure 5.5 are just further locations,
again to show how I was planning out my plot. I hope the atmosphere of the
game can be felt in the wording of these screens, and although I wasn’t able
togotothesamelengths of descriptive phrase onthe 64 1think I captured the
essence of the ‘feel’ of Nightmare Planet.

82

Chapter 5 Writing the Plot

Figure 5.6 By the shores of a lake

LOCATION: By the shores of a lake.

WHAT SHALL WE DO NOW?
Dive

CAN‘T DO THAT...... YET!
WHAT SHALL WE DO NOW
Swim

0.K

You bob silently on the top of the water, looking down at the glinting
metal object on the bed of the lake. It is another blaster from the
spaceship.

WHAT SHALL WE DO NOW?

Dive

0K

A giant monster eel attacks you, appearing as if from nowhere
WHAT SHALL WE DO NOW?

Fire blaster.

IMPOSSIBLE — it is too damp

WHAT SHALL WE DO NOW?

Kill monster

I DON’T KNOW WHAT ‘MONSTER’ IS
WHAT SHALL WE DO NOW?

Kill eel

Figure5.6is one of the many screens I made up as I went through my story —
trying to imagine I was keying in the appropriate responses to the messages
from the computer. When I came to the actual programming of this
sequence (Chapter 12) I was already fairly certain of what I wanted — and
although I changed a few ideas around slightly the essence remains in the
final version of Nightmare Planet.

83

Commodore 64 Adventure

Summary

This chapter should have been the hardest part of writing your own Adven-
ture and perhaps the most frustrating for keen programmers — we still
haven’t switched the computer on.

But I have a feeling that Adventurers are imaginative and creative people
who will find that once the idea of a plot-line has crept into their mind it’1l be
hard to shakeit. Once this happens then the only way to escape is to write —
to transfer the thoughts to paper and then to computer.

I hope my introduction to the actual act of transferring that idea, that
concept that will make your Adventure unique and workable will save you
time and heartache later. I have spent some time on it because all the books
and articles I have read so far on programming Adventures concentrate on
the technical expertise of programming and tend to skip the hard part — the
creation.

One final tip before you turnto Chapter 6 and start hitting the keys —take
your time getting your story right. There’s no rush to finish. Time in
thinking now will pay off in your final effort.

84

CHAPTER 6
Setting the Scene

Computer games, like everything else in life, can succeed or fail in the first
few moments. We all make snap decisions about people, places, books,
jobs, etc. based on first impressions — rightly or wrongly — and so those
first few seconds of your game are going to be very important.

A good game will start with a good title — one that will grab the attention
and hold it. When you put a cassette into your tape player, wait for inter-
minable minutes whileit loads, and then are greeted with a poorly presented
title — you feel aggrieved. And if you don’t — then you should! Good titles
are well-designed (and correctly spelt) graphics and words which give a taste
and an impression of the game to come.

There is no need to go wild about it, (I’ve seen some games which expend
virtually all the memory, and most of the programmer’s skill it seems, on the
titletothe detriment of the program itself). But I’ve also seen appalling titles
with words off-centre, typed incorrectly, and no attempt to change colours
or even try and place a graphic anywhere.

The initial concept

Inthelast chapter I described the basic plot for my story — but before start-
ingto develop the plot further on the 64 I wanted to get a good ‘feel’ into the
game by designing and programming a title I felt did it justice.

Asit’s possible to create your own character set I toyed with the idea of
designing my own letters for the words Nightmare Planet but time and
memory eventually excluded that, although I did spend quite a bit of effort
designing various attempts. In the end I decided I would like a simple title
with a spaceship somewhere on the screen, and to enhance it I would move a
sprite across the words, preferably with a whooshing noise.

Iwill deal with the spriteitselflater in Chapter 8 — for now let’s start with
the title itself.

N.B. I have split the program into chunks called Modules in this section of
the book similar to the Modules in Section 1. However there will be quite a
few places where lines will be omitted in the early modules to make it possi-
bleforyoutoenter and run your program (to check it). Thusas these missing
lines will be added later please ensure you follow the numbering carefully or
you will overwrite lines later on — with a lot of problems in debugging.

I also had problems with memory, running up to the limit on several occa-
sions. To retrieve memory [was forced to renumber the program and to cut

85

Commodore 64 Adventure

down the asterisks in the REM statements to 2. I did contemplate removing
the REM’s altogether — but decided against it as it makes the program so
much easier to follow — especially several months later.

MODULE 6.1

1 |otod

2 save"BF mocdule B.1Ca)", 8 verify " module
B. 103", 8istop

3 reEm

168 remik

118 rem Pre-credits

128 rems

128 Print"&" Pokel2220, 0 Poked32281., 68

148 Print"iERERIL N the far flune fuotore .
158 9otoz38

258 rem¥¥

258 rem variables

278 rem#E

280 clrivw=03248 2c=04272 be=332280 bc=332

21

298 Pr=@:cy=a:sy=0-ey=a qu=ady=Ees=2n
vERina=a P = fy=0rc=0 sy =0 hh=0:hr=0
JUM wo=D4296 wl=04276 al=04277 5 1=04278 "

W2=04283 22=04254 =2=54285

318 wE=54290: 33=54291 5d=54ddd

220 hi=54273' 11=04272 ha=04220: 12=042753 "
h3=54287 ' 13=54286

SYE remik

258 rem Litle

H9A remi¥¥

1808 pokebz.,. B Poke b, B Prink"&" i 22=1024
ce=05235

1818 pokeS2272,21

1828 fori=ltoz3

1838 Pokecs+40%i .4 Pokezsz=+40%1, 182

1348 Pokecz+40%1i+38, 4 Pokess+40%1438, 182
1958 nexti

IB?BKPr1n++abf11J"ﬂﬂﬂﬂhluh+marﬁ Planst"
1828 print"iRBRBREEEE:2n 2dventure in bime
and space"

86

Chapter 6 Setting the Scene

1858 Print"ERRERRNE "
1188 print"iRRrEs o
1118 Print"NBRRIEE+E A

. _!ll
1128 Print" iWRRTEECE"
1138 Print"iMBRERECE"
1148 print"RBEEEOESR o
1158 Print."neRE# SE+ED "
1168 Print"ibBE SBZEL A

WII

1178 PPlnt“IIIIIiB Zpl @

1188 print"h -
119@ Pm n+ “I Wﬁ%@%'%%@%%ﬁr%@w

1219fm~m 1 tolSEE
1228 nextm

Lines 100—150: The game takes a few seconds to read and set up all the
variables (especially the setting up of the sprites) and this results in a pause
after you have typed RUN. I always find these pausesirritating and wonder
ifeverything is okay orif have done something wrong — so I decided to use
this interval to put a short ‘‘pre-credit’’ sequence in.

As soon as you type RUN the screen clears, goes totally black, and the
words ‘“‘IN THE FAR FLUNG FUTURE”’ appear. Line 150 then has a
GOTO statement as a section will be placed between the pre-credit sequence
and the variables later.

Lines 250—320: These lines define all the variables. There seem to be quite a
lot, but for now let’s just look at a few as most of them will be described more
fullyin the appropriate module. (Thereis a glossary containing all variables
at the end of the book).

Line 280: V is the starting address of the Video Chip and allows us to create
and move sprites around using the formula V + X (X being the appropriate
number). SC is the starting address of the Sound Chip. BS is the starting
address of the screen border colour and BC is the starting address of the
centre colour. (The reason why these are NOT used in Line 130 are simply
for convenience in keeping all the variables here in the program).

Line 290: This line contains a number of variables concerned with playing
the game which I shall refer to later.

87

Commodore 64 Adventure

Lines 300—320: These variables are all sound values for all three voices on
the 64, and will be explained more fully in the section on sound effects.

Thenext sectionis thetitle pageitself. I often find working out graphicsin
aread-out tricky (especially counting up cursor right and space symbols) so
I haveincluded a second version of Module 6.1 which has been converted to
CT Standards.

For those of you unfamiliar with these they are very easy once you get the
hang of them (they just look awful!!).

Thus [CLS] stands for ‘““CLEAR SCREEN’’ and [CU] and [CD] stand
for ““CURSOR UP”’ and ‘“CURSOR DOWN?”’ respectively. [G<] and
[G>]referto ““GRAPHIC LEFT”’ and ““GRAPHIC RIGHT”’ so [G< +]
meansthe ‘“ +’’ key with the Commodore key held down — resulting in the
appropriate graphic symbol.

If you look at Line 1180 in Module 6.1(b) I will explain it as clearly as I
can:

1180 PRINT*‘[3CR] - 3 cursor right —
[GRN] — control key plus green colour key —
[G< K] — graphic left key K —
[3SPC] — 3 spaces —
[REV]—control key plus reverse on —
[G< K] — graphic left key K —
[OFF] — control key plus reverse off”’

Thus if you refer to Module 6.1(b) as well as Module 6.1(a) you should
have no trouble keying in this part.

MODULE 6.1(b)

478 FEM##

FEM TITLE

998 REM##

1888 FOKERS. @ POKE BC, @ PRIMT"LCLSI":SS=1829 C5=55236
1818 FOKES327Z, 21

1828 FORI=1TODZ23

1838 POKECS+40%] .4 FOKESS+40%] . 162

184@ POKECS+48%I1+3%, 4 POKESS+H40% I +35, 182

1858 MEXTI

1968 PRIMNT"[CEI[PURILZRGC+]"

1878 PRINTTRECI1" [3CDICWHT INIGHTMARELSPCIPLANET "
1988 PRINT"[SCRIL3ICDILGRHIAMLSFCIADYVEMTURECSFCIIMCSPCITIMELSPC IANDSH
1898 PRIMT"[2CDICSCRICGRHICGS-]"

1186 FRIMT"C[4CRICREVICGZEILSPCILGO#]"

1118 PRINT"[4CRILREYICGH>BICG+]1G>BILOFFIL235PCIIREDICGER]

1128 PRIMT"[4CRICREYIIGRHILGZEILGR)[GHEI"

1138 PRIMT"[4CRICIREYICGRHICGEIIGERILGEE]"

1148 FRINMT"[SCRICREYICGZEILGZEILGERIIGEEIIGI#]0OFFIL4SPCIIPURI#"
11568 PRINT"[3CRILGRHILGCKICREVILGEEILGS+IIGFRILGIK]"

1168 PRINMT"[3CRILGLKIIREYICGZRI(GC+]IGHBIIGIKICOFFICZVSPCICYEL I#"
1178 PRIMT"[2CRICGRHNILGCKICREYILGZBILGE+]IG>BILG<KICOFFI"

1188 PRIMT"[2CRICGRHMICGIKIIZESFCIIREY JLGIKILOFF]"

1198 PRIMT"CCRICBOICPURICSTGC+]"

1218 FORM=1TO1588

1228 HEXTH

THIS LISTING WAS PRODUCED USIMG THE &4 FORMAT COMVERTER

88

Chapter 6 Setting the Scene

Lines 1000—1010: First we clear the screen again, and turn the border and
centre to black with POKES BS and BC. The reason for doing it again is
because at a stage later in the game you may wish to return to this portion
and would not be re-entering the program right back at the beginning.

Two variables are set here, SS and CS. These concern the setting up of a
pattern around the screen and as they refer just to this section of the title I
haveleft them here for simplicity. SSis the starting address of the screen and
CS of the colour memory.

Line 1010 converts the 64 to upper case — unnecessary on the first RUN but
asthe Adventure text is in lower case (I think it is much more attractive) you
need this line to convert back should you be RUNning the program a second
or third time.

Lines 1020—1050: This routine POKE’s two vertical lines on the extreme
leftand right of the screen using the graphic symbol onthe Commodore Key
and ““‘ +’’ (POKE 102) in purple (POKE 4). I used POKEing here because it
is possible to place the symbol in the last right position without causing a
carriage return and causing the whole screen to move up one line.

Lines 1060 and 190: Simple PRINT statements which fill in the horizontal
upper and lower borders of the screen with the same graphic symbol.

Lines 1070—1180: The picture of a spaceship in the left lower portion of the
screen plus three stars and the title words will appear once you key in these
lines.

Lines 1210—1220: Finally a short timing loop to hold this title for a few
moments. Thisloopisalittle short at this stage as once weadded the spriteto
this sequence it will prolong the time the title stays on the screen. Of course
you can easily add to this timing loop (FOR M = 1 TO 3000 for example) if
you want your title to stay on the screen longer.

Testing Module 6.1

If you type RUN the screen should black out all over, and after the pre-
credit sequence a box should draw itself around the border followed by the
words “NIGHTMARE PLANET — AN ADVENTURE IN TIME AND
SPACE” in the centre of the screen in the upper half. Finally a green space-
ship should be standing poised for take-off in the lower left corner.

New readers start here

If youlook at Figure 5.3 in Chapter 5 you will see how I planned my opening
screen in the storyboard section. This second Module is the result of that
storyboard.

89

Commodore 64 Adventure

I have often felt that Adventures need a touch of drama to make you feel
you really are entering into the imaginary world (the Scott Adams games
I’ve seen are completely lacking in this) so having set up my title I wanted a
page of text to appear which would set the scene for what is to follow.

Writing text for computers isn’t easy. I had to write it in direct mode first
of all to get a good balance, changing words to fit the screen. Then I decided
on a brown background with black lettering for dramatic effect. Finally I
had to key in the text so that the words were positioned exactly as I wanted.

The problem of colours is one you will only solve by playing around with
different borders and coloured letters, trying out various combinations
until you are happy. Again I feel time spent here on adding that little extrais
well spent in giving your game an overall feel of professionalism.

MODULE 6.2

1 aoto3

2 zave"BA module 5.2V, 8 verify " module &,
2", 8 stof

3 rem

1E78 remis

1288 rem scrift

1228 rem#s

1308 pokebs, 9 Pokebc, 2

1318 Printchr#cld?) rem clear screen
1228 form=1to280

13328 nextm

13248 pokeD2272.232

1358 printtabls"@Alone in the control r
oom of Cour sPaceshif dou are ")

1268 Print"thinkine of the 2irl that so
W hawve begn Paid to transPort”

1378 Print"Mkafely to the pPlanet Zen: th
e Princezs who has secretly stolen ")
1338 Print"vour heart but who iz Promis
ed to the cruel ruler of Zen "

1298 Print"in 3 marriafe of difFlomacs"
1408 Printtablad "Bt sour mind iz more
on Princezss Aurora than dour own ")
1419 Print"skill in Piloting wour shiP.

Suddenlys and without anu W
1428 Print" warnin® @ouw wark into real =
Pace too close Lo 3 mysterions ")

1438 Print"Plansgt - and are sucked into

90

Chapter 6 Setting the Scene

ite aravitational Pull.”

1448 pPrinttab(s)"iFPerhaks sour mind 15 0
ot fully on wour task - ",

1458 pPrint"Perkhars the Planst iz Loo
trons, Either way sow cannot M

1468 print"contral w@our 2hiP. A 4You =
lir into oblivion o last "

1476 print"memord 1z the Qround roshind
wp to meet 400 saeea”

2188 printtab(ll:"iFress “s87
2118 Setaf ifasis"="thenzlly

10

o

tart

it
1]

Lines 1300—1340: Before the text appears it is necessary to change the
colour to brown, clear the screen (PRINTCHRS$(147) is an alternative to
PRINT[CLS]) and set up a tiny loop. Finally line 1340 sets the text to lower
case.

Lines 1350—1470: Straightforward text lines — enter carefully with an eye
for spacing. The annoying graphic symbols that appear are because of the
upper case letters at the beginning of the sentence.

Lines 2100—2110: Having set up the text we need to keep it on the screen
longenough foranyoneto actually read it — so what better way thanto have
a holding line with the prompt ‘‘PRESS S TO START’’? Line 2110 is a
standard method of keeping a PRINT statement on the screen until the
operator wishes to continue.

Testing Module 6.2

If you now RUN the two modules together you should find the screen will
change to a lovely brown and the text will be evenly spaced out over the
whole area. No words should be broken — if they are check the spacing in
your own listing.

Now press S and the program will break out with the READY prompt.

General hints on text writing

Asmuch of the actual space of an Adventure gameistaken up with text I will
spend a few moments on tips I’ve developed in writing Nightmare Planet.

The biggest problem (as you may already have discovered) is spacing the
words correctly on the screen. The way I tackle this is to write two or three
PRINT statements at one time and then check their appearance on the
screen.

For example I would write Lines 1350— 1370 and then in direct mode type
GOTO 1350. The few lines would appear giving me an idea of where I

91

Commodore 64 Adventure

needed to add or subtract spaces to make the text look neat. By then adding
LIST 1350—1370 (again in direct mode) I can play around with the lines
whilst the display is still on the screen. In fact if you type your GOTO
statement in the very top line all you have to do is HOME the cursor after
every change you make and then press RETURN to give you an immediate
display.

Later on in the program you will find PRINT statements with GOSUB
and GOTO statements in the same line, and I found it easiest to add a syntax
error here

eg ... HOME.””;GOTO 3300 (note the semi-colon)
instead of

... HOME.””:GOTO 3300

By using a semicolon instead of a colon I would cause the 64 to break out
of the program with the SYNTAX ERROR message and not execute the
GOTO or GOSUB — which was exactly what I wanted to allow me to edit
the text.

Summary

This chapter has set us on the way into the program. It is fairly easy so far,
but I hope you’ll agree that already the atmosphere of the story can be feltin
the title page and the text.

Of course your own Adventures can be as simple or complex as you like.
Some might foresake any title altogether to allow more memory for the pro-
gram itself. Others might indulge in better graphics. Every programmer is
different. My intention in this chapter is to introduce you to text program-
ming and give you some ideas of presentation. The rest is, as always, up to
you.

92

CHAPTER 7
Do you need help?

Just to complete some of the essential parts of your game before we move
into the actual storyline I’m going to deal with ‘‘General Instructions’’ and
the modules for SAVEing to tape and LOADing from tape in this chapter,
and the addition of sprites and sound in the next chapter.

Thereason for doing this first is because these modules will form valuable
subroutines that you will want to be able to put into your program as you go
along — which is much faster than having to go back after programming the
main story to keep adding them in the appropriate places.

Also the ability to save and load will make life much easier for you once
you begin the main story, as you can save your own game and then reload it
time and time again as you test out particular lines. This is much quicker
than having to play the game up to each location every time you want to test
out a particular routine.

If you really need help!

When I had been programming Nightmare Planet for aboutamonth I asked
afew friends round to have a go — the best way to discover your mistakes! I
just sat them down in front of the computer and watched, pen and paper at
theready to jot down my mistakes. What surprised me most, however, was
their elementary lack of knowledge about just playing an Adventure game.
Now whilst youand I know the rules and traditions of Adventure playing —
not everyone does. So the good programmer will provide a page or two of
instructions to help the novice to Adventure games.

MODULE 7.1
1 Qotol
2 zave"@B@ module F.1".8iverify " module 7.
1", 8 stop
3 reEm
278 Prlnt"iﬁﬁllma don need inzstroctions
SO n)t

B8 Qetad i ifaF"w"andaF " n"thenz2s6
2298 ifag="u"thenPokevwo, 8 9nzublS063
14578 rem¥x
14258 rem instrucktions

L LN
P s

i\

93

Commodore 64 Adventure

149598 remes

159888 print"&" Pokebzs, 11 Pokeba, 11 Print

tablZ3 "Wl nestroctionsd

19816 print"iNNREEN o0 are entering a wor
led of fantasy and adventuore".

156828 Print" with @our comPober as gours

nide, To zolwe thiz";

19828 print" adwenture gou mustaive the

comPuter commands

159848 print"always a S@eerbli and in zome

cases 3 @nounii.

159858 Print"for examfle ' ~ %W3et blazter i

o Eelimb bree

1508 print"BENou will be 9iven s descr

iPLion of the location @ou ars M)

159878 print"in and alzo the direct—ions
in which @oun mas move. You can onls™
1562? Frint"ao Snorthii Ssoothil, Ssazstii

o e s thi.

1968926 print"iMAL times w@ou may chance up

on an obiect which could be of wse V)
19188 print"to 900 later in e Same a

ned dou shonld Fick it oF Che o wsing M
159118 Print"the word S 9t B oor #E take b
2o Thiz will alzo arpPle to ")

15128 Print"@ 9ettiva @i wour sPace-zuit

o Eestting i the Princess back.

19138 Printtab 8 "T@Fress any kew Lo 9o
(]

15148 2etaf: itaf=""thenlSld46

15158 print"iERRY o ma2 also E'droP 6 or
#oremoye B Aan cbdect at ane time ",
19168 print"and that obldect will remain
in that location forr 9o to Pick ")
153178 Print"upP should @ou need it 29ain.
19128 print"iEWEFecial kew letterzs will =
ave 9ou timed for examPle -

12198 print"eRZRBMEE Sed 8d for wEod i
11 take won ")

15266 print"wWnorthii,. Seaszthiil. @onth §or
whe s thi.

19218 print"DRPdRLE Bwill cdizfklas an =Winy
entory fiof oblectzywoun are carrding,
15228 Print"ibkdEl @ Beill let wou wlookli
around, "

94

l

i

’l

Chapter 7 Do you need help?

15230 print "Wkl d Moas B@ive won some W
helr 3!

15248 print"iMEELYPe wWinstructionsii for
the Qeneral inztructions Printout.
15258 Print"@If @ou wizsh to =wsave bithe @
ame to cassetteture 'dzave

15268 Print"Blf w@ou wizh to wendii the 93
me LuPe wIuit

15278 print"kor w=wendii. "
15288 printtab S) " EREFress

1

and kew to 90

o
19298 qetaF ifaz=""thenl3Z24

15208 Print"i€F leaze only use Wnshifted
fi letterzs when @ou tuPe

15318 Print"In other words tufe EBEa@ror
a flinot BEABLrorali.

15328 print"(note @Wali not BAED.

15328 Print"dA few hints ~"'print"d#Ml. St
of to Weaveli sour Same fredquentla.

15348 print"2. Tre Lo draw 3 SmaPlii a5 4o
I oexp lore the Flaret.

15258 print"32. Be selective in «@our Wiy
entordii 35 Ho can only carrws 2",

15368 Print" few obiects at ans DT
Lime.

15378 print"4, If dou nesd helP try SHexa
mininoii thin2s Az wou 290 along

153288 Print"3. Eemember fto tape ﬂinstruc
ticnzhi 1f @on want to return to ")
15390 print"theze Pases."

154868 Print"iERNGood lock in wour search
for Frincesz aurora')

15418 pPrint" and watch oot for the nativ
gs |1

15428 Print"TEbBERFrezz L7 to refborn
to the Qams

15430 aetif ififg>"1"thenl3d428

15448 ifig="1"thenPrint"®3" return

Lines 2270—2290: Once the title pages are finished and the player has
pressed Sto start the game 2 more prompts should follow before getting into
the game proper. The first of these is whether to load from tape and the
second is displayed on the screen by Lines 2270—2290. Basically the player is
asked if he wishes to have ‘‘instructions’’.

95

Commodore 64 Adventure

Line 2290 acts if the response is Y by sending the program to the subroutine
at 15000. (The instruction POKE VO,0 in this line switches off the sound
which I’ll be covering in Chapter 8). If the response is N the program
automatically drops to the next section.

Lines 14970—15410: This is the whole subroutine. On screen it looks like
three separate pages of instructions, each one scrolling up on pressing any
key on the 64 (Lines 15140 and 15280). There’s not much to say here. The
only problem you might have is interpreting the various colours and reverse
on/reverse off keys as have highlighted words and phrases by changing the
colour all over the text. This also enhances the appearance of the pages,
giving them an attractive presentation and layout.

The basic colours I have used are green for the main text, blue (the Com-
modore key plus key 7 not the Control key plus 7) for keywords, white for
the “PRESS A KEY”’ lines and black for the heading ‘‘INSTRUC-
TIONS”.

Once again when keying in text only write a couple of lines at a time and
then GOTO the line number to check the spacing.

Lines 15420—15440: Notice that this time I’ve stated PRESS ‘L’ TO
RETURNTO THE GAME”’ instead of just PRESS AKEY. Thereason for
thisisthatifthe playerisinthe middle of the plot and calls up this subroutine
then when he RETURNS to the game he needs to have the program display
his current position to remind him where he is.

Later on we will be programming ‘“‘L”’ or “LOOK”’ which will be the
correct prompt to allow the current Location to be displayed. Thus we need
the same prompt here.

(If youdon’t understand this fully yet — don’t worry. It’ll be clearer later on
when you program the I$ commands).

Testing Module 7.1

If younow RUN the program you should find that after the introductionto
the story on a brown screen — once you press S the screen changes to grey
and the first page of instructions will appear. If you do not press S to start
but any other key then the brown screen should stay. (Try it to check —
don’t just take my word!). You should be able to scan three pages of instruc-
tions before the program will end. If you run through these three pages and
then press another key at the very end the program will loop back to the
beginning of the three pages and go through them again. If you continueto
press a key on the second run the program will abort with the error message
RETURN WITHOUT GOSUB — which might confuse you. The expla-
nationisthat onthe first runthe program will perform the RETURN in Line

96

Chapter 7 Do you need help?

15440 and loop back to 14970 because this is where it left. On the second run
though it has not had the GOSUB command in line 2290 so it aborts.

Loading and Saving

There’s no doubt that Adventure games must have the facility for SAVEing
agame to tape. Apart from the obvious use of storing your game once you
run out of time it’s also very handy for saving your game when you reach a
critical point where you may be about to lose a life — and SAVEing at this
stage will enable you to start again without going right through the Adven-
ture.

The following module will allow you to both SAVE and LOAD.

