
' ' 





COMPUTE!'s FIRST BOOK OF 

22Me~!![~ublications,lnc.9 
Greensboro, North Carolina 

Commodore 64 is a trademark of Commodore Electronics Limited. 



The following article was originally published in COMPUTE! Magazine, copyright 1981, 
Small System Services, Inc. : 
"Maze Generator" (December). 

The following articles were originally published in COMPUTE! Magazine, copyright 1982, 
Small System Services, Inc.: 
"Writing Your First Game" (October), 
"Laser Gunner" (November). 

The following articles were originally published in COMPUTE! Magazine, copyright 1983, 
COMPUTE! Publications, Inc.: 
"Writing an Arcade Game" (February), 
"Minefield" Oune), 
'The Hawkmen Of Dindrin" Oune), 
"Goblin" Ouly), 
"Rats" Ou!y), 
"Writing a Simulation Game" (July), 
"Blockhead" (August), 
"Diamond Drop" (September), 
"Mystery Spell" (September), 
"High Speed Mazer" (October), 
"Mosaic Puzzle" (October). 

The following articles were originally published in COMPUTE's Gazette Magazine, 
copyright 1983, COMPUTE! Publications, Inc.: 
"Adding Joysticks To Your Games" Ouly), 
"Snake Escape" Ouly), 
"Cylon Zap" (August), 
'The Viper" (August), 
"States & Capitals Tutor" (September), 
"Oil Tycoon" (October). 

Copyright 1983, COMPUTE! Publications, Inc. All rights reserved 

Reproduction or translation of any part of this work beyond that permitted by Sections 107 
and 108 of the United States Copyright Act without the permission of the copyright owner 
is unlawful. 

Printed in the United States of America 

ISBN 0-942386-34-5 

1098765432 

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) 
275-9809, is a subsidiary of American Broadcasting Companies, Inc., and is not associated 
with any manufacturer of personal computers. Commodore 64 is a trademark of 
Commodore Electronics Limited. 

11 



Contents 

Foreword 

Chapter 1. The 64 as a Game Machine . . . . . . . . . . . 1 
Why the Commodore 64 Is a Great Game Machine 

Eric Brandon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
Writing Your First Game 

Richard Mansfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Writing a Simulation Game 

Richard Mansfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
Writing an Arcade Game 

Richard Mansfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
Adding Joysticks to Your Games 

Charles Brannon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

Chapter 2. Maze Games . . . . .. . . . . . . . . . . . . . .. .. .. . 27 
Rats! 

Mike Steed (64 Translation by Gregg Peele). . . . . . . . . . . . . . . . 29 
Goblin 

Dan Goff (64 Translation by Patrick Parrish) . . . . . . . . . . . . . . 36 
Snake Escape 

Daryl Biberdorf (64 Translation by Patrick Parrish) . . . . . . . . . 39 
The Viper 

Dave and Casey Gardner 
(64 Translation by Charles Brannon) . . . . . . . . . . . . . . . . . . . . 44 

Chapter 3. Thinking Games ......... .... . .... ... 49 
States & Capitals Tutor 

Enoch L. Moser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . · 51 
Mystery Spell 

Doug Hapeman (64 Translation by Eric Brandon) . . . . . . . . . . 58 
Oil Tycoon 

Gordon F. Wheat (64 Translation by Chris Metcalf) . . . . . . . . . 68 
Mosaic Puzzle 

Bruce Jordan (64 Translation by Chris Metcalf) . . . . . . . . . . . . . 76 

Chapter 4. Dexterity .............................. 81 
Blockhead 

Matt Giwer (64 Translation by Gregg Peele) . . . . . . . . . . . . . . . 83 

iii 



Diamond Drop 
Matt Giwer (64 Translation by Eric Brandon) . . . . . . . . . . . . . 90 

Laser Bounce 
Frank L. Broadnax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 

Chapter 5. Arcade-Style Games . .... . ........... . 103 
The Hawkmen of Dindrin 

Esteban V. Aguilar, fr. (64 Version by Charles Brannon) ... . .. 105 
Minefield 

Sean Igo (64 Translation by Gregg Peele) . .... .. . . .. . .. . .. . 113 
CylonZap 

Mark Dudley (64 Translation by Gregg Peele) .. . . . . ... . .... 119 
Laser Gunner 

Gary R. Lecompte (64 Translation by Philip I. Nelson) ....... 129 

Chapter 6. Machine Language Games . .... . ..... 135 
Using the Machine LanguageEditor: MLX 

Charles Brannon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 
Munchmaze 

Gary E. Marsa (64 Translation by Gregg Peele) . . . . . ... . .. .. 144 
Richthofen's Revenge 

Chris Metcalf and Marc Sugiyama ................ . . . .. . 151 
ZuiderZee 

Marc Sugiyama .. . .... .. .... . .... ..... .. ......... . .. 168 

Appendix A. Beginner's Guide to Typing 
In Programs ........... . ..... . .. .. .. 193 

Appendix B. How to Type In Programs ......... 197 

Appendix C. Maze Generator ........... .. ...... 199 
Charles Bond (Translated to machine language by 
Gary E. Marsa and for the 64 by Gregg Peele) .... ... . .. .. .. 201 

Appendix D. Do You Want to Write Your 
Own Games? 

Orson Scott Card .. .... . ... . . . . .. . ..... . ...... . ...... 211 

Index .. . .... . . .. . . .. .. . . .... .. . ........ . ........... 217 

iv 



Foreword 
COMPUTE!'s First Book of Commodore 64 Games is packed full of 
great games. But this book serves a double purpose. 

First, it provides you with a variety of games, which you can 
merely type into the computer, save on disk or tape, and then play 
again and again. 

Second, because the full program is here in print, you can see 
exactly how the game's creator brought off the effects you like. 

In fact, to make this book as useful as possible, many of the 
games are accompanied by explanations of how the program 
works. Chapters at the beginning and end of the book will also 
help you learn how to write your own games. 

In order to make typing in the programs as easy as possible, 
we have included three aids. Be sure to read over the article in 
Appendix A "Beginner's Guide to Typing in Programs:' Also, 
review Appendix B "How to Type in Programs:' 

A number of the programs are written completely or partially 
in machine language. If you have ever typed in a machine 
language program with its hundreds of DATA statements, you 
will appreciate the "Machine Language Editor (MLX)" in Chapter 
6. MLX is a BASIC program that will help you type in machine 
language programs perfectly the first time. 

v 









1 
Why the 
Commodore 64 Is 
aGreatGame 
Machine 
Eric Brandon 

One of the first things a new programmer wants to do is write a 
game. The programmer soon discovers that there is no "move 
alien around" command; rather, the computer must be told what 
to do in hundreds of tiny little steps. 

Fortunately, the Commodore 64 is loaded with features that 
make this arduous task much easier and reduce the number of 
steps that have to be programmed into the computer. The games 
in this book try to exploit these features as much as possible, to 
save the programmer time, and to save you typing. 

Parlez-vous BASIC? 
What language to program the game in is the first decision the 
programmer must make. On the Commodore 64 the choice is 
between BASIC and machine language. 

The native language of the computer is machine language. 
This means that programs written in BASIC have to be translated 
into machine language while they are running. That translation 
takes time, so BASIC programs run much slower than programs 
written in machine language. 

Although machine language is much faster, it is also a more 
difficult language to use; so to speed up writing the game, many 
programmers opt for BASIC, or some combination of BASIC and 
machine language. The choice ultimately depends on how critical 
speed is to the game. Witness the incredible speed of "Munch­
maze" or "The Viper;' both written in machine language. Other 

3 



1 The Commodore 64 As A Game Machine 

games where speed is not so important, such as "Mystery Spell;' 
use no machine language at all. 

The 64 makes machine language programming easier 
because it has a popular, easy-to-use microprocessor chip, and it 
has areas of memory where machine language programs can be 
conveniently tucked away. 

Make Your Own Alphabet 
Whenever you see a letter or graphic character on the screen, you 
are looking at one member of a character set. The character set is 
where the computer goes to see what a character such as A looks 
like, before it can put it on the screen. 

By holding down the SHIFT and Commodore keys, you can 
switch between two character sets. In one of them, character 
number one looks like this: A; in the other, it looks like this: a. 

This is very important to the game programmer, because 
with the 64 he can create his own character set. For example, the 
programmer can tell the computer that character one is a happy 
face . From then on, moving a happy face around on the screen is 
just as easy as moving any other character. Here is a short 
program that changes the A character into a happy face: 

5 REM DISABLE INTERRUPTS AND REVEAL CHARACTER ROM 
10 POKE 56334,PEEK(56334)AND254 
20 POKE l,PEEK(l)AND251 
25 REM COPY CHARACTER SET DOWN TO RAM 
29 PRINT "PLEASE WAIT 30 SECONDS" 
30 FOR I=0 TO 2048 
40 POKE 12288+I,PEEK(53248+I) 
50 NEXT I 
55 REM COVER UP CHARACTER ROM AND REENABLE INTERRU 

PTS 
60 POKE l,PEEK(l)OR4 
70 POKE ?6334,PEEK(56334)0Rl 
75 REM ENABLE NEW CHARACTER SET 
80 POKE 53272,28 
85 REM POKE IN HAPPY FACE OVER "A" 
90 FOR I=0 TO 7 
100 READ A 
110 POKE 12296+I,A 
120 NEXT 
130 END 
195 REM EACH NUMBER IS ONE ROW OF THE DOTS THAT MA 

KE UP THE FACE 
200 DATA 60,66,165,129,165,153,66,60 

4 



The Commodore 64 As A Game Machine 1 
Even more powerful is the technique of telling the computer 

that character one looks like the left half of a spaceship, and char­
acter two like the right half. By combining redefined characters, 
you can create large shapes. This technique is used in ''The 
Hawkrnen of Dindrin:' 

Another Way of Making a Spaceship 
Sometimes a game needs objects on the screen that can go 
through or over other objects, like a spaceship moving over a star­
field. Not only can the 64 do this, but also it will automatically 
detect a collision between objects. 