MODULE 7.2

14 l'l'Cl

2 save"BF module F.2" 2 werifue"module V.
2"y Biﬁt._.p

3 rem _

2248 print"IEERREDD wou wizsh to 1cad AT
exizting Qame from tape (49 or ona"
2250 getad:ifaf "y "anda " n"then2258

22660 ifaf="u9"thenPokewvo, @ 9osuklEBE@E
155978 romE

15988 rem load

15998 rem¥F

168@@ print"=EEEFlace takPe in recorder a
nd Fewind:

16818 inPut"Press WRETURMEA: ".9%

16828 oPenl. 1.8, "Planst”

1EAEE irPutdl, Procv, S ev. es. v du, v fy
160468 inPot#l.z.nE.m. i Porae, s, i%.P1.s
F

16056 inPut#l,ved, nof. 2, P2, nP.na,rc,Hd.h
ki ki

16P6R fori=1ltod inPut#l. obX(i) nexti
16670 fori=ltof: inPut#l,ob®Cil nexti
16658 fori=lto%: inPut#l.sifCi) nexti
166053 closel

16180 anzubi5420

16118 Print"®" Pokebs, 11 :Pokebz, 11 390to4
A2e

1EITE rems

165920 rem save

16990 rem¥x

97

Commodore 64 Adventure

17888 print"sEEEAre 200 sure Hou wish Lo
save" ‘Printtab(152"9our Qame 7

178018 print"iPrez:z B4 or @nd "

17020 getaf ifasl>"9"anda®F < >"n"thenl7@26
178328 ifag="n"thenPrint"&" SotodBZi
17048 inPut"iBFozition tare then Presz W
ETUEMS: " ;9% rE$=chrF (132

17858 orenl.l.1,"Flanst"

17868 Print#l.Prir$.cuwsr$ svirdievirid es
srEiquirdidvirdineirg v

17878 print#l.z,r¥, nEirf.mordiirfrirs;
mrE eirfizirdinird i rFriirEisr

17028 print#l.vedird . nof . r¥ . 2:rd.p2irg.n
Firgina;rErcirgivuirid . hh.rf.hr

17828 fori=lto9:print#l,obiiil nexti
17198 fori=ltc3 print#l.ob$Ci) nexti
17118 fori=lto3:Print#l.si1%Ci nexti
17128 closel

17138 9osub334209

17148 print"®" 2otod4@2@

Lines 2240—2260: A straightforward routine to allow the player to gotothe
subroutine for loading.

Lines 1600—1610: If you press Y to enter this subroutine then the screen will
blank and the statement ‘“‘PLACE TAPE IN RECORDER AND
REWIND:” followed by ‘‘PRESS RETURN”’. These two lines do that.
The strange hieroglyphics in Line 16010 is RETURN in shifted mode.

Line 16020: This line OPENS a file to the cassette tape (that means it will
allow the data you have created in your program to be recorded on the cass-
ette tape).

The third figure (0) in this line is called the ‘‘secondary address’’ and all
this does is tell the cassette to ‘write’ data. Finally we will give the file the
name of “PLANET”’.

When I started playing Adventure games I thought the cassette would
store my game in a sequential fashion, as though the computer had kept a
record of my journey and would then write all this information to the cass-
ette as though writing the story so far. Thusif I had spent two hours playing
it would have to store twice as much information as if had been playing for
one hour.

What actually happens is much neater — and much more obvious. All the
64 needs to record is the value of all the variables in the program, then on
reloading this data it will appear to be in the same position as when you left.

98

Chapter 7 Do you need help?

Thus you will be recording a “‘file”’ of data made up of values of all the
variables that we will be discussing later in the book.

Lines 16030—16050: These three lines just store all the variables that will
change whilst you are playing onto the tape with the INPUT$ command. It
is very important to keep them in the same order as I have, as if we do not
SAVE data and then READ it again in exactly the same order the 64 will
abort the process.

Lines 16060— 16090: Finally we will write all the data from the arrays set up
for objects (as in the program Adventure Game in the first section of the
book). The last line CLOSES the file.

Line 16100: This line refers to the sprites I will be setting up in the next
chapter, but as the principle is important whenever you set up a load and
save routine I will mention it here. When you store data for sprites the cass-
ette buffer is used (in other words the chunk of memory that the 64 uses as a
temporary store whilst the cassette is recording or playing back data). Thus
after performing a SAVE or LOAD routine we must recreate the sprite data
in subroutine 35420 before returning to the main program.

Line 16110: If the player has loaded in a program from an earlier game he
will need to enter the game so that the screen will display his current position
(which will not be back at the beginning). Thus the subroutine needs to have
aGOTO not a RETURN or else it will just go back to the start of the story.
This line enables the correct procedure although at this stage in your pro-
gram it won’t operate as you haven’t entered Line 4020 yet. It also sets the
correct screen colour.

Lines 17000— 17040: Before allowing the SAVE subroutinetostart thereisa
safety message ‘‘ARE YOU SURE”’ in Line 17000. If the player presses Y
then the display allows time to place the tape in position and then press
“RETURN”’ (note the same hieroglyphics as Line 16010).

Lines 17050—17120: These are virtually the same as in the LOAD routine,
except that the secondary address is 1 in Line 17050, PRINT # is used
instead of INPUT #, and (most important this) R$ (which equals a carriage
return and is set up in Line 17040) is placed between each variable. The
reason for thisisthat the 64 is alittletemperamental in saving data and needs
this subdivision between all the variables.

Note that the order of variables is the same as Lines 16030—16080.

Lines 17130—17140: Finally we clear the cassette buffer and redefine the
sprite data as before, clear the screen, and then GOTO the area in the pro-

99

Commodore 64 Adventure

gram where we decided to save. This is necessary in case you want to SAVE
the program then continue to play.

Testing Module 7.2

Of course at this stage in your program there is nothing to load and nothing
to save — but if you just RUN it you should find that after setting the
“PRESS S TO START’’ message you will get another prompt — ‘DO
YOU WISH TO LOAD AN EXISTING GAMEFROMTAPE (YORN)”.
Upon pressing ‘““N’” you should now move on to the “INSTRUCTIONS”’
prompt in Module 7.1 whereas pressing Y will take you into the load
routine.

The screen will go black, and you will be asked to load a tape into the cass-
etteand press RETURN. On doing this (obviously you don’t need to bother
with the tape) you should get the PRESS PLAY ON TAPE response. Run
Stop will take you out of the program. If this does not happen — something
has gone wrong and I suggest you check carefully that you’ve typed the right
numbers after the command OPEN in Lines 16020 and 17050.

When you do actually LOAD and SAVE you will see the screen flashing
onand off and the words you typed appearing for a brief moment. Thisisan
idiosyncracy of the 64 and it’s best to ignore it. Whatever — don’t worry
about it.

Summary

The careful and adequate provision of instructions is an important element
of anysoftware — oftenlackingineventhe more expensive packagesavaila-
ble. The difficulty is writing enough without taking up too much memory.
In Nightmare Planet 1 have provided extra because of the reactions of
people who didn’t know a thing about Adventures — an excellent audience
for your game. You may wish to be more sparing, or even to omit this areaif
only you and a friend or two will be playing your game.

However you might find that, onreturning to your gamein a year or more
you cannot remember so easily facts that seemed obvious beyond any
shadow of a doubt at the time — memory is elusive. Some type of guide is
invaluable in these circumstances.

The next stageisto provide sound and graphics —to add the final touches
before starting on the story itself.

100

CHAPTER 8
Sprites and Sound Effects

Although I’ve said that I prefer playing pure text Adventures it was pretty
obvious that if I added graphics and sound effects there would be quite a
subtle improvement. Obviously there isn’t enough memory in the 64 to
enable meto create a full Adventure plus pictures and soundtrack but alittle
programming can go a long long way due to the provision of two features:

1. Sprites.
2. A sound chip with three ‘voices’.

Thereisn’t space in a book this size to dwell at length on sprite and sound
programming, so I intended describing how I achieved the effects I have
used in Nightmare Planet and will assume that you cando as I did —read up
how to utilise these facilities in the Reference Guide if you aren’t already
familiar with them.

Creating your sprites
What exactly are sprites? I think of them as chunks of programmable pixels
rather like a large user-defined character. In other words by using a few data
statements you can create an objectin high resolution that will move around
the screen (without all the hassle of POKEing and PEEKing that tends to
accompany graphics and without POKEing blank spaces if you want your
sprite to move).

The Commodore Reference Guide sums it up when it says .. (and I
quote):

““...allyouhavetodoistell asprite ‘what tolook like’, ‘what colour to be’
and ‘where to appear’. The Vic-II chip will do the rest!”’

To recreate a sprite first you need to know what you want it to look like.
There are various ways of achieving this but the easiest is to draw it on a
21 X 24 grid as in the User Manual. In Figure 8.1 I have taken a copy of
such a grid and duplicated it four times to allow me to play around with
different designs.

Let’slook at the development of one of my sprites, Victor, from conception
to completion.

101

Commodore 64 Adventure

Figure 8.1 Grids for designing sprites

1st Group 2nd Group 3rd Group 151 Group 2nd Group 3rd Group

~v—HA——A—

o T o

16

o «©
~
wene Y38 f0en-S30 Rown -

1 1

2 2

3 3
4 4
5 5
6 6
7 7
8 8
9 9
19 9
1 1;
12 1

13 13
14 "
15 15
16 16
17 17
18 18
19 19

{20
21 2
1st Group 2nd Group 3rd Group 15t Group 2nd Group 3rd Group
o ©o o
8382 e 3820 rn-R382aen- 838%va-839%0en-83820vn-

VEONONL LN -

19 "
1" 1
12 12
13 13
14 "
15 15
16 16
17 17
18 18
19 19
20 A
21 2

If you remember I wanted to have a Personal Robot (who started life
named Proteus but somewhere along the way became Victor) appear at
times in the story with a message for the player. A sprite seemed the ideal
solution — but first I had to design him. Figure 8.2 shows the various
designs, starting with a couple of rough sketches which I then tried to adapt
into my 24 X 21 grid. This turned out to be harder than I first thought — as
I’d ideas of attempting curves and such — but by the third attempt he was
beginning to shape up.

The next stage is to convert your grid into data statements. You can do this

manually (this somewhat horrendous task is adequately described in the
Reference manual) but I decided it would be better to find a program that

102

Chapter 8 Sprites and Sound Effects

would do this for me and ended up using a Sprite Editor program written by
A. R. Bennet which I found in a recent copy of Personal Computer World.
You can also buy ready-made Sprite Editors (Simon’s BASIC also contains
one) but be sure to have one that will allow you to print out your data once
you’ve drawn your sprite on the screen.

Figure 8.2 Designing Victor

151 Group 2nd Group 3rd Group 1st Group 2nd Group 3rd Group
® © © © © ©
2i8 %oene Y88 0~ NS o S8 forn- 8 Pl mrn NN P
1 | 1
2 2
" 3 3
4 1| Ual 4 4
5 S
6 6
N ? 7
h 8 8
v4 9 9
N 19 1 1 19
" 1
12 12
13 13
14 14
v 15 15
L4 16 16
y 17 17
18 18
19 19
2 20
21 i | [) | 21
151 Group 2nd Group 3rd Group 15t Group 2nd Group 3cd Group
= «© o «© o
83 %0en- N3N0 en -3 Y Cn 828 %0en- 83 %0va NI 20en~
11 || 1 1
1 2 2
3 3
4 4
| | o 5 5
| @ 6 6
[[7 7
a 8 8
9 9
u 19 19
- 1" 1
] 12 12
| | | 113 13
] 114 14
u L1115 15
1] 16 16
17 17
18 18
19 19
)| 1 20
11 | 21 21
s
. E
\ ": Nt e
=
’
l' ‘(
VICTOR

103

Commodore 64 Adventure

I’m pretty sure they all work the same way, by letting you block in your
pixelsonthescreenand then delete as well, so you can play around with your
design until you’re happy. The one I used also had the facility to expand the
sprite horizontally and vertically before you saved the data so you could
really see what it would look like.

Moving your sprite around

Having drawn Victor and found the appropriate data to create him on the
screen I decided to run a little test program to set him moving about before
entering all the lines into the Adventure program. This has the advantage of
seeing whether background colours, sprite colours and size need adjusting
before entering the full program, and also gives the feel of sprite manipu-
lation.

Perhaps the biggest problem I found with sprites was their attraction.
Having found I could create a character with relative ease and then started
tomove him all over the place (with 3-D effects, collisions, etc.) a vast range
ofideas swept over me, and it was exceedingly hard to stifle my imagination
and concentrate on sticking to just one image — the helpful robot sidekick
who appears at times of stress and humour throughout the program. The 64
certainly makes life easy when it comes to professional- looking effects.

The first thing you need to do is ‘turn the sprite on’ or ‘enable’ it, other-
wise although the sprite may be in memory you can’t seeit. Program 8.1isa
simple example of this.

Program 8.1 Spriteman

1 9otod

& ozave"BR spriteman” B3 verifa"spriteman”
R=REA AN

3 orem

T en#######i#*##*####*#*#+##¥#++

2 orem initialise

CENCIE EEEEEEEEEEE R R EEEEFEEEEE L E S

18 we=B3E248 rem location of wideo chif
19 print"s"

NS E-EE R EEEEE 2R EEEEEEEE L L LS S

18 rem creation of =Prite

19 rem##f###*##*#####*##*####*##*#

2B Poke wet2l. 1228 rem lowest lewel Prior

ity Cranhe = A f.fuP, - l@E Clowesta

S8 Poke 247, 13 rem correct location for
sPrite

48 for n=@ o 621read diPoke B340, ne
Loirem sPrite now created in memord

104

Chapter 8 Sprites and Sound Effects

X

45 Poke wo+23, 122 Poke wo+29, 128 rem oo,
ble = & 9 zize

47 remEEEEEEEE SRR R R

43 rem sPrite movement

CERNEE 2 AR EREES LR SRR ER T T T F E 0

o8 Poke wo+l5, 188 rem ‘9’ co-ordinate

57 rEMEEEEEEEEEEEREEEEE Rk

98 rem = movement in 2 stades

G remEEEEEEEREREEEREREEEE R R AR

B for «=0 to 295 Foke wotld, i for Q=1 t
a5 neat inext

Tl Poke worlE, 128 for x=0 to A4 Poke w4
14,2 for i=1 Lo 25 next next

WAL L2 EEE R 22 FFREE L TR LR T TS 0

e oren ren reset sprite

P EEEEEEE 2L L2 R 222 R R IR LT TR0

o8 Poke wo+lE, B ipoke wo+2l. B

7 remEEEEEEEREEEEER R R R

98 rem rem data

I remEEEEEEEEEEEEER SRR ARk

1868 data 15, 122, 246, @, 129, 8., @, 129

o B, 255, 255

118 data 235, 253, 255, 255, 1592, 231, 3
» 192, 231, 3, 255

128 data 231, 235, 255, 231, 259, 255, 2
41, 235, 255, 231, 255

128 data 192, @, 3, 192, B, 3, 192, 8, 3
¢ 295, 295

148 data 255, 255, 259, 255, 1, 128, 152
v 1. 128, 192, 1

156 data 128, 192, 1, 128, 192, 7, 128,
248

This program creates a little man (a little bit like Victor) with the DATA
statementsin Lines 100— 150 and then turns him on (Line 20) and prepares a
block of memory (Line 30). Line 40 reads the DATA and puts it into the
memory (remember thisis the cassette buffer) and Line 45 doubles the sprite
in size both vertically and horizontally.

Line 50 places our spriteman in a position down the screen and then Lines
60 and 70 move him across the screen. Finally Line 80 turns him off again.

I have been brief to the extreme in this explanation because it’s basically a
straight crib from either the User Manual or Reference Manual and you can
read it up yourself if you wish.

105

Commodore 64 Adventure

Victor and the Mealy Bug

I mentioned in Chapter 6 that I wanted a sprite to move across the title
Nightmare Planet as well as having Victor (who would appear at various
times during the program). Having drawn Victor on my grid I just played
around with my Sprite Editor until I came up with a slightly evil insect-like
object that looked ideal for moving across the credits — which I named a
Mealy Bug. The time had come to program these two into our Adventure.

MODULE 8.1

1 aoto3

2 sawve"Bf module S.1" 2 verife"module &,
1".8:2topP

3 rem

24970 rem¥E

24988 rem meals bus

24990 rem¥s

IRERA Pokew+d3, 2 ipokew+2Y s L i Pokewr2E 1P
okew+dD, 1

2EE1D pokew+l 1868 pokey, BipokewtZl s |
SEEZE forx=0to235 rokeyw, xinexhy Pokev+le

|
ASE38 forx=ato?25 pokev, < nextx Pokewt e,

35848 return
Z0ETE rem¥
A5A208 rem wickor
25030 rem¥s
25148 pokew+dd, 4 pokew+2®, 2 PokewtZd3, 2
35158 Pokev+2, 88 pokew+Z, B Fokew+]l, 2
3168 fore=atol28: pokew+Z, 9 inexty
25188 return

25208 data 995955

33218 remE
35228 rem data
IR remEr
5248 data Z55,128.8,255,128.8.1.,128.,8.,1
128

359250 data B,32,252.0,31.255,224, 255,252,
e B3

35260 data 2952,63,863,295,259,

—

Prite

0 0 03 O

non

Tl £ WP S D
i

RN O O O G

£ BoBoG 0 G G0 5 G0 L Gl G Q) R

Lo Lt Dol 00 Q0 5 00) 02
PO o= S L0 00)

R RN B b L R

il
Lo
‘\L

35468
35470

Chapter 8 Sprites and Sound Effects

data @.8.8.0.0.8,8,8,4d

(AL

rem data sReite @

QAL

data @,112,9.8,2458,8,1,252.8,1.,172
data A,1,172.8,32,254,8,3,222,28,1
Hata 116;2@11;4J28;1125238;E)112J8
data ¥,295,.8,7,.255,8,127.255, 242,68
data A,229,252,84,165,253,8.4,1.8,7
data 255,8,7.,255.,8,1,326,08

(=L £

rem =et wP sRrites

remE

restore: forll=1told@d: reada®: ifag=
D%khenl =181

nextll

PokezBdl, 14 poke2@dd, 13
forll=Atol26 readd pokedZZ+11.
restore

et

Lines 35000—35040: The variable V in all the sprite programming refers to
thestartingaddress of the Video Chip (53248) and was defined in Line 280in
Module 6.1. Thus these lines ‘enable’ the sprite, define his colour and size,
and move him across the screen from left to right whereupon he disappears.
It is this subroutine that keeps the initial title page on the screen for a little

longer.

Lines 35140—35180: Theselines do exactly the same thing for Victor, except
that he moves in a horizontal instead of a vertical direction so that he
appears todrop from above into the screen and stops about two thirds of the
way down on the left hand side.

Line 35200: This line creates the DATA figure of ‘99999’ to allow the pro-
gram to distinguish between the sprite data and the data we will be program-
ming later with regard to the objects that will be scattered around the
Adventure.

Lines 35240—35380: The DATA for the two sprites

Lines 35420-35470: The section is the initial subroutine to set up the sprites.
Firstthe 64 RESTORES itself tostart reading DATA afresh. Then we check

107

Commodore 64 Adventure

forthe figure 99999 (in Line 35200 remember) which prevents the string data
in the other part of the program from being READ in error and creating a
syntax error message. Finally the DATA statements for the sprites are
READ and placed into the cassette buffer memory. This is the subroutine
that causes the computer to appear to pause right at the beginning of the
program and also after LOADing and SAVEing.

Testing Module 8.1

If you do try to test this module nothing will appear to happen because
although we have created our sprites there is nothing in the program to call
them up. The next module will correct that.

Introducing Victor
MODULE 8.2

1 2otol

& save"BE imodole 22" 8 verife ' modole 2,
2" .8 z2taop

3 rem

416 aoznb35d 26

1268 ﬁn:ub_-utﬁ

2208 pokevo,@iansgpbhES 186

SEAVE remEE

2359 rem victor

2AEER pemEE

2468 pokebzes, 11 Pokebe, L1 Print"&" CPpint”
fEPF erzonal Eokbot YWictor refortins:

2418 Print"fThroushout thiz adventore

Will ke here to RellP 9o ...
2428 print 28I will ftend to appear at mom
ents of areat strezz o danfer 1

2428 Print"Bot T will alwaxs be arownd.
evern when Won don’t see me.,

2446 inPn+ "EEF leaze inPot wour name'ing
2408 Qozubl2B@88:print"EfThanks "in$; " 171
1 59e BGU arcnd !

2468 form=1tol@ER: newtn

2478 print"sEREETHe Adventure bedinsd ..

24 @ foem=lt

L5 L 15 R TSR A
2498 pokew+2] .G

108

Chapter 8 Sprites and Sound Effects

Line 410: This is the initial GOSUB which sets up the sprites at the very
beginning of the program. It is the same as the GOSUBs in Lines 16100 and
17130 in Module 7.2.

Line 1200: We are calling up the Mealy Bug in the main title with this line.

Line 2300: This line turns off the sound first (as Victor can be called at any
time in the program I wanted to be sure any existing sound was turned off
before calling him) with the instruction POKE VO,0. Then GOSUB 35100
will call Victor.

Lines 2400—2440: As Victor arrives on the scene this message appears with
him. Following his message you are asked to input your name (given the
variable N$).

Lines 2450—2490: The first GOSUB in Line 2450 is covered in Module 8.4
(ina moment) and refers to a sound routine. I have tried to add a beep or a
burp noise whenever the 64 responds to the input. The beep is for an okay
reply and the burp for a not okay reply.

Line 2460 is a short pause loop, followed by the screen clearing and the
words ‘“THE ADVENTURE BEGINS ...”" appearing at the top of the
screen. There is another short pause (Line 2480) then Victor disappears
(Line 2490 which turns him off).

Testing Module 8.2

The title is beginning to shape up at last. If you run it now there is a signi-
ficant pause whilst the pre-credit sequence is on the screen (whilst the sprites
are set up) then the Mealy Bug will travel sedately across the screen behind
the purple border and the words “NIGHTMARE PLANET”’.

However if you move through the program you won’t actually get to
Victor yet — just the message UNDEF’D STATEMENT ERROR IN 2300.
Thisis because the Victor subroutine is about to gain sound, and Line 35100
does not exist yet.

Now you hearit. . .

The addition of sound to a program is like watching a colour film in black
and white first before buying your colour television — in other words fanta-
stic. Of course after a while the sound begins to be taken for granted, but
afterkeyinginthe following modules I promise you that you’ll noticeaterri-
fic difference between the program before and after this section.

I’ll start by stating that I am in no way going to get involved in an expla-
nation of sound and the sound chip. Again your Manual or Reference Guide
both contain plenty of information — so all I’'ll do is run through how I
achieved the effects I used.

109

Commodore 64 Adventure

I did not attempt any music itself — partly my own musical inability and
partlyalack of time. If you are musical I would imagine ashort introductory
tune would be even better than my own soundtrack.

I began to play around with sound by using some of the example pro-
gramsin the User Manual but very soon cameto the conclusion that I needed
a simple program of my own which would allow me to substitute different
values for the various waveforms, frequencies, etc. of all three voices of the
64. So it was necessary to convert the various values of the different varia-
bles in the sound chip to simple figures, and I made my own rather
impressive-looking table of variables (See Table 8.1).

Table 8.1: The Sound Variables

VO Volume of the sound (VO = 54296)

W1 Waveform of Voice 1 (W1 =154276)

W2 Waveform of Voice 2 (W2 = 54283)

W3 Waveform of Voice 3 (W3 =54290)

Al Attack/Decay for Voice 1 (Al =54277)
A2 Attack/Decay for Voice 2 (A2 =54284)
A3 Attack/Decay for Voice 3 (A3 =54291)
S1 Sustain/Release for Voice 1 (S1 =54278)
S2 Sustain/Release for Voice 2 (S2 = 54285)
S3 Sustain/Release for Voice 3 (S1=54292)
H1 High Frequency for Voice 1 (H1 =54273)
H2 High Frequency for Voice 2 (H2 = 54280)
H3 High Frequency for Voice 3 (H1 = 54287)
L1 Low Frequency for Voice 1 (L1=54272)
L2 Low Frequency for Voice 2 (L2 = 54279)
L3 Low Frequency for Voice 3 (L3 = 54286)

Before returning to Nightmare Planet I’ll just briefly describe my program
because this should not only help you to understand some of the sounds I’ve
found, but also improve on them in your own programs.

Program 8.2 Sound Effect

1 2otol

save"BR 2o effect" B iverifysound e
fect", 2 staop

(=10

(NS EE 2 EEEEEEFEEREEEREF R TR EREELELE T
rem =ound effect Prosram

rem mike 9race 24.7.823

b 2222 2R EEEFEEE R FF R L TR E R E LT L
18 =2c=54272

28 wl=24276 rem waveform for voice 1

38 w2=54223 rem waveform for voice 2

ra

-+,

(LR R R) RPN

110

Chapter 8 Sprites and Sound Effects

48 w3=04290 rem waveform for wolce 3
8 al=04277 rem attackldecays for wvoice 1
BE aZ2=54284 rem attacksdecaw for wolce 2
R az2=54291 rem attacksdecas for woice 3
28 =1=04278 rem sustaindreleaze for woic
e 1

90 =2=Rd2E8% rem sustaindreleasze for woic
B &

188 =3=54292 rem sustain'releaze for wol
(al -

118 R1=5427%3 rem high frequency for wole
g 1

128 h2=54280 rem high freduencd for wols
I

128 h2=54287 ‘rem hidh freduency for wols
g oo

148 11=54272 rem low freduencd for woice
1

1238 12=5427% rem low freduencyd for voice
=

(-9

168 13=54286 rem low freduencyd for woice
]

"t

1VE wo=Sd 296 rem wolume

A8 Print"khit any kew"

216 getafifaf=""thenz218

2R F0r1=3t024ipoke5c+1,@2ne&tirem wlear
all wariable

328 Fokewo. 13 rem zet wvolume

338 Pokesl. 17 PokeaZ. ed Pokes, 17V irem se
t attack. decaq

248 Pokezl, 128 Pokes2, 128 Pokes3, 128 rem
zet zustalindreleasze

A58 Ppokewl 33 PokenZ, 23 Fokewd, 129 rem =
et wavelensths

268 pokekhl, 7 iPokell Birem freduenciss o
Powmice 1

A8 pokekh2, 3 ipokel2 8 rem freduencies fo
rownice 2

388 pokeh, liProkelZ Airem fredquenciss o
rowoice 3

488 fort=1to808 next Pokevo, @

458 print"srace bar twice Lo continue
455 print" P’ to Print - ‘&7 Lo end"

111

Commodore 64 Adventure

468 Qetafifaf > "p"andaF e anclaF " "t
Mendaid

478 ifag="p"thencd

428 ifat="e"thenend

493 ifag=" "then2lH

BEE inPub"title" itE

518 aPend. 4

28 printid, chrfcld) rem double widbth co
CERNGLE

G368 Print#4,t¥F rem Print Litle

G408 print#d, chrEdlS) rem return o s2tand
are width

E5E cmdd:list 3360-320

7EA privt"remember to tubPe Print#d cloze
4”

QEE endd

Lines 10—170: Setting up the sound variables.

Lines 200—210: This little couplet just prints the message ‘“‘HIT ANY
KEY”’ and waits for you to hit that key whereupon the sound will be played.
It is purely a device for allowing you to sound the note when you wish.

Line 300: Before making any noise thisline setsup aloop to goright through
the range of variables in the sound chip turning them all to 0. It is simply a
way of starting afresh — and I use this line several times in Nightmare
Planet.

Lines 320—380: As the REM statements say in the lines themselves these set
the various values. All you have to do is LIST the program and change the
values, then RUN it again to listen to the different noise. By a system of trial
and error you will eventually come upon a sound that gives you the effect
you want.

Line 400—900: Line 400 gives the length of the note. Lines 450—460 are a
very simple menu to allow you to repeat the sound or end the program or
print out a LISTING which will enable you to keep a record of the values.
Lines 600—650 are instructions to the printer (in my case the 1515) and Line
700 is not actually of any use apart from reminding me that I must type
“PRINT #4:CLOSE4”’ at the end of the LISTING.

This program isn’t particularly brilliant and I wrote it in about 15 minutes.

But it does the job that I wanted it to — and whilst I could have spent time
and effort makingit a superb piece of programming with fancy displays and

112

Chapter 8 Sprites and Sound Effects

better menus, etc., I really only wanted it for a quick bit of help. As such it
serves me well. The only reason I put it here is to give you an idea of how I
achieved my own sound.

The printout for some of the effects I played with can be seen in Figure
8.3.

Figure 8.3 Some sample sound effects
SPACESHIF HUM

338 POKEAL,17:POKERZ2. 17 :POKEA3., 17 'REM SET ATTACK/DECAY
248 FOKES1,64:POKESZ.64:POKESS, 64 :REM SET SUSTAIM/RELEASE
358 POKEWL,33:POKEMWZ, 33:POKEWS, 129:REM SET WAYELEMGTHS
368 POKEHL,7:POKELL.,119:REM FREQUENCIES FOR WOICE 1

3r@ POKEHZ.31:POKEL2. 165:REM FREQUENCIES FOR WOICE 2

380 POKEH3, 2:POKEL3, 187 :REM FREQUEMCIES FOR YOICE 3

SFACESHIF EHRHGIHNES

330 POKEA1.17:POKERZ, 17:POKER3, 17:REM SET ATTACK/DECAY
348 POKES1.64:POKESZ2. 64 :POKES3.64 :REM SET SUSTRIM/RELERSE
350 POKEW1, €5 FOKELZ, 129:POKEW3, 123 REM SET WAVELEMGTHS
368 POKEH1,37:POKELL.,162:REM FREQUEMCIES FOR VOQICE 1

ara POKEHZ. 1'POKELZ,12:REM FREQUEMCIES FOR Y0DICE 2

380 POKEH3,2:POKEL3, 187:REM FREQUEMCIES FOR YOICE 3

SPACESHIF HUM 2

330 POKERL.225:POKERZ, 225 POKER3, 225 :REM SET ATTACK/DECAY
340 POKES1.,128:POKESZ, 128:POKES3, 128 :REM SET SUSTAIM/RELERSE
330 POKEMW1, &3 POKEWZ, 129:POKEW3, 125 :REM SET WAYELENGTHS

360 POKEN1,37:POKELL, 162:REM FREQUENCIES FOR YWOICE 1

ar@ POKEHZ, 1:POKELZ2, 12:REM FREQUENMCIES FOR VYOICE 2

380 POKEH3,2:POKEL3, 187:REM FREQUEMCIES FOR WOICE 3

BELEEF =7 DIRECTIOH

330 POKERL, 17 :POKERZ, 64 :FOKERS, 17 :REM SET RTTRCK DECRY

340 POKES1,128:POKESZ, 128:POKES3, 128 'REM SET SUSTRIM/RELERSE
350 POKEW1,33:POKEWEZ. 33:POKEW3, 129:REM SET WAYELEMGTHS

360 POKEH1.37:POKELL.162:REM FREQUEMCIES FOR VOICE 1

378 POKEHZ,1:POKEL2,12:REM FREQUEMCIES FOR VOICE 2

358 POKEM3.2:POKEL3, 187 'REM FREGQUENCIES FOR VOICE 3

BUZ=Z 1

338 POKERL, 17:POKERZ. 64 :POKER3, 17 :REM SET ATTACK/DECAY
349 POKES1,128:POKESZ, 128:POKES3, 128:REM SET SUSTAIM/RELERSE

113

Commodore 64 Adventure

330 POKEW1,33:POKEKZ, 33:POKEW3, 129 :REM SET WRAYELEHGTHS
36@ POKEH1,7:POKELL.@:REM FRERQUENCIES FOR WDICE 1
3r@ POKEH2,3:POKELZ,@:REM FREQUEMCIES FOR WOICE 2
380 POKEH3, 1:POKEL3,@:REM FREQUEMCIES FOR YOICE 3

MODULE 8.3

1 3oto3

2 save"®@80 modole 3.3V, 8 verife"module 2,
A", 8 stop

3 rem

S38 remls

348 rem sound effect

SEE e

AR forl=@tozd Pokezc+l A inext]

37E pokewo, 15 Pokesl 255 Pokeaz, 255 Poke
3.5) bt

l

SEE Pukﬁdl-LQW Fokesz, 255 pokesl, 255

5jﬁ Pokewl., 17 Pokewz, 33 Pokew3, 17

4808 Pokehl .37 Pokell 162 Pokeh2, 1 Pokel?
d2ipokehZ 2 Pokel3, 187

1 23E Pokewo., @
2888 remks
218 rem Fredams
2EZE rem¥
2038 forl=atozd pokesc+]l 8 nextl
20948 Pokewo, 15 Pokesl ., 255 ukeazﬁzﬁﬁipok
CE R
258 Pokesl, 128 Pokesz, 128 Pokesl, 128 F0
kewl 65 Pokewz, 122 Pokewd, 129
20E8 Pokehl. 37 'Pokell. 16z Pokehz, 1l Pokel
2012 pokehz 2 Ppokel 3, 187
2128 ifas="="thenPokevo,d
2128 form=1tol38: nextn
S1ER e crash
2178 forl=0to2d4 Pokesc+]l B inest]
2188 Pokewn, 15 pokeal. 148 Pokead, 1468 Fok
oaj;149 Fokesl. B irokes2. B Pokes3, B

21528 pokewl, 33 Pokewz, 129 Pokews, 129
2El Fokehl E37 Pokell, 182 pakeha.]l Pakel
Pokeh3, 2 Pokel3, 187
Frint"&" Pokebs. @ Pokebc, @
Print":ERREEKL think wou may have o
_.| 8 R
4 form=1tol @88 nextn

]
'»

=S |' .,

33 PO R
It BRI

o PORD -

"1"5'

L
g

.,

r

114

Chapter 8 Sprites and Sound Effects

25188 forl=Atozd pokesc+l. B nextl

35118 pPokevwo, 15 Pokeal , 138 Pokeaz, 128 F0
keaZ, 198 Pokewl , 223 Pokewz, 23 Pokew3, 129
3E1z28 pokehnl . 75 Pokell;E?iPokehzszlztpak
el 238 pokeh3, 1 P:tel3,123

’|

25128 form=ltoZBBzster .25 nextm

29178 Pokewl . @: PuPp;l-B Pokews, @ pokeas,
Aipokew3, B Pokeas, d

Line 360: As I’ve already said this line clears all the variables in the sound
chip.

Lines 370—400: This is the first sound you hear upon RUNning the pro-
gram, and I wanted something slightly eerie and futuristic — rather similar
to the theme that began that superb SF film Alien a few years back. My
efforts fall rather short of this, but I like to imagine there is an element of
slight unease in the noise that accompanies the opening title.

By giving the value 255 to all three voices for the Attack/Decay and
Sustain/Release variables (see Lines 370 and 380) I allow the sound to rise
slowly from silence towards its peak. If the title lasted long enough the
sound would decay again to silence, but as the second screen appears before
thisthereis a cut-off as the screen switches from black to brown and the first
text comes up.

Line 1230: Thisistheline that cutsthe opening noise asthe screen switchesto
the first text by POKEing VO (the volume) to 0.

Lines 2030—2060: Once the text comes up I wanted asound like the thrum of
aspaceship engine which would cut to silence as you press S to start the pro-
gram. These lines provide that noise. Again note the slow rise towards a
peak (in Line 2040 the Attack variables A1, A2 and A3 are set at 255 again)
but this time I keep the volume by setting the Sustain Level high with very
little Release (the value 128 for the variables S1, S2 and S3 in Line 2050).

Lines 2120—2130: These two lines fill in after the ““PRESS S TO START”’
prompt, by cutting the sound after you press ‘‘S’’ and then entering a tiny
pause loop.

Lines 2170—2230: Once the player presses S the screen turns black again,
there is the noise of a crash, and the words ‘I THINK YOU MAY HAVE
CRASHED”’ come up. They last for a few seconds before the prompts
aboutloading to tape and going for instructions follow (which we covered in
Modules 7.1 and 7.2). These lines provide that little scenario.

Lines 35100—35170: The last lines in this module concern Victor. I wanted
him to appear with a sound effect rather like a robot dropping down from

115

Commodore 64 Adventure

above. By chance I think I’ve hit upon an ideal sound (it was more luck than
anything else). The main difference between this sound routine and the
others so farisin Line 35130 where thereis alittle FOR . . NEXT loop which
lowers the sound as Victor drops down.

Before testing this module let’s just finish programming as the final
module in this chapter puts the finishing touches on the opening sequence.

MODULE 8.4

o

Wm0
= 0

[mosule S.4", 23 verife " moduls 2.

fa!
= &

RN
i
2

~d ~J

LOOAG TS - D
0N M O Q

B rem

S e beep

17993 rem¥s

12086 forl=0to2d pokesc+l. B0
12818 pokevo, 15 pokeal, 1V Foke
21,64 Pokesd. 64

18628 Pokewl. . 17 Pokewa, 17 Fokekhl., 17 Poke

11,195 Pokehz, 17V2 Pokelz. o

158238 fort=1tol@@ nextt Pokewo, @

12848 return

185978 rem¥F

12988 rem burp

15998 remEs

138688 forl=atoz2d pokesc+l. B nextl

19816 pPokevo, 15 Pokeal, 17 Pokeaz. 64 Foke
aZ, 17V Pokesl. 128 Pokess, 128 ijedJJIdP
12028 pokewl, 32 Pokews, 32 Pokewd, 12

12838 FPokehl. 183 ' Pokell. 172! Pokeh;,7 F ok
el 232 Pokeh3, 1 'Pokel3, 113

19848 fort=1toZ@8: nexth rokewo, @

196058 return

Lines 18000—18040: This sound effect is a pip — or beep noise. Note the
different values for the A variables (Attack/Decay) and S variables
(Sustain/Release) which are concentrating on a quick rise and sharp fall
typeof noteratherthan theslowriseand fall of the earlier sounds. I also only
used two voices for this note, and kept it short (FOR T =1 TO 100). The
purpose of this subroutine is to sound that quick, slightly pleasant noise to
let the player know the 64 has responded.

Lines 19000—19050: This subroutine provides the slightly longer burp noise
(it’s more of a musical burp actually) that tells the player he has made a

116

Chapter 8 Sprites and Sound Effects

boob! I reserve this note for error messages or when you’ve done something
stupid. This time I used all three voices again and included the white noise
waveform (POKE W3,129 in Line 19020) to add to the effect.

Testing Modules 8.3 and 8.4

This is the moment.
Lean back, take in the screen, and type RUN.

You should find a vast difference in your program now. First the slightly
uneasy noise as the titles flash up and the Mealy Bug flies quietly across your
screen. Then the deep rumble of your engines as your spaceship wings its
way through space. The sudden cut-off as you start the game — followed by
the crash as your ship pancakes onto the surface of Nightmare Planet. A
pause, then you respond with N to the prompts for tape and instructions —
and Victor appears (the first time you will have seen him) with a noise you’ll
cometorecognise. Hedropsinto place, thesound cuts off, and afterreading
his message you input your name. There is a pleasant beep noise — Victor
replies and the screen clears with the message THE ADVENTURE
BEGINS Then Victor disappears.

With the program in its present state you should then get the Instructions
Pages again as the program will naturally follow to this part. But [hope you
are beginning to feel some of the effort I’ve put into building up a little
suspense into the beginning of the game.

Summary

I have tended to be very brief in my description of the mechanics of pro-
gramming this chapter, mainly through lack of space. Using sprites and
sound isn’t as difficult as the Reference Guide makes it look I found and I
encourage those of you whodon’t take naturally to PEEKing and POKEing
tosit down for a couple of hours with your Guide and your 64 and just work
through it — it will come. The capabilities of the computer really are
extended once you’ve conquered the first problem of learning any new skill
— taking that first step.

The titles are finished and you are set to go — to get into the program.
Chapter 9 will turn out to be the marathon of the book — the Locations. But
take heart . . . the best is yet to come.

117

CHAPTER 9
Where do we go from here?

This chapter is probably the most exciting and the most annoying part of the
book at the same time. Exciting — because after you have finished pro-
gramming Modules 9.1 and 9.2 you will be able to see the entire scope of the
Adventure and be able to move around all the locations. Annoying because
there’s a lot of typing as we are now into the text itself.

There’s no easy way to avoid all this programming — but I find that
keying in all the lines of text isn’t as bad as it looks as writing words is much
easier than writing BASIC. Still, that’s my problem!

Creating the map

I’'vealready covered the principles of mapsin Chapter 2 and drawn the basic
map for Nightmare Planet in Figure 5.2 in Chapter 5. But the real Adven-
ture needs a better map than this — one with plenty of Locations to add a
breadth to the story and to make the player feel he really is moving around a
large space.

Figure 9.1 shows the map I eventually ended up with. It follows the basic
plan of my earlier attempt but I have introduced a temple in the ruined city
and the forest has expanded quite considerably. Other refinements to the
original story include a message in the temple (Box 22) and a gem in the
forest (Box 38) and the energy crystal is now in the lake (Box 13).

The numbers in the boxes in Figure 9.1 are purely for convenience as con-
verting my map to a grid will change these — as Figure 9.3 will show.

Toconvertthemaptoagrid formIdrewupastandard 10x10gridtoallow
me to play around with different designs (see Figure 9.2).

Transferring the original map to the grid was virtually like lifting the map
and placing it straight onto the grid — I only made a few changes. Once the
final map was ready then it was just a question of placing the appropriate
objects into their Locations and I was ready to begin programming again.

119

Commodore 64 Adventure

Figure 9.1 The final map for Nightmare Planet

PASSAGE] PASSAGE| PASSAGE
< @ <
MESSAGE. !
PASSAGE PASSAGE
IMEI
FOREST

PASSAGE
TEMPLE ciTY
ROPE |
Ty ey Ty
smumi ® Jé

SHORE.
OF LAKE.|

o

120

CABIN

SPACESUIT
BLASTER

Chapter 9 Where do we go from here?

Figure 9.2 A 10 x 10 grid

1. 2, 3. 4. 5. 6. 7. 8. 9. 10.
. 12. 13. 14. 15. 16. 17. 18. 15. 20.
21, 22, 23. 24. 25, 26. 27. 28. 29. 30.
31, 32, 33. 34. 35. 36. 37. 38. 39. 40.
4. 42, 43. 44, as. 46. 47, 48. 49, 50.
514 52, 53+ 54. 55. 56. 57. 58. 59. 60.
61. 62. 63. 64. 65. 66. 67. 68. 69, 70.
M. 72. 73. 74. 750 76. 77. 78. 79. 80.
81. 82. 83. 84. 85. 86. 87. 88. 89. 90.
91, 92, 93. 94. 95. 96. 97. 98. 99. 100.

ADVENTURE GRID FOR secsecssssvesavessnesascasssncassasssesssssesssssessasacassnes

DATE secssvcscscccssnssnnens AUTHOR ssvsssvoncsssossssscocssncsscanssnse

121

Commodore 64 Adventure

1 2. 3 4 5 3 7z 8 q 10
MESSAGE 3
gt e
PASSAGE | PASSAGE| PASSAGE | PASSAGE
T e o T T .
11. 12. 13, 14. 15. 16. 17 18. 4. 20,
o —e ‘ans'md--b -
PASSAGE" | PASSAGE | PASSAGE | TE'}pLE CI;TY
4
. a2 ¥ . oa v 5.7 |26 7 /|28 q, 30.
PRASAGE CRAKEY 1~ ~TGumsimrs LAKE
CITY CITY §
] 2 33 34 35 /I36. ¥ 37, [BEa] 38V 39 40
LAKE
"55; ~TDeserr | 'Tsuc;ne
4. 42. 43, 44. 45. /lac.v |4z 48 1 49, 50.
mRE:T" FOREST | "ron’ssr mE:T‘"Egsenr [DESERT
[N
Iy .V |5 56. ¥ ig 59, €0.
! ::R;ST «-5:”@ -HS‘H)RESI 4--»5‘ -t «@ - -
ICLEARING FOREST | DESERT |OUTSIDE (AIRLOCK |CABIN
et et et el
6l. 62.v |63 64 65. 6. 68. 69. 70.
FOREST <t -t «+»FOREST @» 4-1-»
FOREST | FOREST SWAMP | SWAMP | LAKE
SHORE
7l 72 73 74, 5 76. 77 78 74 80.
p(uuo.«m;
RO?D
8l 82. 83 /184 v 85. 8é. 87. 8s. 89, 90.
ROAD
4
ql. q2 93, a4, ¥ as. 6. q7. 98, qq.
NATIVE | VILLAGE | VILLAGE

HUT

ITEMS IN () ARE PERILS
ITEMS IN[_] ARE OBTECTS

Tips for map-making

When you begin to develop your own Adventure one or two of the tips I
found useful were:

1. Always draw in pencil — you’ll be changing things quite a lot as you
develop ideas and change locations.

2. Try to incorporate a ‘maze’ area where there are several locations and
also plenty of exits to allow your player to get thoroughly lost. The temple
and the forest are examples of this in Nightmare Planet.

122

Chapter 9 Where do we go from here?

3. Some Locations have one way direction only. If you look at the
‘“‘clearing”’ in Location 53 in Figure 3.3 you will notice I have arrows going
out of the clearing in all directions, but you can only enter from the west or
north. A good way of using this facility is to have a Location of, say, a cave
oraroom which allows you to enter but not to leave until a certain task has
been performed. I’ll be demonstrating this in Location 92 later in the book.
4. Don’t be too ambitious with objects and perils. The amount of memory
toenable you to deal with these is quite substantial (as you will see later) and
it’s best to start small and build if you can.

The Locations

MODULE 9.1

tod
e BE module F.1" 8 iverify " module 2,
=hop

W oy

1 9o
2 5an
1",8:
3 rem

19978 rem¥Es

19928 rem locations

19998 rem¥#

2EERa rem 1

2a91E aosub 2250 n=0e=2 z=1]1 w=@'390%t04
156

20828 rem 2

20A320 Print"Ml@Az Jou Penetrate ever dee
Per 3 Linw scrap of Paper catches "
2040 Print"wour eve. In a cleft in the

wall i a3 mesza9e hn>+113 scrawled ")
28858 print"in aurora’s handweiting., In
theflickering 9loom @ou ")

2BPEA Print"can Just make out the words
Meat rutsd

20878 n=@ e=3:s5=12 w=1'90t0dl156

20628 rem 3

20692 print"@Fs vou enter deeper and de
gper into theheart of the "

26108 print"temPle it becomes damP and w

et. The walls are cowvered with "

123

Commodore 64 Adventure

28118 print"an evil-smelling slime that
zeems o Pulse witha malisnant"

28128 print" lisht .." '"n=@le=3ig=13" =g
rantod 1 SH

28128 rem 4

2a148 print" BRItz werys dark inside the
temple. the 2round iz unewven ")

28158 print"and zeveral timez w@on s2tomb
le and fall. A Pazsase afPpears ")

28168 print"to the west." n=@ e=0'z=@0"y=
Z:ao0tod4156

2178 rem 11

281288 9osub 22858 n=1'e=12"
156

2198 rem 12

20208 aosub ZZE5En=2e=13"2=22 w=11 90t

04138

2B218 rem 13

2@azz8 Print"@MInzide the temPle it iz t

oo dark to ses much. Passages ")

28238 print"seem to stretch in several
directions. MWhich wayg is best 7

20248 n=3'e=14:2=0"yw=12 ' 90tcd156

28258 rem 14

2RzEd Print"d You are outside a builldin

9 shared likea temPle. ")

28278 Print"On the 9round ouvtside the do

arare some marks "l

2aze Print"scratched in the dirt of the
Fathwas., It loocks like an "

20298 Print"arrow Fointind west into

the temple."”

228 n=a'e=152=24 =13 '90tod415

20318 rem 15

28 Print"@WMThe scrabbling of taloned

- makes gou s2wirl - reads for V)

2328 Print"angthing., But onlythe stones
stand impagsive ~ oblivious ",

28348 print"to wour fear. Perhabz they

are not deadbut only sleeping .. "

2AE58 n=@e=0"3=23 y=14ao0tod 158

2E2E8 rem 22

2378 Josub 22050 n=12 'e=0 =0 w=Aa9otod
158

124

-

P2

el

Dl
RO

WO

ML

Chapter 9 Where do we go from here?

2E328 rem 24

28298 print" MRl on have the imPrezzion =
omething iz watching @ou from the ",
2684068 print"shadows In the zilence 4o
nowant to akhout, to call outy Eh "
20418 Print"do angthing to make w@ou feel
there izsomething alive in ")

28428 Print"this dead Place." 'n=14e=25"
=0 =@ aotod 158

28438 rem 25

ZA448 print"@Mhe wind whistlez a mockin
3, esrie tunebetwesn the stone V)

28458 Print"walls 3z w@ou move Pastempty
door:s and 3aPing windows, Iz thizs";
3346@ Print"all that remains of civilizsa
Lion here 7Y
2E4TE n=15e=26 =@ y=24 actod 156

2488 rem 26

2498 preint" @Mllnzside the city gou wonde
I where Lo look VI onlye ")

28588 Print"won could find 2 clue butthe
crumioling walls of hu2e houses ")

28318 print"blockarns exPloration arart f
rom A hive of allews leading west,"
‘3%?3 n=@'e=@s=36w=25 aotod 156

P rEm 2

ZATS4R Print" @Mou are at the ed9e of the
lake. The stones in the water ")
ZA550 print"zeem to be sParklinfin the =
unligkht as if with a magic ",

2560 FPrint"Fowerof their own. " n=0:e=@:
£=38 W= antod 154

ZESTA rem 36
2528 Print" SREFron here 900 can see qui
te clearly that the towers and ")
283968 print"zsPrires are the daaded v
winsg of a once-Proud city now M
ZRERER Print" deserted by its former inh
abitants."
ZRAGLEA n=gE
ZREZA rem 3
2BE3A Print" @At last the zand iz 9iwvins
Wwayd to more Pebbles and stones ~")

=37 e=45 =0 actod 156

= -\] m

125

Commodore 64 Adventure

28548 Print" it most be the out-szskirts o
F fhﬁ desert. There are ")

2BESE Print'some acrub-like buzhes wit
h fru1+ like coco- nuts hansing ",

2060 Print"from them, " n=E0e=300 s=d7 =
aEantod 156

éBG?G e 38

206388 Print" @BEMou are =£ill in the deze
rt. To the north sow can see)

28628 Print"a lake. To the eazt the de
zert stretches to the horizon.

2E7ER n=28 e=@ =38 =37 90tod 156

2A7 18 rem 42

28728 aosuk 2211680 n=0e=43 =02 w=@ qoto

£t p._l

41Jﬂ

2728 rem 43

28748 aosubh 22070 =00 =44 2=53 =42 ant
04156

2A7SA rem 944

2A7EE 2osub221 18 n=0" e=0 2=54 =473 antod

156

2B77A rem 46

2a728 print"@Even thoush the zun iz sta

rtins to burna khaze of ")

28798 Print"confusion into wour brain -
o the north horizon 9leam the ")

20808 print"spires and towsrs of a cit

9., Or iz it onle a mirase ")

28218 print"to torment @ou P77V in=36e=37
Ce=SEw=Aactod 158

SEEZA rem 47

28238 print" @[z vou trud9e wearils acros
=z the burninfzand You can',

20248 print" see score marks where Qour
zhip crazhed on landin2. You ")

SEEEE Print"wonder howsou manased to kol
d the zhifF together,

2260 n=37 =46 2=37 =46 aotod 150

2RETA rem 48

2228 Print" @lou have been walking for
hours now andcan see")

28293 print" 0o end Lo the wast exkanze
of zand. In fact gou know that ",

126

Chapter 9 Where do we go from here?

20988 Print"if dYou don tturn back soon W
ol will Probable die from ";

20318 Print"exPosure under the zun which
seems Lo hang moblionlesz in the ske,"
2528 n=J5' e=@s=0"y=47 9otodl15E

2928 rem S2

2EP402 gosub 22878 n=42 e=03 s=62 tu=@ ot
04150

SA95A rem 53

A28 Print"@lMWow are in 3 =mall clearin
9 amidst the trees., Soft moss-";

28378 Print"covered banks surroundan azul
re Fool of zilent, still ™

2R928 Print"water andudow rest for a mome
nt before -ontinuing aoure M

203598 Print"quest." n=43 =54 s=53 " w=52"
antodl5E

21888 rem 54

21818 print" @Rz Hon fFight throosk bramk
lez and thickfoliage @ou catch "

21828 print"tantalizing 2limPsez of a o
learing to the west ~ but 9o can-"'

21838 print"not =eem to be able to et &
o it 1 in=d4d i e=552=64 =0 20tod 156
21848 rem 55

21858 print" @Bl ow are dust in the fores
tonows with trees as thirk az hovzes ")
21868 print"towering into the skw and b
lotting ot the =uv. Small"s

21878 print"animalz skitter and run arou
nd and abowedon,

21880 Print"Two Paths lead deePer - one
to the southand one to the west,"
21828 n=@'e=36"2=67 " w=34 2otbd 156

21188 rem 56

21118 print" @BlMou are at the edas of th

g desert -~ {for the zand soon M)

21128 print"chandes to z=crub-like
Towardzs the west ")

21128 print"a huge forezt fills the sk

line like a mazeiwe carfet of ",

21148 print"areen. " n=46 e=07 2= y=55 9

ohod 156

127

Commodore 64 Adventure

=1154 rem SV

21168 print" @BYou are now ontzide wour
spacezhir. Around @ou lie the "

21178 privt"scorch marks and zCarred
charred frasments of wour zhik. You "

21128 print"hawve craszhed in an arid deze

rt of Furele =zand.

21198 n=47 e=58 =67 w=306 " o0tod 156

21288 rem 582

21278 print"MME/ow are in t

21298 print"Mm@ne of the =

mizsina. "

21288 print"On the floor yYou zes 3 z=mal

1 zhred of clathwhich doy, M

21218 print"reco9nise az a Piece of the
Foyal Boun Prlncecﬁ MHurora, waz "

21228 Pr1n+"w¢ar1n9 when 9ol 1a

(=] ST =T} A B 11

213288 n=0'e=09 =0 =57 a0tnd 154

21398 rem 99

214328 print"MEl@Youn are in the cabin of 4

o spaceshir and the crash haszs "

21448 print"emPtied the contents of wou

t locker all over the floar.

21468 Print"Even so dYou realisze

re are the z2i9nz of struaale,

21478 print "’IW##The Pr incess

D

214208 print"A@MMThe airlock dial relizter

z that the airlock hazs been ")

21498 print"oPened from the outzide ar

d then rezealed ..."

21588 n=0'e=0'z=0'w=32 30tod158

21518 rem 62

21520 aosubh 22870 n=52e=63" =0 w=8"90to

4156

21528 rem &3

21543 aosub 22110 n=0: =64 s3=0" w=62 0to

4154

21558 rem &4

21568 print"@IMhe forest iz definitely ©

oo larde for Hou to ever find ")

21578 print"wour way out 39ain., anddow a

that the

1AE HOTE

128

Chapter 9 Where do we go from here?

re be2inning to worrd as well as ")
21988 print" belinning to wonder how 4@o
nowill ever cucceed

21598 n=54 =65 2=74 y=53 20tod 150

216608 rem &5

21618 print"@BMhiz Path seemz to be hea

ding awad from the =un and into a ",
2lE2 Print"a 9loom 4o wonld never
hawve thougkt Poszible in the "

216328 Print"danliskht. EBekhind @ou are ke
A roztlingz, as thoush some ")
21b48 Frant'massive beazt i following o
ot " in=ESe=0 =l =64 9otod 1 5E

21558 rem F?

21868 print" @IThe desert =oon becomes L
sh with thickmauwe vedstation™!

21678 Print" that seems to thicken with
everd step., Better watch gourself ")
21888 privt"around here ~ the 2roond is

starting to 2et very bo9gy,"
216960 =57 e=08 =0 =8 90tod4lSE

21708 rem S5

21718 Print" @BNow are in zwamPland, hot
o sbicka and voPleazant, "

21728 Print"Yow can khear the roar of a

Fiver, sSeemindld hu2e and roshing, ")

21728 Print" To the egast lies the rive

r- = o the west the swamP.

21748 n=8'e=53 ' 3=0' w=67 oto4]15H

21758 rem &3

21768 Print" @Bt = z0 refreshing to sit
on the bank of the river and "

21778 Print"danale gour steaming fest
in the ice-cold sPraw. EBub the ",

21788 Print" river iz wast, like a chuw

raine =23 to the khorizon., It wﬁnld ')

21798 pPrint"be 1mPﬁ551b1~ Lo cross." n=Q
=l a=A L y=E2 i aotnd 1S

218868 rem Y4

21818 Print" @WMoy are on a road to the

sonth of the forest., The smooth ")

21228 print"Polizshed surface suaasshs
it was made ba 3 ciwvilisation far ",

129

Commodore 64 Adventure

21938 Print"suPerior o and 9o khave kno
Wwn. Butiz thiz road 2till used o..0"
=1848 print" or iz it dust a relic of
Fast Qloras 7"
213858 n=54 e=@'5=84 ' y=0 2otodlDH
212680 rem 3
215878 print" @IMhe road winds on across L
e Frasslands ~ stretchin® north "
21288 print"and zouth like some hule rib
bon bossed down by o3 Siant Vo
21828 print"hand.On gither zide the weae
tation closes in at timezs ...
21908 =74 =0 =534 =0 90tod 154
°1q1ﬁ rem 92

21928 Print" @Rl ow are inside the muod b
t. Several items of Primitive ")
21928 print"crockery cronch wndersour fe
eh, " in=0e=93 =0 w=@"20tod158
21248 rem 23
215258 prict" @BYou make @ou way throosh
the willase hkhoPing the natiwves ")
21268 Print"remain friendly." n=0'e=34 =
=@ =92 gntod 1560
21978 rem 24
21928 print"RlMow are in the outzkirts
of a4 native willagse. Mud huts ")
21929@ print"are scatterad around in a ha
Fhazard fashion."”
228268 print"The willase seems desert
bt wou can hear a woman "l
22838 Print"sin2ing sadly to herself ina
bt
22848 n=84 e=0's5=01,=33 20tod1368
22838 Print" @IThere s such a laburinth o
f twiszts: and turnz that wou are")
22868 Print" 9=tting Just a littleafraid
do are loste.... "ireturn
22074 Print" @MNou must be lost in the fo
reszt. You keep catching 9limPseszs of "
22828 print" the clearing, zometime 5 to
the easzst, zometimez the south..."s
22898 print"and all the time the noize
of zome fearszome bedzt echo and "

1

|T|

130

Chapter 9 Where do we go from here?

22108 Print"wibrate in the foliag9e aroun
d wou, " return

22118 Print" @Some forest ~ thiz | You d
efinitely seem bo be lost,"

22128 Print"Perhars wou should have staw
ed at home and never offered "

221728 print"to give Aurors a ride in sou
roshifk 1" ieetorn

This module is straightforward programming of the Locations. At the end
of the module are three subroutines (Lines 22050, 22070 and 22110) which I
have inserted in the temple and the forest to save a little space and confuse
the player — as he will get the same response on the screen in several places.
Apart from that it’s just typing until you’re done.

In Location 2 (Line 20060) there is a rather enigmatic message scrawled
onthe wall — EAT NUTS — which is a slightly obscure clue to help a frus-
trated player who may have not worked out that ‘eating’ the nuts in Loca-
tion 37 will allow him to remove his spacesuit — a necessary requisite if he is
torescue Aurora. I liketheidea of leaving obscure clues around, and in fact
this temple contains a couple of clues which should keep a player guessing.
Apart from the message there is an arrow scrawled in the dust pointing into
the temple in Location 14. Was it left by Aurora? Is she still in the temple
somewhere?

In fact I have tried in various places to build in an element of mystery and
slightly uneasy tension. Apart from the clues that lead you to try and search
(fruitlessly) for Aurora in the temple — presumably she was there but was
removed to the native village before you arrived on the scene — I have added
bits about mysterious beasts in the forest (which never materialise) and the
total red herring of a gemin the forest clearing which has no usefulroleat all.

To acertain extent this Adventure may not be hard enough. But then it is
intended as an example program — not a full-scale cannot-be-solved
Adventure. Why not try to make it harder if you think of ways as you go
along?

Remember the tips for text typing I described in Chapter 6 about testing a
few lines as you go. It’s fairly easy in this module as they all end in GOTO
4150 which you haven’t entered yet — so on giving the direct instruction
GOTO 20080 (for Location 3 for example) you will get a printout of the
Locationthenthe UNDEF’D STATEMENT ERROR message and the pro-
gram will break, allowing you to LIST the relevant lines and alter them if
you wish.

Alsodon’t forget to start each new Location withthe CONTROL key and
1 key to colour the text ‘‘black’’.

131

Commodore 64 Adventure

Moving around the adventure
Variables in Module 9.2

OB% Integer value of Object in Object Array.
OB$ Single word description of Object.
SI$ Text description of Object for Location.

This module involves the same principles as in Chapter 2 on my sample pro-
gram, so [don’t intend going into much detail. The lines in many cases are
exactly the same.

MODULE 9.2

1 9oto?
2 sawve"BA module 2.2 8 verife " modyle 9,

L]
113
or
2
o

2", 8!

2P

SETA rem¥

SR8 renm obdects odata

AEPA rem¥s

2788 for i=ltofreadobsiid,obECid, 13010
A

A718 data 15.roPe,a rat zcurries awad fr
om o a coll of roPe in the corner

3728 data Z8.crustal.the eneray crastal
zharkles a3z 1if with akidden lisht

3738 data 27.nutz.a few nwts are luwind o

7 bhe Aro nd
3748 datas 47 wreckage ol stob aour toe
of A Pilece oF ek ase

2758 data S32.9em.the sParkle of a zmall
dwm cabtches dour eue

27EE data S8, sPacesuit,vour zpacesuit is
here - 2£ill intact
A77R data S2.blazter,qour blaster iz 1wi

nd on the srownd
27el datas &9 knifeshidden amon? the Pebb
1:; liez a stone- a9 knife

AVEA data 9Z.aurora.dol Can See AUrora s
afe and “ound

4808 p=353'20t04620
4018 p=p2

132

Chapter 9 Where do we go from here?

PO

rx

4826 ifr<llithenonPactoZ@B@38, 20020, 206;

2A138

4628 ifri21thenonp-1390to2B17@, 20198, 26

18, 208250, 24314

4848 1fPZ2lthenonp-2800t08, 2266, A, 2E33E
2047320, 20420, 0, 20334

4648 ifrid4lthenonp~3890tcd, 8,8, 0,8, 2057

s 2BEZ20, 2BETA

dacl ifPaSlthenonP-4290tod, 28716, 287328, 2

A750, 8, 28770, 28820, 20274

4878 ifrislthenonP~-S@3otod, 20936, 20256, 2

1aaE, 2184@, 21168, 21150, 21208, 21358

4888 ifP4?1lthenonP~c@%90tod, 21510, 21528, 2

15560, 21600, 8, 21656, 21708, 21758

4893 ifPC3lthenonP-7@320tod. @,8, 215888

4188 ifP<3lthenone-803ctod, 3,68, 21260

4118 ifp<idlthenonP~28c0tod, 21916, 2139448,

21978

4128 remE

4138 rem zee Object

4148 rems

4158 fori=lto? ' ifobXldil=pthenPrintei® i

4160 nexti

4298 rem¥E

4300 pem exits

4318 rem¥s

4328 Print "Moo can Qo)

4238 ifn2BthenPrint" porth".

4348 iferxBthenprint" east";

4258 ifsrBthenPrint”" zouth")

4268 ifuwrBthenprint" west";

4978 remEk

4958 rem instroachtion

4398 remE

5088 PrintchrF013) u=frecd)

018 inPut"Elnstroctions IREEIREL if

5028 pokev+2l.d

5028 ififg="#"thenPrint" " JotoSBla

B4TE rem¥

B45868 rem 1¥

B350 remE¥

EI0E ifiF="north"thenif="n"

Eold ifig="east"thenif="¢g

%)

! Pl

ol

X

133

Commodore 64 Adventure

o2l ifig="south"thenig="z"
I8 ifiF="west"thenifF="uw"
T1TE pemie

T1IE8 rem movement

T126 rem¥s

Tadd ififg="n"andnx@thenp2=p-18" 9c0sublB06
A aotod@l@

TalE ifif="e"ande@thenPZ=p+] 2o0zubl2000
Taotod@dln

el ififF="="andzrAthenP2=pr+19 20zubl126006
Aantodal@

7238 ifig="uy"andurBthenp2=p~1:2czubl2006
Caotod@ 1B

TE6E aosubl2088 print"®orre ~ but gou o
an’t 9o that way"iyo+o44é@

Lines 3700—3790: I have nine objects in Nightmare Planet as below in Table

9.1.

Table 9.1 Objects in Nightmare Planet
1. ROPE LOCATION 15
2. CRYSTAL LOCATION 28
3. NUTS LOCATION 37
4. WRECKAGE LOCATION 47
5. GEM LOCATION 53
6. SPACESUIT LOCATION 58
7. BLASTER LOCATION 59
8. KNIFE LOCATION 69
9. AURORA LOCATION 92

These lines place these objects into DATA statements.

Lines 4000—4110: Using the same principle as in my sample program these
lines just set the position (P =59 which is the cabin of the spaceship — see
Grid in Figure 9.3) then direct the 64 to the appropriate location once you

decide to move with the ON. . .GOTO facility.

Lines 4150—4160: A loop to scan the object data and if it is in the location
then SI$ will appear under the text you typed in Module 9.1. Once againa
point to make is the importance of having SI$ look applicable wherever the
object happens to be. Thus if we had said ‘““THE CRYSTAL SPARKLES
INTHE DEPTHS OF THE LAKE’’ for Object 2 (the crystal) it would look
fine when first you came upon it but suppose you drop the crystal later in

Location 59 then that line looks pretty silly in a spaceship.

134

Chapter 9 Where do we go from here?

Lines 4320—5030: First the display ‘““YOU CAN GO”’ followed by the
appropriate direction, then the “‘INSTRUCTIONS ?”’ input that comes up
after every move by the 64. I chose the input “INSTRUCTIONS”’ rather
than “WHAT SHALL I DO NOW?”’ because I felt it was more applicable
to Victor and the SF image of the game.

Note the [2 spaces right] and then the ‘“*’’ symbol followed by [3 spaces
left]. Onscreen this puts anasterisk under the flashing cursor — whichlooks
better than the straightforward cursor. Line 5030 prevents any action if the
user types the “‘*’” symbol — as it puts the cursor back over your own aster-
isk.

Line 5020 POKEs Victor off again.

N.B. In Line 5000 X = FRE(0) is a way of doing a quick ‘garbage collec-
tion’ to clear out all the string spaces to prevent an OUT OF MEMORY
error.

Lines 6500—7260: Again standard movement lines. Note that we have
P-10and P+ 10 for north and south movement as we have a 10x10 grid,
and also note the beep and burp subroutines (GOSUB 18000 and GOSUB
19000) in these lines.

Testing Modules 9.1 and 9.2

You’ll find this as good (if not better) as testing Modules 8.3 and 8.4. Now
you can actually move right around your map and see the objects displayed
in the appropriate locations.

Spend sometime just exploring, imaginingif you are playing the game for
the first time. There’s something very satisfying about actually being able to
move around your Adventure.

A note here for when you design your own game. I first wrote my Loca-
tions as though I was leaving the ship and truly exploring — for example I
would say ‘“You are leaving the desert and entering a ruined city. . .’ This
looked fine on the way into the city — but when I was ‘leaving’ the city again
later on it looked pretty odd to see the line ‘““You are leaving the desert. . . ”’
because I wasn’t! I was leaving the city!

So always try and write your description as though you can go either way
into or out of the Location and it sounds all right. Time spent in sorting this
out early onis well-spent, and in fact I was changing some of the wording of
my Locations right up to the last minute as I spotted yet another mistake!!

This chapter has been a pretty exhausting programming bout — but the
result should look veryimpressive. Next we’ll start picking up and dropping
our objects.

135

Commodore 64 Adventure

Summary

For metheaddition of thelocations is probably the most exciting part of the
whole game. At last I can begin to feel the scope of my imaginary world, I
can see myselfin the different scenarios, feel the hot sand under my feet and
the sun on my neck, or picture the rushing river stretching like some pul-
sating sea to the far horizon. The forest with its tiny alien inhabitants, the
city stark and wind-sculptured, the dank depths of gloom inside the alien
temple — it’s all there.

I love science-fiction, I love the lurid covers adorning many books and
magazines, my mind soars out of its daily existence into a world of
excitement and fantasy where I can safely shake my preconditions and my
necessities and just fly on my own.

If nothing else writing this program has let me live a little more over the
past few months in a world I see too little of and will never lose.

136

CHAPTER 10
Picking up nicely now

As with all good Adventures the time has come to start to manipulate our
objects as well as our hero around our imaginative world in deep space. The
art of “PICKING”’ or ““GETTING”’ objects and ‘“DROPPING”’ them
again was explained in Chapter 3 so again I will tend to skim quite quickly
through some of the programming techniques.

One golden rule for Adventuringisto always ‘““GET’’ an object assoon as
you see it. Thus you start to load yourself up with various assorted para-
phernalia as you delve ever deeper into the plot. I wanted to makelife a little
difficult by making some objects inaccessible without having first acquired
some other object — for example the knifein Location 69 cannot be reached
without first having ‘‘got”’ the rope in Location 15 otherwise you cannot
escape from the quicksand in Location 67.

Another way of making life difficult is to set a limit on how many objects
you can carry at one time, which I will cover in Module 10.3. But let’s get
back to the keyboard.

Airlocks and things

I wanted to add a little extra touch as we move out of the airlock, and by
using sound plus visuals give the impression of the airlock actually opening.
Purists might say that the airlock should open twice to be a true airlock
(true) but as in the use of noise in space to enhance battle sequences my
airlock only opens once (to save on time).

MODULE 10.1

save"@3 mocdyle 18, 1", 8 verife " module 1
1" 5 sthop

e

540 ifig="n"orig="g"orif="s"orif="n"the
%

b

5@ ifig="i"orleftECiF, 20="1inv"thenld@a

137

Commodore 64 Adventure

ES7E ifiF="instructiconz"theraosubhl 5088

Easd ifiF="run" nr1$=”wnlt"+h#nsodub198j8
print"@hickh was PV iactodZzE

EEIE ifiE="oFen airlock"andr=57theny 188
BeEA ifiF="oPen airlock"andP=5Ethen? 10
GEdd ifig="save"thenantol 7EEE

EEESA Ifig="qnit"crig="end" thenaotol VEEAR
TERAA ifiFEC"n"andi® e andiF "2 andd i
" then 7 EER

TEAGE rems

TASE rem airlock

TREE pemEE

TETE ifp=SZandif="w"then7 186

TEZE ifp=3F7andif="e"theny 1@

YEZH aoto?ZEE

71868 print"@airlock ofening ... "

7118 forl=0to2d pokeszc+]. B newt 1

Y128 pPokewvo, 15 Pokeal 17 Pokeaz, 17V Fokes
1,128 pokes2, 128

128 Pokewl. 17 Pokewd, 17 rokehl. 12 Pokel
1,78 pokehz, 252 Pokeld, 45

Y148 fort=1tol58g: ne,++ Pokevo, @ Print"H

em 2E sPaces

7158 fort=1to?88: nestt Print"Mairlock op
N sawnaw
Y18 fort=1to708 nextt 9otoV2060
Te4d ifiF="oren airlock"andP=37thenPZ=p+
1'90:ub1€@@ﬂ‘ﬁo+o4@16

238 ifif="oPen airlock"andp=38thenkZ=p-
1 2osub 12600 aotod@ls

Line 6540: This line is a bypass for all the I$ commands that we will be pro-
gramming later. What it does is send the program through to the movement
section thereby avoiding any ‘error’ messages, etcthat lie withinan [$ reply.
It is more obvious later in the programming (or you can turn to the finished
program at the end to see what I mean).

Lines 6550—6580: A few I$ commands I have put in here.
Lines 6690—6700: Although you can move quite easily into and out of the
spaceship by giving an EAST or WEST command some people could well

type in OPEN AIRLOCK and it seemed sensible to cater for them. Thus
these two lines direct the program to Line 7100 which is the routine opening

138

Chapter 10 Picking up nicely now

the airlock (note, providing you are in Locations 57 or 58 — the relevant
Locations). If youweretotype ‘‘“OPEN AIRLOCK’’ inany other locationa
standard response would come up.

Lines 6840—6850: The SAVE and QUIT commands are catered for.

Line 7000: This line sends the program past the movement area if no
direction has been typed in. It saves having to worry about various
responses such as ‘“YOU CANNOT MOVE IN THAT DIRECTION”’
within the movement area.

If youare becomingalittle confused about the various sections of the pro-
gram so far Flowchart 10.1 should help clarify where we are at this stage.

Lines 7070—7250: This section is a visual and audible simulation of the
airlock opening. As soon as you type W or OPEN AIRLOCK then the 64
first works out which way you’re going (Lines 7070 and 7080) and PRINTS
the words ‘‘airlock opening . .."".

Atthesame moment ahumsounds (Lines 7110—7130). Asthe hum ceases
the words ‘‘airlock opening . . .”” are blanked out (Line 7140 — note the 20
spaces to cover the words). There is a short pause, then ‘‘airlock open . . .””’
is PRINTed to replace the original message (Lines 7150 and 7160).

Finally the next location appears (Lines 7240 and 7250). These last two
lines act instead of the ON . ..GOTO commands in Module 9.2.

Testing Module 10.1

RUN the program, and on reaching the first Location type W to get into the
airlock. Now type OPEN AIRLOCK and you should see the words appear
and hear the delicious hum as the door opens. I must confess it took several
hours of trial and error to get that particular sound, but the result was worth
|8

You can now return back into the ship by either typing E or OPEN
AIRLOCK again. Again the words and the hum will accompany your
movement.

There’s not much else you can do with this module yet, except type RUN
or WALK togettheresponse. If youtype SAVE the screen should blank and
an ‘““ARE YOU SURE’’ message appear. If you want to test if you have
entered the SAVE routine in Module 7.2 correctly then SAVE at this stage.
To complete the test reRUN the program and this time LOAD from your
tape. It should all work.

139

Commodore 64 Adventure

Flowchart 10.1 The basic structure of Nightmare Planet

INITIALISE
VARIABLES

'

TITLE
SEQUENCE

'

ARRAY
DATA FOR
OBJECTS

t

SET
| LOCATION

NO_ | APPROPRIATE
RIRECTIC RESPONSE

} YES

MOVEMENT
ROUTINE

'
__|LocaTions

140

Chapter 10 Picking up nicely now

Strings and things
MODULE 10.2

‘module 18,2 werity"module |

TETH remi¥s

72 rem check i% for sPace

TE0 rems

raEa fori=ltolen(is)

7318 ifmidFCif,i,1:=" "then?340
7328 nexti

7338 Print"iFleaze can 4ou use two words
"lagsubl2008 ° sotoSE06

7348 fori=ltolenii$)

7358 ifmidECif,1,2=" "thenr320
Fasd nexti

7378 Qoto742a

7388 Print"#@F lease legave @oned sPace bet
weeT worcds" Yosuk 12806 antoS008
T398 rem¥¥

488 e 1EF-vedinod

7418 rem¥s¥

7420 forsp=pi+ltolenti®)

7438 ifmid®CiF, P, 10=" "then74568
7448 nextap

7458 wef=leftECi$, zp~-1)

7468 noF=riahtECiE, (lendifi—cpi)

Lines 7300—7330: These lines are an exact copy of Module 1.5 in Chapter 3
so I’ll just repeat they are here to test if the player has typed two words and if
he has not then the message comes up ‘“‘PLEASE CAN YOU USE TWO

WORDS”.

Lines 7340—7380: Extending that concept this sequence checks to see if
there are two spaces between the words (as this prevents the 64 from ‘recog-
nising’ appropriate words. This time the message is ‘“PLEASE LEAVE
< ONE> SPACE BETWEEN WORDS”’. The principle of recognition of
two spaces using MIDS is the same as that for recognising one space.

Lines 7420—7460: And once again this routine is an exact copy of Module

141

Commodore 64 Adventure

1.6 in Chapter 6. It is splitting I$ into VE$ and NO$ (verb and noun).
To help illustrate the principles of string handling I suggest you look at
Flowchart 10.2

{

18

YES | Go TO
R YES |APPROPRIATE

SECTION

o
SCAN 13%
FOR SPACE

YES /piuce oh BACK TO

TYPE1 > PROGRAM
SPACE

DISPIA
‘msas N\ NO u.z
smce « ; -

{YES

SPLIT 1
INTO VE
AND N0§

i
NO ~DpisPAY
G- ey —
¥

GO TO
APPROPRIATE.
SECTION

142

Chapter 10 Picking up nicely now

Testing Module 10.2

Thisis pretty easy to test. Once you arein any Location type “GOHORSE”’
say, and the message ‘‘PLEASE CAN YOU USE TWO WORDS”’ should
appear. Now type ‘GO HORSE”’ (with two spaces) and the appropriate
response should also appear. Finally type ‘“GO HORSE”’ (the < correct>
command) and as this is recognised as valid the program will drop into the
Instructions routine. Once you have gone through that you will break with
anerror message. Now you cantype ‘““PRINT VE$’’ and “PRINTNO$’’ in
direct mode and in each case you should see ‘“‘GO’’ and ‘““HORSE”’. If this
doesn’t happen go back and check your lines as you have possibly made an

error in the brackets or the syntax.

Getting a bit much
MODULE 10.3

1 9oto3

2 gave"BE module 18.32". 28 verify " module 1
E’. 3" 4 :3 : E-tljp

3 rem

478 remEs

7480 rem we¥

7490 rem¥s

Foel ifved="find"thenfosubl 2806 print "4y
ou 1l khave to look around, " SotoSEEE
7E1E ifved="get"orvef="take"orved="arakh"
orvefd="carry"thenl 1 7868

HETE remE¥

228 rem ivventors

DDA remkE

18888 print Print"#®our inventors is:":i
=i

19816@ fori=1tod

16828 if obédii=-lthenPrint" 6" ob®Ci) 90z
Wb 1ZEEE: iv=iv+]

18838 nexti

16848 ifiv=AthenPrint"fitothing Im afrai
d. "

18858 aotoSEEE

11678 remEs

11628 rem Det

115598 rem¥s

11788 fori=1lto? ifob$Cir=nofthenl 1748

143

Commodore 64 Adventure

11718 nexti

11738 ifobFdirCnofthenl 1258

11748 if obXiir==lthenPrint"@ou " ve alre

ady 9ot it 11" 9osubl200@: actoSEEE

118868 if obadci)CxPthenPrint"4] don 't see
"noEl " khere," iaosubl 2886 ot J@Uﬂ
11818 ifszdthenprint"#®'ou are carrains

oo ek -~ M

11828 ifazxdthenPrint"You had better drop
something ! 1" aczukl2800 : antoSA62

115838 Print"Bkaq. " ' Qosubl20868 obkdl i=-1
Cg=a4]

11248 fotoSEaa
112568 gozukblzedd: print"41 wouldn’t bothe
rodoing that "ing:" 1M iaotoSO08

Lines 7560: One of the problems with an Adventure game is trying to
anticipate the different commands people might use. FIND seemed a fairly
popular one (in fact I even had one player type ‘‘FIND PRINCESS’’ as the
first command right at the beginning of the game as if the computer would
then tell where she was!!!) so I added this line to cope with all potential
‘finders’.

Line 7610: This is the command which will enable us to ‘get’ our objects.
Note I have also added ‘take’, ‘grab’ and ‘carry’ to this command.

Lines 10000—10050: A standard Inventory routine as in Chapter 3 (Module
1.7). The only addition is that a beep noise accompanies each object asit is
printed out.

Also note that I have not put a noise in when the printout is ‘“NOTH-
ING”’. This is quite effective as the player expects the noises that accom-
pany every response and looks up when nothing happens to see this is why.
There are times when silence can be more effective than a noise.

Lines 11700—11840: The ‘Get’ routine, again as in Chapter 3. However
note the addition of a couple of lines (11810 and 11820) which allow the
variable G to reach five objects in the inventory before it complains ‘‘YOU
ARE CARRYING TOO MUCH”’.

Line 11850: The standard response if you tryto ‘“‘GET’’ an object that isn’t
in the data and thus is considered invalid.

144

Chapter 10 Picking up nicely now

Testing Module 10.3

Try typing I once you are into the program to get the response ‘“NOTH-
ING”. Thenif youstartto movearound ‘getting’ objects youshould be able
to see them in the Inventory whenever you ask. Eventually you will run out
of space — and with a nasty burp you will not be allowed to ‘get’ any more.

Now that you are starting to have to move into the Adventure to test each
module you may find it easier to SAVE your program to tape and then just

LOAD it back at the beginning of each test.

Having collected an armful of objects, we need to be able to ‘drop’ them

again and the next Module will describe how we do it.

Drop in again sometime

MODULE 10.4

1 @ctod

2 zave"BE module 18.4", 8 verifa"module 1
Hed" 3 2hop

2 rEm

ezl ifvedF="gxamine"thenfozubl2808 aota?
226

23 ifwvedF="dror"orved="loze"orwved="leay
g'orvei="remnove " thenl 2068
el ifvefF="throw"thengozubl 2000 Aoto?EE

J_l'l

r,’B ifFr=z25andleftFCnog, Z0="doo"thenkrin

"ol an emPbe bl ldives. " 2otol86g
a3 ifp=2Bandnod="1lake"thenfFrint"@AThe =
rdstal iz definitely there, " J0toS600

7a48 ifr=37andnof="buzsh"thenrrint"@The n

pte look edible, " actoSEEE

TE5A 1fP=3YandnofF="fruit"thenPrint"#They
look 2ood to eat. " 9otoSEER

?aéﬁ Print"@There 'z nothing helkful here

TactoSEEA

7EeS 1fnoE="vwictor"thenhr=2 2otol 132686
afa fori=ltaf ifobECl i=nofthencsoto? 2060
7eEE nexti

7E98 print"#ostoP foolin® around 1Y iaotao
SEEE

THAE ifokbdllr=-1thenkrint"#@Ban Tt 2ee muc
h Point in that 1" aotolZ2@56@

7218 print"@®on haven't 2ot it 1" iactobd
515}

145

Commodore 64 Adventure

11978 ems

119288 rem drop

11998 rem#s

12088 fori=1lto3 ifobfCii=notthenl204a
12818 nexti

12838 1fobFECl »nofthengosubl 2008 print"
WMo Point in that." 2otoSA6E6

126848 ifobidi)<r-1thenPrint"lirow haven’t
ot 1t @et 1M G9osubl 98060 aotoSEa06
128880 print"Ekay. " ' 9osubl28868

12828 ob@wCli=p 9=3~]1 9otoSEE4

Line 7620 and 7820—7860: One of the commands people often use in
Adventuresis EXAMINE. Line 7620 accepts that command and directs the
program to Line 7820 where a number of responses are given. I had decided
not to getinvolved in ‘examining’ objects too much because I had enoughto
cope with — but this area is a good one for all sorts of mysterious hints and
cl 1es.

Lines 7820—7850 are concerned with certain locations (where I imagined
someone might try to ‘““EXAMINE’’ something) and give responses to the
doors in the city (note LEFT$(NO$,3) = ““DOOQ’’ here), the lake, and the
fruit and nuts on the bush in the desert. I could have expanded this section
still further had I wanted but I’ll leave you to do that when you’ve finished
and you know how much memory is left.

Line 7860 is the final line in this series which gives the response ‘““NOTH-
ING HELPFUL HERE”’ if the player tries to examine anything else.

Line 7630: The DROP, LOSE, LEAVE or REMOVE command will acti-
vate the ‘drop’ routine. The ability to have several choices for these
commands is worthwhile, because whilst someone might easily DROP a
knife, they would be more likely to REMOVE a spacesuit or LEAVE
Aurora, and so allowing these extra words adds to the versatility of your
game.

Lines 7720 and 7870—7910: These lines form a little routine to cope with the
command THROW.

I decided I had to deal with this as though it was a ‘drop’ routine, because
if you did throw away an object then you’d expect it to leave the inventory.
Thus it becomes necessary to check if the object being thrown is a valid one
(Lines 7870—7880) and if the object isindeed in the Inventory (Line 7870). If
it is the program moves to the appropriate line (Line 7900) and PRINTS out
the message ‘““CAN’T SEE MUCH POINT IN THAT”’ so that the player
knows he has not succeeded in anything much.

146

Chapter 10 Picking up nicely now

At this stage we GOTO 12090 which allows the object to move out of the
Inventory and into the Location (see the ‘drop’ routine in a moment).

IF the object is not in the Inventory then the Line 7910 PRINTS ‘“YOU
HAVEN’T GOT IT”’. Line 7890 is a basic line for any other object that
might be thrown, eg ‘‘throw horse’’. People can write the craziest things in
an Adventure game (as I’m sure you know) so we need aresponse that caters
both for crazy comments plus genuine attempts at throwing an object that is
mentioned in the description but is not a valid object (for example the
crockery in Location 92). Thus a response ‘‘I DON’T SEE IT HERE”’
would be inaccurate as the crockery obviously is there. I settled on ‘“‘STOP
FOOLING AROUND”’ as a good compromise.

Finally Line 7865 is one I added later to cope with the possibility that
someone might try and ‘throw’ Victor. If you did you would go to Module
14.1 (Line 11300) where you’d be in for a nasty surprise.

Lines 12000—12090: The standard ‘drop’ section, as in Chapter 3. Nothing
toadd here, except we must remember to take the objectaway (G=G — 1)in
Line 12090 to allow the player to pick up other objects if he is near his limit.

So you want to quit?

MODULE 10.5

1 soto3

2 save"BR imodule 18.5",8 verifu'"module 1
A.5" .= stop

a3 P

1747A remE

17488 rem quit

174968 rem¥s

17508 pokebs, 2 ' Pokebc, 2

17518 print"&" ‘printtabdS) "IEEERETREHre 90
wosure "indEs " PPV iaosubl2088

17528 Printtab (S0 "iBFresz: Bcd to Bcdonti
nue the Qams:"

17528 printtab(S)"iPrezz WY to MALLL &
he Qame:"

17548 2eta$ ifa$c>"c"anda$ic"9" thenl 7548
17556 ifa$="q"thenl?570
17566 Pokebs. 11 Pokebe, 11:Print @ aotod

Bze
17578 Print"&" Print"@" ‘poke3327Z, 21 POk
ehs, 14 FPokebc, 6 end

147

Commodore 64 Adventure
Line 17500: The screen changes to red for dramatic impact.

Lines 17510—17550: This section checks you really want to quit. If so the
program will drop to Line 17570.

Line 17560: If you press C then the screen reverts to the familiar grey and
clears, and you go back to the game.

Line 17570: This is your QUIT response and does three things. First the
screen clears. Then POKE 53272,21 converts back to upper case. Then the
screen will return to the familiar dark and light blue colours of the 64. The
program ends with the computer looking like it should when you come out
of a game.

Testing Modules 10.4 and 10.5

To test these modules you need to go through all the possible combinations
of commands that you can think of. After gettinginto the game youneed to:

1. Examine something (in any location).

2. Throw away an object you have picked up earlier.

3. Move out of the location and back into it to see if the object is displayed
on the screen.

Throw away a valid object you have not picked up.

Throw away an invalid object (like a rock).

Check your inventory at each stage.

Try to QUIT or END, and then try to continue (C) or really quit (Q).

Nowv s

You should be able to do all these things and initiate the correct response
with either a beep or a burp. The standard structure of the game is nearly
complete now, and it’s time to think about adding a bit of danger and
excitement into our story.

Summary

Much of this chapter has been a summary of original programmingin Part |
of the book, and as such I have tended to skim. It’s quite interesting to note
how I developed several of the modules to add a more sophisticated veneer
to Nightmare Planet — I hope it’s giving you ideas of your own to help you
adapt the Adventure as you go.

148

CHAPTER 11
Not that way

Nightmare Planet contains only six basic perils — not many you might
suppose. But programming just those six proved for me to be the most
time-consuming and frustrating part of the whole game. So when you keyin
the appropriate lines over the next few chapters give a little thought to the
time and effort I expended covering what will seem to be a relatively small
part of the whole program. When you start thinking of your own perilsit’s
best to be cautious at first because you can always add more at a later date if
time, memory and sanity will allow.

The six basic perils are:

1. A snake in Location 24 which will crush you to death.

2. An underwater eel in Location 28 which will do the same.

3. The poisonous atmosphere which will kill you without a spacesuit.

4. A quicksand in the swamp in Location 67 which will suck you down
until you die.

5. A dinosaur in Location 74 which will prevent you from moving south
until you have solved how to get past.

6. Hostile natives in Location 92 who prevent you from taking Aurora
away.

As well as these six obvious perils there are certain other hazards which
are more concerned with the ultimate goal of winning the game. These are:

1. The fact that you cannot escape from the planet without Aurora.
You can only escape with Aurora if you kiss her (once you’ve found
her).

3. You cannot kiss Aurora without removing your spacesuit — despite
the poisonous atmosphere.

4. You need to eat the nuts in Location 37 to enable you to remove your
spacesuit safely — note the clue in Location 2.

5. The fact that the energy crystal of the ship has been lost and you must
retrieve it to escape from the planet.

6. You cannot sink in the water of the lake (to get the crystal) unless you

149

Commodore 64 Adventure

have something ‘heavy’ to let you sink (this is the wreckage in Location
47).

7. If you are not wearing your spacesuit when you sink in the depths you
drown.

8. Asyour blaster will not work underwater you can only kill the eel with
the knife (found in Location 69).

9. To acquire the knife you must pass the quicksand in Location 67 —
and you will not escape this unless you have the rope (found in
Location 15).

10. You can only kill the snake with your blaster.

11. You cannot kill the dinosaur and must climb a tree to get past it by
swinging from tree to tree.

Asyouwill see from this second list the original six perils have created quitea
lot of programming. To enable you to understand how I developed theideas
and to help you with your own, I have tried in the Adventure to link various
objects with various perils and make it quite difficult to find your way
around.

The use of variables

One of the first things to consider is to program the 64 so that the problem
appears when you first encounter it — but you need to be able to switch it off
should you return at a later date to the same location. I did this by settinga
number of variables to 0 (Line 290 in the program — Module 6.1) and then
once the peril had been defeated setting the variable to 2. This principle was
explained in Chapter 4 — the only difference here is that there are rather
more variables involved.

Table of Variables for Perils

PR Set at 2 when the Princess is rescued.
Cv Set at 2 when the Crystal is found.
SV Set at 2 when the Snake has been killed.
EV Set at 2 when the Eel has been killed.
QV Set at 2 when the Quicksand has been negotiated.
DV Set at 2 when the Dinosaur has been passed.
NV Set at 2 when the Natives are friendly.
FV Set at 2 when the Nuts have been eaten.
ES Set at 2 when the Eel has been killed.
Set at 1 when the Eel has got you to prevent movement.
NP Set at 1 when you have been to the hut once.
NA Set at 1 to allow movement from the hut.
Z Set at 1 when the Nuts have been eaten.

150

Chapter 11 Not that Way

RC Set at 2 to stop movement from the lake.

HH Set at 2 when Aurora is in the ship.

Yy Set at 1 when in the grip of the eel to stop ‘look’.
HR Set at 2 when Victor cannot help you.

Thevalues I have set for these variables arerather arbitrary because I tended
to create them as I went along, and sometimes I chose 1 and sometimes 2.
Most variables are set to 0 at the beginning of the program (Line 290 again)
which means on the first time round the peril will be present.

We seem to have a problem here

We can now return to the keyboard and start to program again. The first
objectiveisto makethe peril appear on the screen when the player enters the
appropriate location.

Flowchart 11.1 illustrates the principles of Modules 9.2 and 11.1 — how
you should see the right display on screen when you encounter the various
objects and perils in a location.

MODULE 11.1

1 2oto3

2 zave"B3 module 11.1", 8 werify'"module 1
1.1", 8 ztop

3 rem

4170 remiF

4158 rem Feril Pointers

4190 rem¥E

4208 ifP=24andsvr2then2oto306606

4218 ifp=22andev >2thenaosubI0580

4228 ifp=S7andfvirZandobicEr=1thendoto

A1888

4238 ifp=5%andobX (2 >=-1thendosub32004

4244 ifP=5%andrr<{>2then9ozub33240

4250 ifp=E7andqvirZthenscotol2088

42680 ifp=F4anddv rZthendoto32700

4270 ifp=9Zandnvir2andnr=athen3otoI2000
4280 ifp=9Zandnvir2ZandnP=1then3oto328568
29978 rem¥E

29928 rem snake

29990 rem¥¥

39098 Pprint"@ut of the ruins slithers a
imantic snake — its body twice ")

151

Commodore 64 Adventure

Flowchart 11.1 Object and peril displays

152

——| GOTO
LOCATION

ARRAY
DATA FOR
OBTECTS

t

SET P
(POSITION)

¥
ON P

DISPLAY
(P LOCATION

yNo
NO BACK TO
: > \PROGRAM
Y YES
15
G —EED
N

DISPLAY
PERIL —

.

LOCATION
INFORMATION

PERIL

INFORMATION

BACK TO

i8
YES / DisPLAY

M

Chapter 11 Not that Way

28818 print"the thicknezz of @our own. I
t blocks aour only exit. " aotoSEBER

IGTE remEs

284E8 rem ael

39450 rem¥¥

39508 print"dIt iz fairly desP in the wa
ter." ‘return

30978 rem¥¥

228 rem Polsonous air

IAS3A rem¥x

316808 Print" @EBuddenly @oy become aware
that gouw are chokind., The ")

31818 Print"atmosPhere iz Polsonous. Ln
lgss @ou do something ")

21820 Print"verd quickly @ouwill die..."
21828 form=1toD884: nextm

31848 print"#rtart thinking ";n¥ Print"4
B

21858 forl=0to24 ' Pokesc+l. B nextl

21868 fori=lto3@: print"%";

21874 Pokevo, 15 'Pokeal. .41l Pokesl. B9 poke
wl, 17 pokehl .56 Ppokell .39

21888 fort=1to2B0 ' nextt Pokevo.@ Pokeal.
Bipokewl @ pokezl, @

31898 nexti

31188 printchrECl3) Print"iEMoo late 1Y
Print"Too late 11":qotol38

21978 rem¥E

315988 rem crystal

31990 remEs

22008 print" Mo notice that the enerdy
crastal 1s missing from the ")

22818 Print"ener9d Pod. MWithout itwou o
arnnot £1y the shirp ! It must have "
32028 Print"been taken bae zome-one! You
have to findit before d2ou can escakFe.
3228 return

32578 rem¥¥

32588 rem quicksand

FET98 rem¥¥

2608 Print"@MNou are sinkind into quic
ksand. In zeconds it is about ")
32618 print"dour krnees.Betterthink of 2o

153

Commodore 64 Adventure

mething 1" a=0: aotoSH0E

Z2ETH rem¥#¥

F2EEE rem dinosaue

BEEIA rem¥¥

32768 Priﬂt”ﬁFrom the treez at the zide

of the road amassive ")
3271 Pr1n+"d1nosaur MOVﬁ- imbo wour Pat
h. You cannot 9et past, " aohtoSB0E

FESTE remis

32988 rem natiwves

298 remEs

33008 print"d@A bunch of hostile natiwves

arPear at theentrance Lo the ")

23018 print"bhut - blocking the way, Thed
advance - spegars Pointind at ",

23024 print"your throat., They mean bus
iness "in¥F 9= 30toSE0R

AHEAIZA ek

33948 rem back to hubt azain

AEABEE ek

23058 print"dBack 33ain ! I hoPe wouwe
worked out how to 9iwve aukora "l

2307 Print"that little kizs thatwill he
1P 2et her out of there 1Y

IEEASA na=@A°9=8:Joto3EEg

33216 (R=0E & 4

AI2EA rem no AUrora

SE230 rems

_.’324'2* Print"@blith Aurora missind 90U Ca
rriet comP letewour mizsion." ‘return

(£ 0
Lt

Lines4200—4280: This section of the program ‘points’ to the part which will
display the appropriate error message. Thusin Line 4200 if you arein Loca-
tion 24 (the city) and SV does not equal 2 (which it won’t first time as we set it
to 0 at the beginning of the program) then you GOTO 3000 (which will
display the message ‘‘A SNAKE COMES TO GET YOU”’ or something
similar.

Once you defeat the snake the vanable SV is set to 2 — so whenever you
return to Location 24 the snake will not reappear. The other conditions, of
course, refer to the other locations.

Line 4220 is an example of the AND condition. If you leave the spaceship
AND FV is not 2 (in other words you haven’t eaten the nuts) AND

154

Chapter 11 Not that Way

OB(6)< > — 1 (in other words you don’t have your spacesuit in the inven-
tory) then GOTO the part of the program that will say ‘‘POISONOUS
ATMOSPHERE”.

Lines 4230 and 4240 refer to both Aurora and the crystal — quite a
complicated bit of programming which I will return to in Module 13.1.

In Lines 4270 and 4280 if you are in the native hut for the first time then
NV =0 so the natives will menace you and prevent you from removing
Aurora. After 10tries you are allowed to leave (perhaps to find the nuts) but
NP is now set to 1 so that when you return the message will be ‘‘BACK
AGAIN"’ instead of the same message on first entering.

This last may seem a refinement — but it looks a lot better when you’re
actually playing. In fact when you make up your own game often you need
to actually play it to find out these little touches that will make it sound
better.

For example I originally had the response ‘“‘I DON’T SEE IT HERE”’ for
acommand such as “THROW?’’ which did not involve one of the objects in
the object array. Thus if a player typed “THROW HORSE’’ back would
come the response ‘I DON’T SEE IT HERE”’. This was fine as long as the
player attempted to throw things like horses or Ford Cortinas (in other
words crazy objects) but in some of the Locations we talk about ‘stones’ or
‘crockery’ — which are not valid objects to throw. So if you type THROW
CROCKERY and get thereply ‘I DON’T SEE IT HERE’’ when it obviou-
sly is here — it looks bad. The answer was to change ‘‘I DON’T SEE IT
HERE”’ to “‘STOP FOOLING AROUND?’’ which catered for objects in
both situations.

I feel at this stage that I must make an apology for the fact that however I
try and write this part of the book it might seem confusing to some people.
This area of the program requires a knowledge of the Adventure which is
easier for me (the author of the plot) as I’ve been living and breathing the
story foramonth or so by thetime I get to this part of the program. If you are
alittle confused by the complexity of the story and the related modules I will
be dealing with each Peril as a separate module — and this should clarify the
situation. For now please hang in there and mainly stick with the fact that
this area of the program is going to create the PRINT statements that will
appear on the screen and then prevent the player from escaping by simply
moving out of the location.

When you come to construct your own it will be much easier as you will
have conceived and created your own plots and perils — and will be more
familiar with them.

Lines 30000—30010: The display for the snake.

155

Commodore 64 Adventure

Line 30500: This line refers to the crystal only. For the moment I will leave
the eel as it needs a whole chapter for itself.

Lines 31000—31100: To liven the poisonous atmosphere peril up a bit I
added alittle routine which simulates time ticking away as you are presuma-
bly choking to death. First the message ‘“‘YOU ARE CHOKING...”
comes up and the program pauses (Line 31030) to give you time to read it.
Then another message in purple comes up ‘““START THINKING. . ."" and
an asterisk is printed on the line below (Line 31040).

Line 31050 nullifies all sound variables, and we start a 30 times loop in
Line 31060 which contains a sound effect (Lines 31070 and 31080) within t.

The effect is a high-pitched beep as each ‘*’ appears on screen and the
stars begin to track across adding another ‘*’ until 30 have been printed.
Then the message ‘““TOO LATE — TOO LATE”’ appears and the program
goes to the YOU ARE DEAD section (Module 11.3 — still to be added).

There is no way to escape this peril. Once you have stepped into the poi-
sonous atmosphere you are doomed. And, of course, if you should ‘‘get”
your spacesuit when you first leave but ‘‘remove”’ it later (to kiss Aurora
say) without first eating the nuts this routine will still come up. But we’ll add
that to the program later.

Lines 32000—32020: Standard display for inside the ship if you have not
found the crystal.

Lines 32600—332610: The quicksand display. Note Q=0 here, which is
setting up a ‘counter’ system. Briefly this will allow a certain number of
attempts to escape before ending the game with a “YOU HAVE SUNK”’
message.

Lines 32700—32710: The dinosaur display. The difference between this
section and the othersis that all the dinosaur does is block your way south —
it doesn’t actually kill you.

Lines 33000—33080: These two sections deal with the natives — first when
you enter Location 92 initially and secondly if you fail to rescue Aurora on
the first attempt and return. The variable NA prevents escape from the hut
until you have tried 10 times to rescue Aurora (note Q =0 again).

Line 33240: The final line in the module is a simple display for Location 59
(inside your spaceship) if you have not rescued Aurora.

156

Chapter 11 Not that Way

Testing Module 11.1

Totest this module you need to RUN the game and start to move around the
various locations. The first thing you’ll notice is that on entering the game
again in the first location (the cabin of your spaceship) you will find a full
page of text as we’ve added the sections about the crystal and Aurora. Do
NOT pick up the blaster or the spacesuit but just go WEST and as you leave
the ship you should find the poisonous atmosphere choking you... up
come the asterisks and you watch helplessly as your fate ticks away. As you
end this section the error message UNDEF’D STATEMENT ERROR IN
31100 should appear.

Now reRUN and this time GET your spacesuit and then wander around
theplanet. As you come across each appropriate location so the peril should
be displayed. At the moment you can escape by typing EAST or WEST (or
whatever) to move to the next section. However we need to prevent that in
the game proper — and that will be the role of the module module.

No exit that way

You noticed how easy it was to escape from the peril when you were testing
Module 11.1 — so how can we prevent this in our game? Quite simply we
need a routine between the INSTRUCTIONS input and the MOVEMENT
ROUTINE and Module 11.2 does just that.

MODULE 11.2

1 aotol

2 sawve"BE module 11.2". 8 verify"module 1
1.2". &8 stop

3 rem

S97E rem¥s

5980 rem no exits

59590 remis

BARE 1fP=24 andswir2thensll@

BA18 ifP=28andesz=2thensSEaE

REZE 1fP=28andev{>2thens] 18

GAZEA ifp=E7anddwr2thensl 14

FE4E 1fP=Fd4anddv >2thensl7E

BASE 1fP=9Zandnv rZandna=1lthenaSEaE

EACE 1fP=9ZandnvirZandna=athentl 10

EATEA QotosSaa

6110 ifig="n"ori¥F="c"orif="s"orif="1"the
nIozub 12808 aotos 1 26

G128 9otoslSE

5138 pPrint"#@®ou can’t escare that was "

157

Commodore 64 Adventure

Prdnt"@ o1l kave o think of M

ABlAE Print"#something else 1" aotoSEEL

G128 ifiF="run"thenaozobl 0068 print
o oescabe bthat o wad, " iacnkoSE ﬂﬂ

= i

iflf““nall“+hcn4oznblﬂauu P
= ono escake that owaw., ig-:.t.:..ﬁft_h
1+1£~"guuth"nr1i=“'"fhanQEUEIBBBEI
Lo dice "inE
ififF="zouth"orif="s2"thenkrint " HTher

A dinosanr in bhe o waw 1" DSk eSRaE

%, e '5 — "_;
& :‘-] > DO 11

LEU S R S0/ T £ T
W Q0O =jm oy -

Lines 6000—6070: These lines test to see if you are in one of the special loca-
tions — and if you are the program will direct you tothe PREVENT EXITS
routine. If you are not then Line 6070 bypasses the ‘prevent movement’
routine.

Lines 6010 and 6050 are slightly different in that these also pass the NO
MOVEMENT area as well. In the case of Line 6010 the reason is that ES =2
(which means the eel has been killed or has not yet been encountered). This
should become more obvious in the section on the eel peril. Line 6050 is dif-
ferent in that the variable NA has been set to 1 (which means it is the second
time you will have visited this Location). I thought it better not to limit
movement on a return visit to the native hut to ‘get’ Aurora, especially as
this may be due to the fact that you have ‘forgotten’ (literally) to type in
“GET AURORA”’ after succeeding inrescuing her and have to go back just
to ‘get’ her.

Lines 6110—6180: These are simply the different responses to various
attempts to escape from the location by typing RUN or WALK. Note also
that Lines 6170—6180 only stop a southwards move to try and get past the
dinosaur — it is still possible to go north again.

MODULE 11.3

L
i
a3
n
ot

2]
2] 115

5 IR 1T D A N G R = ST o I IR 1Y T e L - |
T

i

R=A0E &

e o, e olea

RUANE & ¢

Pokew+2]l B Print"IRERRE1T @00 blew i
hat bime, dicdn h owouw "onF

AR ST DR

1000

Rl et ol el WU

158

Chapter 11 Not that Way

Flowchart 11.2 Basic Adventure Game

END
OF GAME

¥

INITIALISE
VARIABLES

t

TITLE
SEQUENCE

—~|APPROPRIATE
LOCATION

{
e
it
;
{
| <Gl
MOVEMENT

iNo
NO DISPLAY
G>=EF J
} YES
1 APPROPRIATE.)
— | "RESPONSE
y YES

\ LOCATION
SEQUENCE

159

Commodore 64 Adventure

AE print"iRBLuckily I kawe the Power to
revive dou and 9o can hawve')

IB Print" another 2o, " print"ERRBiou T
w o like that 7 Cuadna"

2@ aetrd ifrE 2 "e"andrE A "n"thenz 28

238 ifrF="4"thenzca

248 ifrF="n"thenl737A

P

Lines 190—240: Finally this little module is the end message if you should
come to a sticky end anywhere along the way.

Testing Modules 11.2 and 11.3

If you repeat the testing procedure you used for Module 11.1 then you
should find that you can no longer escape should you wander into alocation
with a peril. On typing W say the response ‘“‘YOU CAN’T ESCAPE THAT
WAY — YOU’LL HAVE TO THINK OF SOME-THING ELSE”’ should
come up (plus the burp!). Also should you forget your spacesuit — not only
do you die but now you are given the chance to play again.

As most of the elements of the game have now been covered Flowchart
11.2 illustrates the basic structure of an Adventure game.

Summary

As I mentioned earlier this part of the book will probably seem more
complex thanit reallyis on a first reading. I have tried to simplify it as much
as possible, but really a knowledge of what is to come helps a great deal, so
it’s best to program this sectionin and move ahead — returning to the expla-
nation of what is happening line by line when you have a better idea of howI
coped with the various hazards.

It is also about this time in your programming that you should first
become aware of the tremendous power you hold (as the programmer). Per-
hapsIshouldn’t dwell on this, but there’snodenying the fact that YOU con-
trolthe game, YOU control just how your player can move, wherehecango,
and what he can do. No matter how you feel about this — there’s something
slightly attractive about it.

160

CHAPTER 12
Nice day for a dip

Inany Adventure program worth its salt you are dealing with a pretty large
chunk of programming — and if you are using BASIC then as the plot
thickens so you may find you are running out of space between modules
(because unforeseen problems will arise). This calls for a bit of judicious
renumbering, but evenif you have a Programmers Aid you cansstill runinto
trouble. I found this starting to happen to me, so I devised a special chart
(see Figure 12.1) which enables me to estimate how far ahead I need to start
my numbering for the appropriate routine or module.

It is also essential when creating a program with a large number of
GOTOs and GOSUBs to be able to put line numbers in as you go along,
otherwise you are sure to forget some later — with a heap of extra work
tracking down your error.

No matter how much space you leave there’s bound to be too little in some
areas of the program, so I do advise you to overestimate (by far more than
you’d imagine) when you plan out your numbering. To give you an example
of how I used the chart Figure 12.2 shows where wearein the programso far.

Killing me softly

One of the commands in any Adventure must be KILL (let’s ignore the
psychological implications. ..) so before we enter one of the hardest
sequences inthe game —theeel perilinthe lake — we need to enter the KILL
module.

MODULE 12.1

GM m duls 121", 8 verifa " module 1

t

M

B (WAL & 2

B orem kill
B remE

A ifnof="aurora"thensosubl 2006 Frint

il e S R I O O

PR3P
COPIPI ST '—‘lﬂ w

= 40 CO -

161

modore 64 Adventure

Module-planning chart

Figure 12.1

100000000000

Jo000000u0uuud

162

Chapter 12 Nice day for a Dip

Figure 12.2 Subroutine start numbers for Nightmare Planet

PRE-
CREDITS

TITLES
PAGES

OBTECTS
AND
IMOVEMENT

INPUT
NSTRUCTIONS,

PREVENT
MOVEMENT

1$
COMMANDS

MOVEMENT
ROUTINES

comtings

INVENTORY

GET

DROP

7200

7500

10000

11700

12000

[+ O
SRURCRUNCRURUNCRUNCRCRS

PERIL
SECTION

GENERAL
INSTRUCTIONS

LOAD
SAVE+QUIT

LOCATIONS

PERIL
DESCRIPTIONS

SPRITES

i

35000

JO0000E

163

Commodore 64 Adventure

Flowchart 12.1 Coping with a peril

b ArRA
T
‘ RESPONSE it
oa:r‘écrl NO L oo
: — —

164

Chapter 12 Nice day for a Dip

o must ke doking TN iaotol3A

12285 iFnoi—”chtor"fhpnhr— santollzEa
12318 1fP=2d4thenl 2088

18321 iFP—?Sthﬁn12=Bﬁ

125338 ifp=Vd4thenl 2586

12248 1+P~H'+hwn14r 3

12258 aozukl2@8d print "Bl don't really =
g ansthing to "iwved 9otoDBEE

Line 12300: It occurred to me that some bright spark could write ‘“‘KILL
AURORA”’ just to see what would happen so I added this lineto discourage
such ‘heresy’. Aftertheresponse ‘““YOU MUST BE JOKING’’ the program
goes to the subroutine at 190 (which is the ‘You’re dead!’ section) and ends
the game.

Line 12305: This line is in case someone types “‘KILL VICTOR”’ (as if
anyone could!) and will send the program to the HELP section where a
nasty surprise waits for the player (see Module 14.1).

Lines 12310—12340: These lines refer to the only locations where you might
try to kill something, and refer the program on to the appropriate section
(which we’ll be adding later).

Line 12350: A standard response should you try and KILL anything anyw-
here else along the way.

Eel take the low road

Sorryabout thetitleto this section of the chapter — poetic licence I suppose.

Now we can begin to add all those nasties that will make life more inter-
esting for our player. I’ve started with perhaps the hardest from a program-
ming point of view — so that it’s all downhill from here on.

When I say the hardest — the actual copying of lines for youisn’t hard at
all. But thinking up and planning this section was the most convoluted for
me — and may be the hardest for you to understand because of the number
of possible variations in reply that the player could make (in an effort to
escapethe hazard we have set for him) and the resulting number of possibili-
ties we have to program.

Infactitistryingtoanticipate all the wordsthat the Adventurer will usein
his efforts to escape that may give you most aggravation — and trying to fit
them allinto your Adventure. Whatever happens, you’ll never cope with all
eventualities so its best to accept the fact right at the start.

Let’s look at the way I’ve designed coping with any peril in Flowchart
12.1.

165

Commodore 64 Adventure

Flowchart 12.2 The eel peril

DISPLAY

“YOU ARE ON
THE SHORES
OF A LAKE"

_ DISPLAY
“You DROWN

END

DISPLAY
“YOU BOB &
ON THE SURFACE|
RETURN TO
PROGRAM

DISPLAY
“EEL HAS
GOT You”

. Dispar
YOU'RE DEAD

END

166

BLASTER
IN INVENTORY

DISPLAY
“EEL DIES”

RETURN
TO PROGRAM

DISPLAY

“

BETTER ,
THINK HARD
ENTER
TIMING LOOP

Chapter 12 Nice day for a Dip

Probably the easiest way to understand this is to go through the chart as if
asking the computer questions or telling it commands — as follows:

QUESTION 1: Is the location special?
This refers to locations 24,28,57,67,74 and 92 and is covered by Module

1kl

QUESTION 2: Is the peril still present?

The variables SV,EV,DV etc (Module 11.1 again) control this, by their
value. If set toOthenthe perilis present. If set to 2then the perilisnot. At this
stage the peril will be displayed on the screen.

QUESTION 3: Is the input valid?

The program now checkstoseeif theinput I$isavalid one. If not thenthe
appropriate response is given. This really covers mistakes, typing without a
space, etc dealt with in Module 10.2.

QUESTION 4: Is the object in the inventory?

Thisis not quite the whole truth, as you can escape some perils without an
object in the inventory (eg the dinosaur). However in the main the problem
isovercome by ‘‘KILLING”’ the monster and to do this you need a blaster or
a knife, so the first thing the program does is check to see if you have the
appropriate object. If you do have the right weapon then the program says
“OKAY”’ and you are saved (and the variable is set to 2 to make it safe next
time you wander into that location). If you do not have the right object you
may find you’re dead!

Of course this flowchart is oversimplified, but it forms the basic strategy I
have used for dealing with most of the perils.

Flowchart 12.2 illustrates these principles in Location 28.

Into the swim
MODULE 12.2

;@Bimodule 12.2", 8 werifu"module 1
‘st

590 ifig="1"orleftFlif. 4i="1ook"thenaos
ub 126868 sotocs 1@

REEE Fotosedn

BELA LfP=2Bandde=1thenPrint"fikon can’t =
ge much underwater 1" aotoDBB0E

EEsE aotoddze

718 ifif="ao lake"andp=ZB8andrc=2then38&
b %]

167

Commodore 64 Adventure

A2l 1fleftdl i, dr="swim" andP=2Bandrc=2%
e 3Ee5E

B30 ifleftFoif, dr="dive"andp=28andrc=2
hcn SEESE

Erdd ififF="an lake"andp=28then38516
el ifif="an ~hnrﬂ"1ndph,;u+hwn?H1ﬁ
BrEE 1figE="a0 shore"andl=28thent? 26
o S = Twh w2t 1

L

_’-

o

YEE ifes=2then3aozubl20E868: aotoZB54i
798 ifesCZthengosubl 2880 Qotos]l E560
SEE ifleftEcif. dr="zwin" andp=2235%henI@5]

ifleft®iis, do="dive" andp=28then3831

ifleftdCis, Zr="a0"thenaozub]l SEEE P
Wizt type direction 7" 2otodIZ@
ifig="ast kvnotted"thenaosubl 2860 pr

'4Hnd wol), MonE 9ckoSERR

= e @R NSO O,
0o O o0
o R —
I‘.! -!‘_-'.s =
X

l+ 0l

When we first arrive in Location 28 we aren’t actually in the lake at the start.
Thus we need some way of actually getting into the water. I’ve tried several
different people on what they would write, and the usual replies were
SWIM, GO LAKE, or DIVE IN. This module caters for all these
commands.

Lines 6590—6620: A little confusing these four lines because they’re taken
slightly out of context here. They refer to the command LOOK. First Line
6590 is the I$ command. Then Line 6600 takes you past this section of the
program (to yet another area we haven’t put in yet).

Line 6610 refers to the response ““LOOK”’ if you are in Location 28 and
under the water (hence the variable YY = 1 which is set once you enter the
water). Line 6620 is the standard response to the command ““LOOK’’ and
just takes the program to the movement routine so that ‘““YOU ARE IN A
DESERT”’ or whatever is displayed.

Let me expand on this slightly. At times in the program you may find you
are typing in quite a number of commands (such as ‘““CLIMB TREE”’ or
“EXAMINESTONES’’)and asthereplies scroll up the screen so your loca-
tion disappears. When you decide to move you may have forgotten where
you are or which direction you can take, so typing ‘“‘LOOK’’ will restore the
text telling you this.

Now in Location 28 we have a special problem — part of this location is
the lake. Thus if we are under the lake (in the grips of the eel) it would look
pretty stupid if on typing ‘““LOOK’’ the message ‘“YOU ARE BY THE

168

Chapter 12 Nice day for a Dip

SIDE OF A LAKE’’ came up again. Lines 6610 and 6620 prevent this.
Before moving onto the next section let’s just look again at the variables
involved in Location 28 and the Eel peril.

Table 12.1: Variables for the eel peril in Location 28

CV Set at 2 when the Crystal is found.
EV Set at 2 when the Eel has been killed.
ES Set at 2 when the Eel has been killed.

Set at 1 when the Eel has got you to prevent movement.
RC Set at 2 to stop movement from Location 28 by swimming.
YY Set at 1 when the eel has you to stop a ‘look’ response.

Lines 6710—6730: These lines apply when RC = 2 (in other words the eel has
got you) and you try to escape by typing ‘““SWIM”’ or *“‘DIVE”’. There will
be a response ‘“THE BEAST HAS YOU GRIPPED TOO TIGHTLY TO
ESCAPE”’ (in Module 12.4 — still to come).

Lines 6740, 6800 and 6810: These are the lines that take youinto thelake. So
ifyouarein Location 28 and you type one of those three commands (SWIM,
DIVE OR GO LAKE) you will go to Module 12.4.

Line 6750: This line is for the people who type ‘GO SHORE’’ when they’re
not in Location 28 (and someone is sure to do it!) It directs the program to a
response ‘“YOU’RE ACTING A BIT STRANGE. ..”.

Line 6760—6770: If you arein thelake and you type ““GO SHORE’’ then we
need to check various points before allowing you to escape — otherwise
someone in the grip of the eel might be able to escape by just saying ‘GO
SHORE”’ and we can’t have that! Line 6770 is for commands which do not
refer to the lake and the eel and bypasses the next few lines.

Lines 6780—6790: Okay, you’re in the lake and you type ‘“GO SHORE”’.
First wecheck toseeif ES =2 (ESisset to 2 after the eel has been successfully
killed). IfESissetto2then we goto Line 20540 which is the start of Location
28 description — in other words the display ‘“YOU ARE AT THE EDGE
OF THE LAKE’’ comes up again.

IfESisnot2thenyouarestillinthe grips of the eel —so the programloops
back to 6130 (which is the routine to prevent movement in Module 11.2).

Line 6820: This line is not really concerned with this location, but I put it
here as it might have been left out otherwise. It isa simple routine in case the
player types GO at any time. Note how I have used LEFT$(1$,2) = ‘GO’
because this will also cover commands like ‘GO WEST”’ or ““GO NOW”’.

169

Commodore 64 Adventure

Line 6830: If you're feeling particularly frustrated you might be tempted to
write “GET KNOTTED”’ and this line adds a touch of humour.

MODULE 12.3

‘QO""I 1
save"BE module 12.3", 8 verife"moduls 1
A bl H .:-t-l._lF'

-

ifwed="ast"andF=28then3Z07@
ifwefd="take" andpP=28then32878
ifwed="arab"andp=2Z8then32B07E
ifwet="kill"arvefF="zmazh"orved="des
"orvef="yaste " thenl 300

(WAL &

rem cannot et crestal

S=AUE £

ifnoF="cryztal"then22Z@20

aotoll7Ea8
iFev{}ZthEhgosub19EB@SPrint"H?Du c
canes i Form=1to588 nextn
ifeviszZthenPrint"... . 9et " iprint
wnderd the water." faoto °EE
ifev=zthenl 1708

D e R R Y]

ER I RN SRR CY RV g S B Bt BV R LW LR

RIS RITOPIPIPORI S YO N en
o= A GRS RSEO BALIP TS W
R A R TR s Bt K a1 B Pt R B RN R L)

R

£

Suppose you arrive in Location 28, see the crystal, and type ‘“‘GET
CRYSTAL’’. At the moment nothing would stop the program saying
““OKAY’’ and neat as you like the crystal is in your inventory. This module
prevents that.

Lines 7520—7550: Straightforward commands concerning the “GET”
command when you are in Location 28. To ensure that you don’t get an
incorrect response the 64 will bypass the usual GET Module and drop
through the program to Line 32070.

Line 7640: Thisis theline for the command KILL etc, which will take you to
Module 12.1 (which we entered at the start of this chapter).

Lines 32070—32080: Line 32070 checks to see if NO$ is ““CRYSTAL”. If
you were in Location 28 and typed ‘‘GET’’ but didn’t type ““CRYSTAL”’
(for example you might well have dropped something at a previous visit and
now wish to retrieve it) then Line 32080 will direct the 64 to the appropriate
section of the program.

170

Chapter 12 Nice day for a Dip

Lines 32090—32100: These two lines just prevent you from “GETTING”’
the crystal if EV is not set to 2 (the eel is still alive).

Line32110: Iftheeelis dead (EV = 2) then you are directed back to the GET
routine in Module 10.3 and can successfully ““TAKE’’ the crystal.

The eel has got you

We can assume that our player has worked out how to get into thelake to try
and retrieve the crystal. There are several possibilities that affect how we
treat the next stage at this moment which need more thought for the next
~ module.

The possibilities are:

1. You are not wearing your spacesuit.

2. Youarewearing your spacesuit but you havenot yet picked up the wreck-
age.

3. You are wearing the spacesuit and you have the wreckage.

MODULE 12.4

] DTl A l:_

2 osane B3I module 12.470 8 ver iy moduls 1
a4t B stop

S

12Ez8 ifp=28andnof="spaces0it" theraozubl
QEAE AokoZRDlE

LEEE5E ifp= ’Handnﬁf””=Pacng1+"+hﬁu4n:ub1
SEAAGE P int @00 e sinkind" 9otoZahdd
2AS1E ifobKiE —lfhEuyot:3654w

SAS1ES ifew=Zthernacsobl 8000 print"dice o
as For a difk b Mhat o PV Aot od 220
SEEZE ifokbmod a1 hhenantoI@5s0

SEEEE 9otoZA52E

SRS uu:ubl“'@W'Prluf"dhnu Fawen t ot
Wl sPacesuit, bRawve won'inE

2558 printk"Too bad 1V Yoo we deowrned |
IR A Tt Y I Pl L S I N T o (R [A

SEEER yuﬂubleﬁEB'Pr1n+”iVuu ok on the =
nreface like a cork. Yoo nesd M

SRSTE Print"somethind heawvy bo let wou =
ik ;

SREEA print"down o 9et the cruestal, " iao
g b 5151

FAE9E ifokbhi2)=-1thenEosuk LEAAE P10t "

171

Commodore 64 Adventure

ice day for a dip V" raobodEE2E

AP618 es=1 print"@At first gou sink down
wntil the crystaliz almost ")

HASZE Print"in wowr 9rasp. Suddenly oot
of the dePthz a fi9antic esl ")

HAASE Print" looms wp andd winds itself

arouned Lo,

2AE48 Print" It starts to zqueeze ... " TE0
s”bIBBBwtrc=2¢q Aiwy=] aotoSdEa0

SPESA 20zublE@0a print"@NThe beast has
), QriPPed too tishtlas ")

IAEEE print"for wou to gscake M iacohoDB@
%

Lines 12020—12050: These two lines refer to the unlikely event of you
removing your spacesuit whilst in the lake. Both refer you to Line 35040
ultimately. They will fit into the DROP section of the program.

Lines 30510—30530: These lines check the inventory to see if you are wear-
ing your spacesuit, if you’ve defeated the eel, or if you’re carrying the
wreckage. Line 30530 will take you past the next few lines to the eel section.

Lines 30540—30550: No spacesuit — you drown. There’s a short pause and
you exit to Line 190.

Lines 30560—30580: If you haven’t the wreckage then you ‘bob on the
surface’ and wait for instructions.

The relevance of RC becomes applicable here. At this stage you haven’t
actually met the eel yet — so RC is still set to 0 and you can escape by typing
““GO SHORE"’ to try and find something heavy.

Line 30590: This line allows you to return to the lake after you have the
crystal should you so desire.

Lines 30610—30640: This is the main peril — the eel itself. As you sink down
into thelake the eel comes up and gets you. The use of variables needs alittle
explanation here. Before we start we set ES to 1 — which prevents you from
moving out of the lake again by typing ‘‘S’’ (Module 11.2, Line 6010). Then
we set RC to 2 (which also prevents you from escaping by typing ‘“‘SWIM”’
or ““DIVE” instead of ““N’’ or *“S’’). The reason for needing both RC and
ES is because of the fact that you could escape with either a direction or the
word “SWIM”’. Q is set to 0 because we are going to count the number of
tries the player has to escape before squeezing him to death. Finally YY is set

172

Chapter 12 Nice day for a Dip

to 1 (this variable prevents the command ‘“‘LOOK”’ from eliciting the usual
response — Module 12.2).

Lines 30650—30660: These lines refer to the attempts to escape by typing
“SWIM?” etc. that I mentioned in Module 12.2.

Success or failure
MODULE 12.5

module 12.5".8 verife" module 1

124780 remEE

12426 rem el Peril

12498 pemEs

12588 ifwvef="shoot"orvedF="blaszt"thenldS2

2518 ifokicgi=—1lthenprint"RfiGood,. Yoo us
ed the knife." 9o020bl80606: 20tald&l
12528 ifokbuc?i==1lthengozubl 20688 Frint"#
our bBlaster dogsn't work wnderwater..."’
12528 ifobs(Fi=—1lthenrrint" and @ou’d be
tter do something Fretia smartizh ...
12548 ifobnc?i==1thenPrint"You are 2stti
ne weaker..." 9otoSB0@

12958 print"@BThe egl has wou in itz 9r
iP and iz squeezin? tishter ",

12568 Print"and tighter.... 9ow are 1o
sin% control of Wour SensEs..."

12578 form=1to2@8a : nextmn

12588 9ozubl2008: print"EMoush cookies !
Yo e dead 1V

125398 print"iMlMow should have brought =0
mething to kill it with 11"

126068 9onzubl 2608 anto]l 38

12618 print"dThe el thrazhes wildly in
itz death throgs - then zinks to "
12628 Print"the bottom of the lake."
Aanzub]l 206a

12628 Print"Don’t forget th
tewmgles=2 o= vy =0 90tolBd

e crustal...”
G

173

Commodore 64 Adventure

Line 12500: This line relates to a command regarding shooting the eel and
ensure that you go to the appropriate line. In the case of this peril the blaster
will not get you out of trouble — as it won’t work underwater.

Line 12510: If you have typed KILL or STAB then this line checks if the
knife is in the inventory. If it is then success — the program drops to Line
12610.

Lines 12520—12540: These lines are the response if you have no knife but do
haveyour blaster. Having checked the inventory for the blaster you then get
the response “YOUR BLASTER DOESN’T WORK UNDERWATER”.
You are sent back to the Instructions input to try and think of something
else.

Lines 12550—12600: A cheery section that comes into force in 2 situations:

1. If you have no knife or blaster.

2. Ifyouhave only your blaster and after 10 attempts you haven’t escaped.
Of coursethere’s no way you can escape this little hazard without your knife
and asthe program stands you cannot escape to get the knife — soit’sa bit of
acontrick. But givingthe player a feeling that he has a chance here helps add
to the mystery of the Adventure. (Sneaky, eh?)

Lines 12610—12630: Success at last. The eel dies gloriously and with a help-
ful hint not to forget the crystal the program releases you from the location
and sets all the variables again.

You could if you wanted omit that line about “DON’T FORGET THE
CRYSTAL” and let the player get all the way back to the ship only to
discover he forgot to ““GET CRYSTAL’’ back at the lake.

MODULE 12.6

1 2otol
eosave"EBE mod le 12,680 8 verife " mocdnle 1
2. e Bistop

o
-
.

(WAL £

e Lok el
(G NE £
1fP=92thenS
i P =EVthenis
1FP_¢4H+h»
ifew=2then
1fP=2Eancdes
q=q4+1

r:

R R u RN a]

S f'

i

AR EST
l‘—

o)

-

e

!n J‘, =4

i T
i

M
Y
-

i
i
i

D I I i R R) VY
HN I e T R R B SO | B Ty

el et L S e Sy B
P o I R By I o |

174

Chapter 12 Nice day for a Dip

5138 if945290tosEBE

5148 if1=5thenPrint"fiYou really Eared S
thims weaker.. . " aotoSl2a

9158 if9=18thenSosukbl 3008 Print"liThat "=
it ! "in%

Sles if9=18thenPrint"You have been cruzsh
e to death, " 9otol 26

Lines 5070—5110: These lines ensure that the program bypasses this little
loop if you are not in Location 28 and you are not in the grip of the eel. As
there are other loops to consider the program passes you to the appropriate
area. Best just program it in for the moment and come back later to see
exactly where all these lines go.

Lines 5120—5160: This is the actual loop itself. Each time the player gives
the 64 a command (such as KILL EEL or whatever) then Q increments by
one. When Q =35 there is a little reminder that time may be running
out...“YOUREALLY AREGETTING WEAKER”’. If youdon’t get out
by the 10th attempt then that’s it — folks! Back to square one.

Testing Modules 12.1—12.6

Unfortunately you cannot test these modules as some of the lines contain
GOTOs which direct the program to a section we will be adding in the next
chapter.

Summary
This chapter is a tour de force of programming in Adventure games, con-
taining a baffling blend of ideas, variables and situations. Don’t let it put
youoffif you’re not quite sure whatit’s all about though — because I did the
worst first. I found solving the programming extremely challenging (once
I’d worked out what I was doing) and by the time I’d finished the whole
Adventure I was quite sorry that theamount of text I’d chosentoadd atmos-
phere ended up by limiting my possibilities in the perils.

Still, I’m already thinking of how to change that for my next Adventure.

175

CHAPTER 13
To talk of many things

The story so far. . ..

Our intrepid hero has managed to pilot his spaceship down to a pancake
landing in the vast desert of some distant planet — out of the regular space-
lanes. He awakes to find his ship in tatters, his precious energy crystal miss-
ing, and worst of all, the love of his life kidnapped by persons unknown.
Rescue seems unlikely and now he must try to find both the Princess and his
energy crystal if he is ever to see the blue skies and green hills of home.

He sets out across the alien terrain, encountering hazards and mystery in
his quest, until at last after some time he discovers his crystal in the depths of
a lake, and succeeds in surviving the hazard of a giant eel to retrive it. He
takes it back to the ship.

Nowread on.. ..

When I had reached this stagein my programming I ran up against a slight
problem — when I programmed the locations I had initially forgottenabout
returning with either the crystal or Aurora (or both) to Locations 58 and 59
(the spaceship). Thus the first time‘I returned to the ship I entered
(supposedly with Princess, crystal or both) only to be told on the screen that
both were still missing.

In other words I needed to alter the display on the screen if I came back
with OB%(2) — the crystal — or OB%(9) — Aurora — in the inventory.
Now is the time to remedy that deficiency.

A happy ending

Thenext Module containslines missing from the Locations section (Module
9.1) as well as the appropriate lines for ‘finding’ both Aurora and the
crystal. I have based it on the following possible combinations:

You return with the Princess but not the crystal.
You return with the crystal but not the Princess.
You return with both.

You rescue the Princess but forget to ““GET’’ her.

SW N -

177

Commodore 64 Adventure

Ineeded thislast option becauseit was possible to beat the natives peril (of
which more in Module 13.4) but simply forget to type ‘““GET AURORA”. 1
felt it wasn’t necessary to also allow for not ““GETTING’’ the crystal as this
was more obvious (and I’d put a reminder in the text).

MODULE 13.1

=T} Awi]

save"BA module 12,18 verify " module 1
A8 stop

15 FEm

126878 ifp=3%andnofF="aurora"then3Z256
21285 ifobxi2i==landobxir==1then332z6
21218 ifobdcgri~1thenzlz48

21228 ifobii2r= —lfhpnprlnf"ﬂﬁre.f N 1T
we oot the crystal." icws=2

21238 print"dBetter Just =1ip it into th
e Pod in the main cabin." ‘2otoz2lZ20
21248 ifPr=2andob? 3i=-1thenz1336

21298 ifhkh=2then21278

21268 ifpr=ZandobX (33 >-1then21354

21228 ifpr=2thenzl1 336

2133238 print"dRack with avrora - I showld

UJN""

]

]

take her into the main cabin ")
21348 Print"and 9ive her a nice cup of t
ed " gnbogl 3860

g

£13 5&:1 sohubljﬁﬁlﬁl F'f’ll'l"" "Birown foraot to

21369 Print"natiwe willage "in%

21378 Print"Bit stuPid - that ! You’ll

hawve to 9o back for kher,

21480 1fov=2Zandrr=2then22228

21418 ifow=2andrr<>2thenz3402

21428 ifcuv=Bandrr=2then234&0

21458 ifpr=2thenzl5809

22880 ifprdi2then2z2B2a

22018 gotozh4

A3250 remir

A32ed rem found Aaurora,

F3ETE rem¥Es

23200 20zub3I5188 Print"a"

33298 print"ARERMC on3ratulationz 11 You
hawve succeeded in dour mizsion 1"
33288 Print"iRFfter only A few howrs wor

178

Chapter 13 To talk of many things
kowow can take off in wour ship ")
223318 Print"and head for deep sPace.”
33328 print"EFNGD Frincez:s auwrora has de

mided zhe doezn’t want to marrs ",
33328 Print"the cruel ruler ofen after
all 1" :print" She much Prefers wou inE

2348 print"IEFretty neat el 7" Pokew+z]

cies for luck as 9ou 2et out once j
aea Prlnt"mnrw to find the crestal.”
= antol 2694

1

JBE

23258 qozubleddln print"#urora 2ives Lo
ak

3336

33?@ QAL &

@ rem found croestal

F339A rem¥s
33408 QozubI0188 print"@" Print"@kay -~
=0 4oun we 9ot the enerdd crustal."s
33418 privt"MHow all 9ow’ve 2ot fto do iz
find the Princess "
23428 Print"Don’t fordet to leave the cr
dztal here, " Sotozl3506E
22438 remEs
33448 rem no crEztal
32450 rem¥s
32450 QozubhIDlBd print"@" Print" @lkay.
aureora iz safe and dou can ",
23478 print"leave her here if wou wish.,"

aoto 1 580

Line 12070: This line comes from the DROP routine and applies if you type
LEAVE AURORA in Location 59. It sends you to a little section near the
end of the program (see later in this module).

Line 21205: I nearly forgot this line (as you’ll see from the odd line number)
which checksif youhave both Auroraand thecrystalintheinventory. If you
do then you GOTO Line 33280 which is the final success message of the
game.

Line21210: Asyou enter Location 58 (the airlock) from the outside this line
startsto check the state of your inventory. If you haven’t got the crystal this
line sends you to Line 21240 where it will check on whether you have

Aurora.

Lines 21220—21230: These lines assume that you < do> have the crystal
(otherwise you’d have bypassed them) and set CV to 2, print out a nice little

179

Commodore 64 Adventure

message, and direct you to Line 21380 (the last line in this Location section
in Module 9.1) which will allow you to move into the cabin. Note that we
have missed out all that previous text about the shred of Aurora’s gownetc.,
which is not really applicable any more.

Line 21240: Having checked for the crystal in Line 21210 we now check to
see if the Princess has been rescued. This line also checks if you have her in
your inventory and if you have then directs you to Line 21330 which will say
“BACK WITH AURORA ...”.

Line21250: Thislineisthestart of aslightly complicated sequence. Suppose
you have Aurora with you and you take her into the ship. You now have to
pass through the airlock again to go back out to find the crystal, and so all
the text in the airlock becomes a bit superfluous (bits of Aurora’s gown,
etc.). Thus I have broken this text into two sections:

1. The simple words YOU ARE IN THE AIRLOCK (Line 21270) which
will appear whenever you pass through the Location 58.

2. Therest of the airlock text (Lines 21290—21320). Thus this line notes if

HH = 2 (whichis only true once you havetaken Aurorainto the ship and left

her there) and if so sends you to the line YOU ARE IN THE AIRLOCK.

Line 21260: This is the line for those players who have rescued Aurora but
forgotten to “‘GET’’ her.

Line 21280: This line comes after the YOU ARE IN THE AIRLOCK line
and is there to check if you have rescued the Princess from the natives yet
(PR =2). If not then you will get the rest of the text displayed. If you have
you bypass and move to the final line of this Location.

Lines 21330—21370: The appropriate responses.

The problem I had with this section was quite considerable, trying to
ensure I covered all the eventualities. I think to a degree this area of the pro-
gram was a perfect example of how alittle bit of writing needs an awful lot of
thought — and also how the longest part of creating an Adventure is in the
tidying and debugging at the end. Don’t underestimate this.

Now we start the second section — the same responses for Location 59.
The same conditions apply only this time I referred most of the lines to an
area further on in the structure of the program.

Line 21400: If you have both the crystal and the Princess together now then
we GOTO the success message.

Line 21410: No Princess but we have the crystal.

180

Chapter 13 To talk of many things

Line 21420: No crystal but we have Aurora.

Line 21450: Thisisanother lineinserted between the text and just cuts out all
the stuff about signs of a struggle and the Princess has gone if you have res-
cued her.

Lines 22000—22010: This couplet isinserted in the native village. You prob-
ably won’t remember but when you typed this sequence in there was a
moment when you heard a woman singing sadlyto herself nearby. Of course
thisis supposed to be Aurora, soif yourescue her we need to omit these lines
as you make your way back from the hut.

Lines 33280—33340: What I have loosely termed the success message. Once
you have both Aurora and the crystal then you enter this routine. Victor
appears, and the congratulations message comes up. Finally Victor is
turned off and the program ends.

Lines 33350—33360: If you have Aurora but no crystal this message is
shown when you “LEAVE’’ her in Location 59 (remember Line 12070).
Note setting HH to 2. Finally you are returned to the DROP section so that
Aurora can be ‘dropped’ and the appropriate subtraction from the inven-
tory will occur.

Lines 33400—33470: These two routines apply to the text that appears when
you arrive in the cabin with either Aurora or the crystal — but not both.

Reading through the explanation to this module I found it pretty confusing
(and I wroteit) solet’s ease off a bit now with alook at the other perilsin the
Adventure.

Marshes and monsters
MODULE 13.2

1 9otod
& save"BE module 12,2V, 8 verifa"module 1
22", 8 stop

3 rem
BEdd ifleftEFCif, 4o="Jumk"andP=E7thenl 351

BOE ifleft®Cif, 4i="stru"andr=67thenl 3321

GEE ifleftEl i, d4r="floa"andr=E7thenl 331

Lyl

‘A ifleftFlifF, 40="znin"andPr=67thenl 321

MM ®

181

Commodore 64 Adventure

7718 ifwvef="throw"andP=c7thenaozub 1 S0EEH:
gotol 3206

132278 rem¥s

122880 rem quicksand

13298 remis

13308 ifobXilr==1andno$="rore"thenPrint"
iSmart move "in$Figotol3205

13302 goto?BEes

133285 print"The rope catchesz on a tree a
nd dou haul sourself out, " iqw=2ootodIZ0
132310 @9o0s0bl19008 Pprint"BiMown aren’t helpi
ng "ourself that way "inF aotobang
13328 print"@Mou are sinkin® further and
further "

12328 form=1tolB@d: nextn

13348 9osubl>2808 print"Glug. .. =0 VL~ TR
JHoU we gone' faotolZ@

This module is concerned with a few more I$ responses and the quicksand
that you will encounter in Location 67 (just south of the ship). To get out of
the quicksand you must have the rope (found in Location 15) and you must
negotiate this peril to acquire the knife which you need to kill the eel (it’s
beginning to sound like the nursery rhyme The house that Jack built!!).

Lines 6640—6670: A variety of possible words that you might try.
Line 7710: The VE$ command that will lead to success.

Lines 13300—13305: If you have the rope then you can pull yourself out of
the quicksand, set QV to 2, and go on your way. Line 13302 will just prevent
the print statement in 13305 should you type THROW BLASTER or
anything else.

Line 13310: If you don’t happen to have the rope with you — you’ll havea
few futile chances on a timing loop before you sink down into the depths.
Whilst you are trying to get out this response will come up each time you try
and “THROW?’ something.

Lines 13320—13340: Finally after you have had four abortive attempts to
escapethislittleroutinetakesoverand ‘““Glug . . . glug . . . You’vegone!!”,
To fully understand this section you need to enter Module 13.5.

The next module concerns the dinosaur that you will meet on your way
south towards the native village. I wanted to make the dinosaur just a little

182

Chapter 13 To talk of many things

bit difficult to pass — but not a deadly peril that would zap you dead. Per-
haps one of the little extras about creating your own game is the control you
have over the potential player. He or she has no idea just how lethal your
perilis likely to be, nor how many red herrings and traps you have sprinkled
around.

Back to the dinosaur. When I first wrote the story the idea was to kill it
with a few well-aimed shots from the blaster — but the more [thought about
it the unhappier I became. After all, I had the snake dying rather too easily
with a short sharp burst of firepower. After some thought and a browse
through my extensive science fiction collection of comics I decided the logi-
cal way to escape would betoclimb atree and swing past. And thisishow the
program ended up.

As the tree-climing idea occurred to me I decided to have a section
devoted to climbing a tree in any of the forest locations — and this is what
Module 13.3 is all about.

MODULE 13.3

1 Qotol

P =au¢”ﬁ@ moadule 13.3", 8 verify"module 1

. --.J J::l.:«top

3 rem

B2EE ifif="climb"then2osubl2E806: print "Rl

hat cdo wou su9gest I cllmb P aotoSAE0
7o ifveg="climb"then?226

??EE ifleft®ives, 3o="run"orleftfives, Zi=

"wal"thenPrint"@hich way 7" 90tod32@

728 ifnofli"tree"thenT370

I8 AfP=42orP=43orr=44thenaotoI2500

:g48 ifp=22orr=530rr=S4orp=55then9oto325

758 ifP=cZorP=63crP=4orP=65thenantoi2S

4

ol 1fP=74thenl 2526

Ta7E ﬂoslbISBBE Prlnt"ﬂvﬁu can’t really

climb MinodE actoSEEE

TREa smdubISHUB Prlnf"KSOrru I But I dno

not kaow how o "iprintved: SotoSREE

247TA rem¥s

12428 rem dinosaur

13498 remEs

13588 ifobk (7 >=-1thendosubl 8808 antonl 35

43

12518 9ozubl2088: print"#A1thoush sou fir

g refeatedly at the beast - wour ",

—

183

Commodore 64 Adventure

i‘i

13528 Print"zshotz Just bounce off itz a
rmour=plated skin 11 11"
13528 print"What now """ ?VaotoDERE
13548 print"§iYouw don’t aPPear to have an
dthing realls"

135560 Pr1n+""ub tantial to kill a beast
of that size".

13568 print"I think 90011 be able Lo do
dae it and kesp "

13578 Print"alive !! But the Problem is
gwttlnapagf O B~ T b [1%

12528 privt"®" Sozub33166
12598 print"sSmart mowe there "ing Print
"Maw doun can swing throogk the trees V)
12688 print"and 2et past., You climb cdow
n oagain further alons, " du=2 9o0todz20
32478 rem¥s
32428 rem climb trees
22490 remE¥
32598 9osubls@@d print"4To the north lie
2 a ruined city - to thesouth more ")
22518 print"trees stretching toward the
horizan. You climk down. " 9otod326
32528 2osubl13608 print"dTo the sast wou
can see Jour ship - e lzewhere ")
32528 print"Just treez and more tregz ..
You, climb down. " 2otodZz8
32548 Qcsuklsfod print"@To the south wou
can see smoke curling in the sky., T")

32958 print"here muzt be life of zome =
ort that wavw., You climb down, " 9otod228

Lines 6860 and 7500: The I$ and the VE$ command for CLIMB. Here
would be a good moment to stress the difference between the two. The I$
command is for the player who just types in CLIMB and nothing else, and
the response is “WHAT DO YOU SUGGEST I CLIMB?”’. The VES$
command CLIMB will always be the first part of a command, which could
be CLIMB WALL or CLIMB TREE.

m

Line 7700: This line deals with the possible command WALK or RUN.

Lines 7920 and 7970: The only valid noun you can CLIMB is TREE soif the
player types anything else at all this couplet responds with the reply ‘“YOU
CAN’T REALLY CLIMB” and then the appropriate noun (eg wall or
stones).

184

Chapter 13 To talk of many things

Lines 7930—7960: If you climb a tree in a northern forest location you get
oneresponse, if youclimbatreeinthecentre you getanother, and if youshin
up that tree in the southern area of the forest you will get a third. These lines
point to the appropriate response. Finally Line 7960 is for climbing the tree
when confronted by the dinosaur.

Line 7980: A final response to the VE$ commands which deals with an inva-
lid word (such as STRANGLE or READ).

Lines 13500 and 13540—13570: If you try and Kkill the dinosaur without
having a blaster then you will get this response.

Lines 13510—13530: If you do have the blaster then these lines tell you the
shots bounce off his skin. What now?

Lines 13580—13600: Success at last. You’ve climbed the tree and can get
past.

Just a note here. In this location you can go north again should you meet
the dinosaur, but you cannot go south. The appropriate lines allowing this
to happen are Lines 6170 and 6180 in Module 11.2.

Lines 32500—32550: These lines are the descriptions of what you see from
the top of the tree. I have tried to give little clues without letting too much
information creep in, a good way of maintaining interest.

Thenext Module deals with two more perils — the snakein thecityand the
natives who ‘have’ Aurora. The snake is a pretty tame peril really, fairly
easy to escape and unlikely to cause a true Adventurer any problem (except
that a true Adventurer will be expecting some kind of trick so it’s a kind of
double-bluff). The natives are going to be a bit more difficult, and I will be
describing more of the programming for this section later.

MODULE 13.4

1 9otol

2 save"@8 . module 132.4",8 werify"module 1
Z.4". 2 atop

3 rem

7E78 ifvet="get"andr=32then33l

7aE8 ifvet="take"andp=22theni 3128

TR0 ifvef="9rab"andr=32then33124

129780 rem¥#

12988 rem snake

12998 rem¥¥

185

Commodore 64 Adventure

123888 ifokliFis—1lthenprint"iikas" Saosubl
BEEE antol ZA34
12818 ifobsc2i=—lthenPrint"@ou " ve only

aot a knife ~ not enowsk 1" dotoREB0@
12828 print"@ouw hawven 't ansthing to "iw

¥ " it with... what now PN CocktoSAEE
13828 print"dThe =nake crazhes into a4 ne

arky house sending clowds of "

12848 print"chokin® dust into the air as
it dies."

12058 FPrint"#M ocky wou khad that blazt
"ingew=2 dotodBZO

123678 rem$s

12628 rem natives

13698 rem¥s

13788 ifobyic?r=-1thenl 3730

13718 aosubl2Bdd print"§iThere are far to

o mand foro owow to kill! Best tea '
1372/ Prlnf"another wad, Ferhaks aurora

could helr .. 0" SotoSBBGE

13728 gosublE=0@d print"iivour blaster wil
1 take sewveral hours to ")

13748 pPrint"recharde after the battle wi
th the dinozaur, ")

12758 print" Yoo must think of zomethin
9 else." 90to30606

2358 remE¥

331808 rem illefal 9et of aurora

3118 remks

F3lze ifnwsrZandnoE="aurora"thenial?
33138 1w dandﬂu$=“Pr1nca:s"+hen“4178
#a14d ifrecrandnod="Princess"then33178
23159 2otollVog

32178 9osub35108 print"&"

22120 print"®orry "inE Print"but the na
tives don’t like 3 Pusher 117

231928 print" and thes did waron wou nob
to try and take her.

33288 print"Thew ‘we killed 9o ! Shill
that”'s the was it @oss 1" 9obolS8

Lines 7570—7600: Should you try and “‘GET’’ Aurora in this location then
these lines refer you to the appropriate area in the program.

186

Chapter 13 To talk of many things

Line 13000: If you have the blaster (and any Adventurer worth his salt will
besureto have picked it up right at the beginning) then you get this response
if you ‘kill’ or ‘shoot’ the snake.

Lines 13010—13020: If youdon’t happen to have the blaster you will drop to
Line 13010 which checks to see if you have the knife. If you have then this
response is shown. If you have neither then you’ll go to Line 13020.

Lines 13030—13050: If you succeed in killing the snake the appropriate
message appears and the variable SV is set to 2.

Lines 13700—13750: This section refers to an attempt to ‘kill’ the natives.
Firstit checksto seeif you havethe blaster (Line 13700) and if you have then
you get the bad news that it needs recharging (Lines 13730—13750). If you
don’t have the blaster then Lines 13710— 13720 give you a little clue about
the fact that Aurora might help.

Lines 33120—33200: Suppose you tried to get Aurora in this Location (92)
thenyouwould have been directed to this part of the program. First it checks
toseeif you typed ‘‘aurora’’, ‘‘princess’’ or ‘‘Princess’’ (note the capital P
just in case) and if not then Line 33150 will send you back to the “GET”’
routine.

If you did however Lines 33170—33200 send for Victor who tells you that
the natives ‘“. .don’t like a pusher . .”” and they’ve killed you.

MODULE 13.5

1 QDtu_

& osmanee EE oo le 120572 verifa " module 1
5" 53 shopP

3OrEm

S1VE premndi

158 rer looP Swamp
S190 remEs

SRR ifP=92thenh2RE
S218 1fParedthensBEag
Besd ifw=2thensDEn
D258 3=q4+]

E2dE 190500t oSBR6
SEEE if=Sthenl 3326
SEEE rembE

a7V rem look natives
SR remEs

SEHE RS2t heneBEaE
D28 ifre=2thencBEE

187

Commodore 64 Adventure

)

5218 1fP=92andrr=2thenc5at
So2E 9=9+1
SaEa if940500tonB06
448 if9=Sthenaozubl18803 print"iKesP tra
ine "inF Print"Mhat next PV iactolEzB
5550 ifa=18andiF="kisz auvrora'"thenlddza
5370 ifq=10then9czubl 2888 Print"BiToo lat
! The matives hawve Pushed Qo0 "
ifa=10thenPrint"outside the hut - b
Du can't take Furora ",
ifa=18thenPrint"with @ou. Better 2
a4 and try to think how to Y
ifq=18thenrrint"rezscue her." 9=@.na
nP=1"2otod 320

L) o GO
SR TNy ol
1'5 ol o T e

D (M= Ny

»—L-l-\

This module adds two timing loops for the quicksand and the natives.
Following the same pattern as the eel loop (Module 12.6) they just count the
number of inputs and at 5 (for the swamp) and 10 (for the natives) direct the
program to the appropriate response.

Inthecase of the quicksand — you’ve had it. In the case of the natives you
are allowed to leave the hut to go away and think again.

Summary

The program is almost complete now. [hopethat this chapter and the next is
beginning to give you ideas which you can develop yourself to make your
own Adventure interesting and a challenge to players. As I’ve already men-
tioned one aspect I was a little unhappy with was the fact that in order to
impart an air of atmosphere — so that you really felt as if you were on the
planet — I used up a lot of memory in the text descriptions and this left me
with too little for embellishing the perils and adding more complicated rid-
dles and problems to solve. I still think I made the right decision because I
dislike the:

you are in a cell
keys bottle
what now?
display common to so many Adventures. Nightmare Planet is enriched with

science-fiction prose (adapted a little by the constraints of the 64) and I
wouldn’t have it any other way.

188

CHAPTER 14
A Kkiss in time

We have just a few loose ends to tidy up now and our story is complete. It
may have seemed a long haul, but I’ve had fun and I hope you have too.

Inthis chapter we are concerned with some extra words that players might
use — and as a grand finale the actual ‘rescue’ of the Princess.

With a little help from my friends

HELP is probably the best-used and most annoying of all the words in
Adventures. It can be the light that sparks you past the previously insur-
mountable problem and it can be the frustration that threatens the existence
of your micro. There have been times I have wanted to beat the keyboard to
pulp at some stupid response that helped me not one iota and there have
been times I could have kissed it (metaphorically of course).

So when I came to Nightmare Planet I had to decide just how much help I
was goingto give tomy potential player. I wanted to have Victor come down
and introduce the ““HELP”’ section and to have a few hints. Of course you
can give misleading clues (very sneaky!) but I’m basically honest and
decided to play it straight.

MODULE 14.1

1 2oto3

2 zawve"BR imodule 141", 8 verifuy"module 1
4.1". 8 'stop

3 rem

E5EE ififF="h"orit="helr"thenl1P8A

12578 rem¥s

18226 rem help

18928 rem¥s

118868 ifkhr=2thenl 1259

118985 ifP=24then9ozub3S100: Print" 8" 9obo
11896

11812 ifp=52thenlczub3S108: print"8" (2oto
11188

11828 ifP=E7thenaozubi3S188 Pprint"&@" 9cto

189

Commodore 64 Adventure

111z@

11838 1fp=92then9osub23188 print"@" 9oho

11146

11848 ifr=lorp=2orf=11orp=120rF=22%henao

=nkh35186: Pr1n+"§"iyn+n1114ﬂ

11850 ifP=4ZorP=c2orP=3thenaozsnbaS106F

rint"&@" antolllVe

11868 Qosubi5l88 print"s"

11878 print"@lm hawvins a little circuit
troukble md s T E ek

1188@ Prlnf“Trs Lo cobPe on o owour oo For
bit ..." 2otoSEEE

11@“2 Frant"@Trs Eilling it "inEd Print"k
efore it kills aou DY actoBEaE

11188 print"wWow think kard "ingE Print"T
Fere must be somsthins laine ")

1111M Frint"arownd that could helP ao
A P) A 1 1

11128 print"wSticky situation thiz "n$:
Frant"I zoasezt throwing something ”j
11128 print"to Pull dourseld ook, " S0
g w5

11148 print"wRF: the natives think awro
ra 1z their Quesn M

11156 PP1n+“it misht kelr it w@ow showsd
them @ou e Juite ")

11168 Print"Friendla with avrora,. " ankbod
BAE

11178 privt"@ o=t 1n the forest, eh
Fea cdon t 9o climb o a "o

11128 Print"tree and take a look around.
"antoSB@AA

1119 print"wle both arFear to be lost
snE I Print"Better dust ")

11288 Print"keer walkin® and gou're zure
to Find the way ewventual e " ankod 226
112568 print"&@" ‘oosnb351868 print "ls e
ot friends at the moment "onF i ectoll3la
11228 print"s" fQosub35108 Frint"dWYoln can
4 okill me "on#F

11258 print"d@l “m the new inewlnerable mo
del. But .0 "iootoll3le

i

b

190

Chapter 14 A kiss in time

11286 Print"ﬁ"'andnb S1EE Pt wThat wa
=it owerd nice "in¥

11318 Frant"l zskhan’t WhelPEd Yon andmors
T ,Z

113228 print" You ocan coPe on o wour o,
=Tt Aba1%1515]

Line 6560: The I$ command.

Line 11000: In Modules 10.4 and 12.1 you may remember Lines 7865 and
12305 catered for the possibility of the player either throwing or killing
Victor. If this did happen it seemed logical that Victor would be a trifle
‘miffed’ and might not ‘help’ so readily, so to cater for this I set the variable
HR to 2. This line directs the program past the help routines if HR does
equal to 2.

Lines 11010—11050: These are all pointers that operate should you type
HELP in any of the appropriate locations.

Lines 11060—11080: The standard response if you ask for help in any of the
other locations.

Lines 11090—11200: These lines are the appropriate replies, again depen-
ding on the location.

Lines 11250—11320: If you have been nasty to Victor then this section deals
with the response to killing or throwing him around. The little touch of
Victor almost sulking because you’d abused him was suggested by Brendon
Gore — and illustrates the importance of getting others to play your game
before you use up all your memory. I knew as soon as Brendon made the
suggestion it was genius — and was very glad I could incorporate it.

I left spaces in this section to allow me to add other responses at a later
date, but sadly the shortage of memory prevented it in the end.

Using and firing

MODULE 14.2

1 9otol

2 zave"®83 module 142", 28 verifs"module 1
4 ;‘.' v ,-I L _.+' l"lp

3 rem

YEEA 1fwved="yse"thenl 1566

191

Commodore 64 Adventure

11478 rem#¥s

11458 rem use

114598 remeF

11588 ifP r24orrs7dandnof="blaster"ther
11528

11518 ifrr24orporxid4antol 1alB

11526 ifr=24orr=F4ancdnof="blazter"thenll
aEE

11528 ifp=24orr=7Yd4andnof="knife"thenll35
5]

11548 qotollésl

11550 ifobri@r >-1thensozubl 20068 Print" A

You haven’t 9ot it 11" gctoDERERE

11568 ifobyidc8)=-1thendosub3S1E8@ print"&"
Print"mdIust a knife “ings" P

11578 ifobyii@i=—=1lthenPrint"@ihat s a 1it

tle ambiticous isn't it f"'ao+0JﬁBG

11588 ifobrc?roz=-1thenaosublagad: print"4

You hawven t 3ot it VY aotoSEER

11598 ifr==24andobii7i=-1then2os nblBB@BZP

Fint"#®ood thinking " aobol 2826

11688 ifp= ?4And0b2i")=-1+hpﬂuovub4 laap

Fint"&E" print"wWhiocd thinking! " 9otol3518

11616 fori=1lto3

11628 ifob#dir=nofthenl les

11828 ifobhdii=—1lthenl leel

11648 vexti

116568 2osubl 2888 print"kiThere s no Point
in usina that 1" actoSE6R

11668 print"fHow do 9ou want to wse the

Yo% i Eosuk 12008 2oto3R608

Thismoduleis astandard module following the pattern of others so far, and
dealing with the command USE. I have concentrated on using the blaster or
the knife, as these would seem to be the logical objects.

Note the last two lines in the module which allow for the object not being
recognised as a valid one (Line 11650) and then being recognised (Line
11660).

MODULE 14.3
1 [okod
2 save"BE module 14,2, 8 verife " module 1

192

Chapter 14 A kiss in time

G, 3", 2 stof

a3 orem

TEZA ifved="fire"thenlZVEE

TEEA ifved="shoot"orved="blazt"thenlZ208
TESE ifwvefd="ztab"orved="cut"thenl2ved
1267VE remEs

12628 rem firedsztab

12890 remks

12788 ifp==24andobi(Vi=~landnoE="blaster"
thenl ZEEE

12718 ifp=28andobi(7i=—1landnoF="kblazter"
thenlz528

12728 ifp=F4andobuc? r=—1andnot="blaszter"
thenl3516

2728 ifp=3Zandobuc?r=-1andnof="blazter"
thenl3736

12748 ifnof="bhlazter"andobX (7 -1thenpr
int"#@on havent Qo + A P B = Tk b 515

12758 aosubl2888 print"KiThat 2 not 90ing
o khelp won, " aotoDa06

AVER 1fP=2Bandobi (@ i=-1thenl 230@

) 1+nni-“kn1f="=ndob“'2.:f-1th8ﬁprin
& (el hﬂvpn oot it 1"iaotolEB@

27En aotol2V58

Another standard module which duplicates the KILL module but allows
you to SHOOT, FIRE, BLAST, STAB or CUT and then directs the pro-
gram on.

Fruit and nut case

The fruit and nuts on the bush sitting innocently in the desert do have a spe-
cial significance. Once eaten it’s possible to remove your spacesuit without
expiring in the poisonous atmosphere (suspension of belief required here)
and if you don’t remove that spacesuit you can’t kiss Aurora and escape.

Programming this module into the 64 was another tricky bit of
brainpower and late night work! I had to intersperse lines into the GET
module quite considerably as I needed to be able to cope with situations
where people would try and ‘“‘GET’’ the nuts or fruit in Location 37, or just
“EAT’’ theminthat location orinanotherlocation. As well as that though,
Ialsohadto prepare for the player returningto Location 37 asecond or third
time and trying to GET or EAT the nuts and fruit a second, third or fourth
time. The result is Module 14.4.

193

Commodore 64 Adventure

MODULE 14.4

1 aotod

2 save"BE module 14.4", 8 werifu " moduls 1

4.4",8: ztop

2 rEm

B ifigF="eat"thernPrint"kMhat woulad Qo

like to esat 7" 9otoSB6E@

TEISA ifwveF="eat"thenIl&dd

11728 ifP=37andnof="fruit"thenl 1 266

11758 ifP=37VandnodF"nuts"thenl 12606

11768 ifp=37andnofF>"fruit"thenl 1208
Fg=1%

11778 ifp=37andno¥F="nutz"thenll
11788 2otol 1260

11798 ifp=2Fandz=1lthenl 1528
11868 ifz=lthenl 1286

118768 actoll228

1128880 2ozubl2008 print"@Tre Juzt eating
them "inFootoSEE9

12868 ifokbkigi==landnof="sPracesnit"then?
15868

31478 rem¥s
21428 rem 1f remowve sPacesuit
314268 rem¥s
21588 1fp=58then]l 2B2E

21918 ifp=53thenlzaza

21528 iffwcethen31068

wlﬁ 34 iffv=2thenl 2034
S1E78 rem¥s

31588 rem if eat twts

21598 rem¥s
21688 ifnofF="ruts"orrodF="fruit"then3l&28
21618 2oz0bl12088 Frint"@loh | Why do gow
want to sat Whatd 7" ootoSEEE
21ezd ifr=37thenfrint"#@kas . Mm! Taztes n
loe "anE i aoto3lE5H
S1E38 ifobRi3r==1lthenPrint"ilkay - taszte
£ onice Miaobo3le5R
21848 ifobd(3) ~1thendosubl 28880 print"4
You, haven 't got any "nof i entoS0046

31658 ifz=1lthenZl1708

2lecd Qozub33108 : print"#@" (Pprint"HWlnzpire
d move there "in¥

194

Chapter 14 A kiss in time

178 print "Wl o zhowld be feeling a st
Fravae zenza~tion rormine theowskl U
F1E28 print"dour bods - and T ol o
an breathe ChaPPily? withoot Moy
31838 Print"spacezyit, Yoo can remove i
L iobuidi=0 z=] 0 fy=2 0 asg-1 0 GohoDEEg
31?@@ SosublEaed peint" @iThiz time w@ou
el o different. M)

31?1@ Frant"still it doss ztor gou feslid

=

Fnary, " obii 2 =0 9ot aSae

e

Lines 6680 and 7650: The I$ and VE$ commands.

Lines 11720—11790: These lines interleave with the standard lines in the
“GET”’ module (Module 10.3). Basically they allow you to type GET
FRUIT or GET NUTS both in Location 37 and in any other location. The
variable Zis set at 0 until you have eaten the nuts for the first time — thenitis
set to 1. This varies the reply (as you will see in a mament).

Lines 11860—11880: Still in the ‘““GET’’ module Line 11860 starts by
checking the value of Z. If Z=1 then the response in Line 11880 is JUST
TRY EATING THEM. The reason for this is for the situation where the
playertriesto GET the nuts a second time, after eating them once already. If
Z =0 then on the command GET FRUIT the program loops back here to
Line 11830 which is the ‘““‘OKAY”’ part of the ““GET’’ module.

Line 12060: This line comes from the ‘“DROP’’ module and refers to the
situation if you decide to ‘drop’ or ‘remove’ your spacesuit before you’ve
eaten the nuts. It directs you to Line 31500.

These next two sections of Module 14.4 are to cope with the fact that if
you should try and remove your spacesuit too soon — you will die in the
poisonous atmosphere. . . unless you have eaten the nuts.

Lines 31500—31530: Obviously you can remove the spacesuit in your
spaceship — so Lines 31500 and 31510 cope with that. The variable FV con-
trols eating the fruit or nuts (a value of 0 means you haven’t eaten yet,
whereas 2 means you have). Thus Line 31520 will direct you to the ‘*“YOU
WILL DIE” areaand Line 31530 willmoveto the “‘OKAY’’ responsein the
“DROP’’ module.

Lines31600—31610: Inresponsetothecommand EAT Line 31600 checksto
seeif NO$is ““NUTS”’ or ““FRUIT”’. If not then you get the standard reply

195

Commodore 64 Adventure

“UGH! WHY DO YOU WANT TO EAT THAT?”, in case the player
types ““EAT NATIVES”’ or some other daft command.

Lines 31620—31710: This section copes with the following situations:

1. You eat the nuts without ‘““GETTING”’ them first (in Location 37) —
Line 31620.

2. You eat the nuts after getting them (which can occur in any location) —
Line 31630.

3. You try to eat the nuts out of Location 37 when they aren’t in your
inventory — Line 31640.

4. You eat the nuts a second, third, etc. time — Line 31650.

Note that Line 31690 contains several variables which do the following:

1. Remove the nuts from the inventory.

2. SetZtol.

3. Set FV to 2 to allow safe removal of spacesuit.
4. Subtract 1 from G (inventory variable).

Terrific man!

This must be the highlight of the game — you’ve found Aurora and you
rescue her. I wanted something a little bit different to mark the moment of
triumph, and decided to extend my programming for the actual kiss to
include sound and visuals which should sound and look a little bit extra.
This final module is that moment. . .

MODULE 14.5
t
Ay

:ho

-~
i
"

imodnle 14,508 verifu " module 1

FEm
Tran ifved="kiszz"andp=92
henl4aam
7r48 ifwed="kiszz"andobX(2r=-1landnoF="aur
ora"thengotoldzla
7oA ifved="kizz"thendoto?E1d
FTrEda ifpaorazthen? ol
Tred ifweds= "huy"arwe$="love"mr¢F$-"cudd1
e"thengoto?Z0E
FEEa ifved="hoa"orved="love"orved="cuddl
e"thensoto?flﬂ
Y798 qoto?792a

LA
0 IB O
l;x |EI

£y

"
L]

)

ancdnofF="anrora"t

196

r

e R R ey] ._-f

o Zans

146168
“ hawe
14826
a9 at h
148326
14E46
wo. 143
14856
:"'? .# Iy .'
149uu
14E7E
14626
148056
141686
14118
14126
141726
14148
141564
14186
141768
DN -] o
14188
Pe wit
14158
e shi
14288
ke aunr
1421
o Bk
14226
tod B2E

6

Chapter 14 A kiss in time

Fosub 1388 Print"BThat = not friend
ouEk. Try 50 r=th1n3=lfﬁ "=90t05968
osubl28dd print"#ou re acting a b
arae "inE ctoSERg

(=40 L

rem kilss Princess

=10k &

ibeH'6;=—1thhr9__ub148U3 Frint " B
tokizss her wearin® a sPacesuit"’s
lbebeJ~*1+thPF1ﬁf" car ol F
= thogdalt ao ko that 1"
1Fnbﬁi6"-1+hﬁnpr1n+"5} ‘= Poinkin
er month L. aotoSRER

forl=GtoZd Ppokezsc+]l A inextl

PokelZ, 3 pokewd, 16 Pokesc+d, 1 i Poke
'F‘llPﬂ“"l 2@ pokescd 55

fr=5238% fort=1to28d: fi=fr+peek (zc+
h+—int£F' SRS 1= -h 25
Fokell, 1f Pokehl . klf

UEEAA

Frivtchr$cl2

fort=1tod

Praint"SRTERRIFICH WAHE @ g
form=1toDaE rextm

Print"M "
form=1taD86 nextm

nextt

Pokewo, B

Frint"i@eThat not only did soun a P
foaood but the natives ")
Frant"are smiling now. You canesca

hoaurora. " nus2ipr=g

Print" RN oW 900 must retorn bo b

Foand comp lete gour M
Print"mizssion. Dom t forsest ko ta
ora 1" iaotodEze

Gosubl B2 print "8) Mice. Eub o
wld kesp "

Fraint"goue mindon the 9ame "inF 20

197

Commodore 64 Adventure

Lines 7730—7750: In response to the command KISS these three lines cope
with all possible eventualities. The first is for kissing Aurora inside the hut,
the second for kissing her anywhere else in the game, and the third for kiss-
ing anyone or anything else.

Lines 7760—7790: Lines 7760 and 7790 are to allow the program to bypass
these areas if not applicable. Lines 7770 and 7780 cover the responses
“HUG”, “LOVE” or ““CUDDLE”’ instead of ‘‘KISS”’.

Lines 7800—7810: If you try to hug Aurora then the response is ‘“NOT
FRIENDLY ENOUGH — TRY SOMETHING ELSE”. If you try and
KISS anyone or anything else then Line 7810 comes back with ‘““YOU’RE
ACTING A BIT STRANGE”. This line seems to cause quite a bit of
amusement from the people I’ve watched playing.

Lines 14000—14020: These lines gives a response should you try and kiss
Aurora with the spacesuit on. There is a subtle hint in Line 14020 — ‘‘She’s
pointing at her mouth’> — which could mean many things but is meant to
refer to the ‘eating nuts’ command.

Lines 14030—14220: Thisisit! The kiss! First we have a sound effect similar
toascalerising and falling, then the words ‘““TERRIFIC MAN!!!"’ flash on
and off fivetimesonthescreen. Line 14110 containstheactual ““TERRIFIC
MAN”’ butit has been printed as graphic symbols — just press shift and type
away.

Finally a message about the natives being friendly comes up and you’re
allowed to leave with Aurora.

Lines 14210—14220 are just a little extra — should you decide to kiss
Aurora again anytime.

Testing Modules 14.1—14.5

You don’t really need to test these modules separately, because you have
finished the game. All you need to do is quickly find your way down to the
hut, save to tape, then try hugging, cuddling, kissing etc both inside the hut
and outside. The appropriate replies should occur.

Summary

This final chapter introduces you to the concept of just stretching yourself
every once in a while to produce that little bit extra — in this case the kiss. I
found that the time to add the music and visuals is nothing like as extensive
as time in debugging and checking. And it does give your program that
polish.

198

Chapter 14 A kiss in time
The marathon is over, the game is complete. Relax and play it awhile,

deciding if you want to alter any lines and add your own personal touch
before finally trying it on your friends. Above all, have fun.

199

CHAPTER 15
Looking to the future

Extending Nightmare Planet

Now that you’ve finished the book you needn’t stop here. You can try
extending the program. You can add locations and take away locations.
Youcanmakeit possibleto playasaman orawoman (try adding a few more
variables such as changing ‘‘aurora’’ for P$) then have the INPUT “‘Are
you male or female’’ right at the start and change variables accordingly.
There are many different possibilities open to you.

Several little ideas occur to me as I write this. Perhaps your hero could
have oxygen cylinders which are in danger of running out of air — unless he
can find some more somewhere in the Adventure. What about a clue in the
pool in that clearing in the forest? Perhaps the gem might be of use after
all. .. in rescuing Aurora! I’m sure you can think of more.

I’ve already mentioned the problem of memory — but if you cut out all
the REM statements you should find you’ve quite a few extra bytes. Why
not create the title sequence and then reload the program after the titles
finish? Why not have a whole section of the Adventure underground (pass-
ages leading to an underground city which you reach by going ‘‘down’’ in
the ruined temple) which loads in after you go through a certain section of
the program. The possibilities are limited only by your own mind and ima-
gination.

The 64 can give you graphics, sprites and sound. Use them.

Over to you

Only you can sit down and create your own plot, write your own story, pro-
gram your own Adventure. Don’t be put off by the length of my program —
your first can be half the length, one tenth the length. What matters is that
you give it a try. There’s a tremendous feeling of achievement when you
actually start to move around your own locations, and start to pick up and
drop things. I know you can remember that moment when the first truly
original program you wrote actually worked. It’s like hearing a record for
the first time that really hits you — and whenever you hear it again you can
remember your first time, you can almost feel as though you’re back therein
time, smelling the air, seeing the place. It’slike the first time yourode a bike,

201

Chapter 15 Looking to the future

only better because your program was just yours — no-one else had ever
written exactly the same thing.

It’s crazy but it’s true! Your first really original Adventure will give you
more satisfaction (much, much more) than finally completing Nightmare
Planet. And don’t get worried about programming skills — my own abili-
ties were pretty negligible before I started to write this book — but it’s not
that hard really. If you write a really good one send it along to me at
Sunshine Books — I’m still basically a player with a taste for Adventure.

202

Afterword

This has been an invigorating book to write — and quite an experience. I
have tried checking, double-checking, triple-checking and then checking
again to eliminate errors in both the programs and the text. Inevitably I will
have missed something somewhere.

My grateful thanks go to everyone who has helped me in playing the game
and writing the program. When I started I wasn’t sureif I could doit —but I
have. You have just seen how I, personally learnt how to writean Adventure
and improve my own programming abilities along the way.

I still find Adventure my favourite computer game. It seems a whole
bunch of other people do too. Enjoy yourself creating your own.

203

Appendices

APPENDIX A
Table of Variables for Nightmare Planet

The
The
The
The
The
The

starting
starting
starting

VARIABLES

address of the VYideo Chip ¢ %=53248)
address of the Sound Chip (5C=54272 >
address of the Screen Border Colour ¢ B5=53288)

startin9 address of the Screen Centre Colour (BC=53281)

startin®
starting

address of the Screen (5S=1024)
address of the Colour Memor: (CS5=55296)

Volume of the sound (V0=54236)
Waveform of VYoice 1 (W1=54276)
Waveform of Voice 2 (W2=54283)
Waveform of VYoice 3 (W3=54250)
Attack/Decay for Voice 1 (R1=54277)
Attack/Decay for Voice 2 (R2=54284)
Attack/Decay for VYoice 3 (RA3=54291)
Sustain/Release for Voice 1 (S1=54278)
Sustain/Release for Voice 2 (S2=54285)
Sustain/Release for VYoice 3 (S1=54292)
High Fredquency for Yoice 1 (H1=54273)
High Freduency for Voice 2 (H2=54280)
Hioh Freduency for Yoice 3 (H1=54287)

Low
Low
Low

Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set

Set a

Set
Set
Set
Set

The
The

Frequency for
Fredquency for
Fredquency for
at 2 when the
at 2 when the
at 2 when the
at 2 when the
at 2 when the
at 2 when the
at 2 when the
at 2 when the
at 2 when the
at 1 when the
at 1 when the
at 1 to allow
at 1 when the
at 2 to stop
at 2

at 1

at 2

Voice 1 (L1=54272)
Voice 2 (L2=354279)
Voice 3 (L3=54286)

Princess is rescued.

Crystal is found.

Snake has been killed.

Eel has been killed.
Quicksand has been nedotiated.
Dinosaur has been killed.
Natives are friendly,

Nuts have been eaten.

Eel has been killed

Eel has 9ot wou to Prevent movement.
Jou have been to the hut once
movement. from the hut

Nuts have been eaten

movement from Location 22

when Aurora is in the shiP.

when the eel has you to stof a “look” resPonze
when Yictor will not “help’ wou.

position of the current location
position of the new location

207

Commodore 64 Adventure

OBZ
OB$
51
A%

HE
s
VES
NOg$

FI
SP
M
G
i

208

Integer value of Object in ObJject Array.
Sin9le word descriPtion of Obliect.
Lon® descriPtion of ObJject for Location.

Local variable to wait

Name of Playver.

for InPut.

Command exPected from Plaver.
Verb expected in a 2 word command from Flaver,
Noun exPected in a 2 word command from Plaver.

Local variable used to
Local variable used to
Local variable used to
Local variable used to
Yariable used to count

sPlit I$

split IS

create a timin9 looP for Pausing.
add obiects in Inventory,
obiects in the ObJject Array.

APPENDIX B
The Line Numbers

209

Commodore 64 Adventure

PRE-CREDITS

YOU RE
DEAD

VARIABLES

SOUND
EFFECT

TITLE
PAGE

TITLE
SCRIPT

SPACESHIP
NOISE

S

S
TO START

SPACESHIP
CRASH

VICTOR
SCRIPT

210

O

8

360

1300

2030

2[00

2170

2400

JUBEEEEE

OBJECTS
DATA

POSITION
AND
LOCATIONS

OBJECT
LOCATION

PERIL
POINTERS

EXITS

« INPUT
INSTRUCT(ON

LOOP
EEL

LooP
QRUICKSAND

LooP
NATIVES

NO
EXITS

PREVENT
EXITS

3700

4000

4150

4320

5070

5200

5290

6000

SRCRURURURURURORONCRORC

LOCATIONS

SPECIAL
LOCATIONS

SNAKE
DESCRIPTIONS

EEL
DESCRIPTION

POISONOUS
AlIR
DESCRIPTION

IF REMOVE
SPACESUIT

CRYSTAL
DESCRIPTION

CANNOT
GET
CRYSTAL

cLiMB
TREE

QUICKSAND
DESCRIPTION

DINOSAUR
DESCRIPTION

21960

31000

31500

31600

32000

32070

32600

32700

CHCHCHCRCRURURUNCRURCRE

Appendix B The Line Numbers

NATIVES
DESCRIPTION

BACK TO
HUT AGAIN

ILLEGAL
GET OF
AURORA

FOUND
AURORA

FOUND
CRYSTAL

NO
CRYSTAL

MEALY
BUG
SPRITE

VICTOR
SPRITE

MEALY
BUG
DATA

VICTOR
DATA

SET UP
SPRITES

33240

W
G
g

35100

35420

ARE: E
JEOO0O0E

211

Commodore 64 Adventure

COf‘{PiﬁNDS

BYPASS
DIRECTION

AIRLOCK

MOVEMENT

CHECK
1$ FOR
SPACE

Vr:‘l.%> +1r_\‘t)o$

212

7030

7070

JoUaete

7200

7300

7420

JUB00

VERB
COMMANDS

INVENTORY

HELP

USE

GET

DROP

7500

10000

11700

JEEEEOU0O000E

KILL

EEC
PERIL

FIRE +
STAB

SNAKE
PERIL

QUICKSAND
PERIL

DINOSAUR
PERIL

NATIVES
PERIL

KI5S
PRINCESS

12300

12500

12700

13500

13700

UNURURURORURIRURCRIRCAG

14000

Appendix B The Line Numbers

GENERAL
INSTRUCTIONS

LOAD

SAVE

QUIT

PIP

BURP

15000

16000

17000

80000

19000

JUUBE

213

APPENDIX C
Overall Flow Chart for Nightmare Planet

END OF
GAME
ROUTINE

SET UP
VARIABLES

SET
POSITION

ON GOTO
UTI’IONS

DISPLAY
EXITS

INSTRUCTIO
ROUTINE

POISONOUS
AIR
SECTION

QUICKSAND
SECTION

INSTRUCT

+ RETURN

215

Other titles from Sunshine

THE WORKING SPECTRUM
David Lawrence

0 946408 00 9 £5.95
THE WORKING DRAGON 32
David Lawrence

0 946408 01 7 £5.95

THE WORKING COMMODORE 64
David Lawrence
0 946408 02 5 £5.95

DRAGON 32 GAMES MASTER
Keith Brain/Steven Brain
0 946408 03 03 £5.95

FUNCTIONAL FORTH for the BBC Computer
Boris Allan
0 946408 04 1 £5.95

COMMODORE 64 machine code master
David Lawrence and Mark England
0 946408 05 X £6.95

Advanced Sound and Graphics for the Dragon computer
Keith and Steven Brain
0 946408 06 8 £5.95

Spectrum Adventures
Tony Bridge and Roy Carnell
0 946408 07 6 £5.95

Sunshine also publishes

POPULAR COMPUTING WEEKLY

The first weekly magazine for home computer users. Each copy contains
Top 10 charts of the best-selling software and books and up-to-the-minute
details of the latest games. Other features in the magazine include regular
hardware and software reviews, programming hints, computer swap,
adventure corner and pages of listings for the Spectrum, Dragon, BBC, VIC
20and 64, ZX 81 and other popular micros. Only 35p a week, a year’s subs-
cription costs £19.95 (£9.98 for sixmonths)inthe UK and £37.40 (£18.70 for
six months) overseas.

DRAGON USER

The monthly magazine for all users of Dragon microcomputers. Each issue
contains reviews of software and peripherals, programming advice for
beginners and advanced users, program listings, a technical advisory
service and all the latest news related to the Dragon. A year’s subscription
(12 issues) costs £8.00 in the UK and £14.00 overseas.

For further information contact:
Sunshine

12—13 Little Newport Street
London WC2R 3LD

01-734- 3454

Printed in England by Commercial Colour Press, London E.7.

NOTES

NOTES

Commodore 64 Adventures is a blueprint for the
consfruction and playing of Adventure programs
based on a full text Adventure. The emphasis is on the
creation, design and planning of Adventure games
as well as the programming techniques.

Diagrams, maps and charts simplify the process of
adapting your ideas for a story into a format for
programming. Understanding and designing maps
will allow you fo get more enjoyment from playing as
well as programming. The charts for subroutines will
have countless other applications.

A modular design for the program makes
undersiandiel:’g he structure easier. All the modules
are explained in detail, line by line, allowing you to
understand the basic concepts used. Skills in
programming will emerge as you gradually construct
your Adventure — allowing you the flexibility of
altering the demonstration Adventure or branching
out to create your own.

The book is divided into two sections:

1) A simplified Adventure framework that will work for
any story and helps you understand how to create
your own.

2) A complete Adventure, Nightmare Planet, to enter
and play with notes and anecdotes on the problems
and pitfalls of Adventure programming and how to
overcome them.

Delight and amuse your friends with your own ability
to become a dream-maker — an Adventurer.

The author, Mike Grace, has been writing since
childhood on a variety of topics and has been
captivated by microcomputers for some time. His
lifetime fascination with fantasy and science-fiction led
him to Adventures, allowing him to combine two of his
passions. He is a regular contributor to Popular
Computing Weekly.

A

ISBN 0 946408 11 4 £5.95 net