These objects, called sprites, have a number of other useful 
features. Each of the 504 dots can be assigned a color independent 
of its neighbor, and the whole sprite can double in size either 
vertically or horizontally. Although only eight sprites can usually 
be displayed at a time, most games do not require that many. 

Sprites can also be used for animation. The bird in Mystery 
Spell is a sprite. To make the bird's wings flap, several versions of 
the bird were drawn, with the wings up, midway, and down. By 
telling the bird to look like one shape after another, the illusion of 
flapping wings is achieved. 

Small ls Beautiful 
Sometimes, instead of large objects, a game needs to work with 
pixels, the individual dots that make the image on your screen. 
High-resolution mode allows control over each individual dot on 
the screen. 

With high-resolution graphics it is possible to make very 
detailed backgrounds on the screen, over which you can move the 
sprites that play the game. None of the games in this book use 
this technique because it would require the typing in of 8000 
numbers that describe each of the dots on the high-resolution 
screen. 

ColorMe64 
Every good game-playing computer has the ability to put color on 
the screen. Some have as many as 256 different shades of colors, 
and some have as few as six. 

Just as important as how many colors a computer has is how 
many colors it can display at once. The 64 is very good at multi­
color graphics. Any character or dot can be any one of 16 colors. 
Furthermore, each dot within a character or a sprite can have its 
owncolor. 

5 



1 The Commodore 64 As A Game Machine 

Breaking the Sound Barrier 
One of the most important features of a good game is sound 
effects for explosions, fanfares, and other sundry noises. 

The Commodore 64 incorporates a rninisynthesizer called the 
SID chip. The SID chip can make three different tones at once, so 
that harmony and chords are possible. You can hear this in the 
short songs played by "Richthofen's Revenge:' 

Furthermore, the SID gives you control over attack, decay, 
sustain, and release, sophisticated sound characteristics that can 
make the same note sound like it came from anything from a 
drum to an underwater oboe. 

Join the Party 
This book is more than a book of games. The Commodore 64 is a 
great machine with features that allow arcade-quality games. 
Some of these features take practice to learn. 

Many of the articles include explanations of how the game 
was designed and how the features of the 64 were exploited. By 
typing in the games and reading the articles, not only will you 
have hours of fun playing the games, but you will also be learning 
many of the techniques needed to design your own games. 

6 



Writing Your 
First Game 
Richard Mansfield 

1 

Richard Mansfield, senior editor of COMPUTE! Publications, explains 
the details of a simple game. A beginning programmer can learn a great 
deal studying this short program . 

If you are tempted to write your own games, go ahead. It's a good 
way to learn to program. Games are basically the same as any 
other kind of programming. 

Computer games fall into two broad categories: 1. imitations 
of old standards (checkers, Othello) and 2. games which could 
not be played without a computer (Space Invaders, Pac-M.an) . This 
second category is more difficult to program for several reasons. 
For one thing, you've got to think up a whole new, and enter­
taining, concept and then adjust the action until it is just hard 
enough to be challenging but not so difficult that people want to 
give up. 

This category (basically arcade games) is especially hard to 
program precisely because a good computer-only game exploits 
all of the computer's special attributes: speed, color, and sound. To 
do this well, to make things look and respond just the way you 
imagine them, requires a good bit of programming experience. 
Usually, too, several things are happening at once in an arcade 
game. This often means that such a program must be written in 
machine language, which is far faster than BASIC. 

High Card Slice 
Old standards, on .the other hand, can often be the best way to get 
started programming games. You already know the game 
concept, and cards or dice or game boards are fairly easily 
constructed and manipulated on your computer screen. To illus­
trate, let's take a look at a simple simulation of one of the oldest 
card games, "High Card:' The rules are simple: you place a bet, 

7 



1 The Commodore 64 As A Game Machine 

and then you draw a card from the deck. The computer, your 
opponent, draws a card too, and the highest card wins the money. 

One simplification here is that there is no attempt to repre­
sent the cards on the screen. The entire game relies simply on 
words (Ace of Spades, for example) when cards are drawn. 

Like most computer programs, the program can be visual­
ized as having four distinct zones: initialization, main loop, 
subroutines, and data tables. We can go through the steps in 
programming this game by looking at each zone separately. 

Initialization 
From lines 10 through 80 we are teaching the computer some 
basics about this game. Initialization is the activity which must 
take place before any of the action can begin. Computers are so 
fast that they will zip up through these lines and start things off in 
the main loop at line 100 in a flash. However, as programmers, we 
are aware that several preliminary events took place inside before 
anything else . 

In line 20, the computer discovers that there is a variable 
called DOLLARS which is set equal to 500. It sets aside a section 
(like a small box) in its memory which it labels DOLLARS. When 
the game is running, it will add or subtract from this box (lines 
230-240) to keep a running total of how much money you have left 
to bet. From time to time (line 110), it will check the box and report 
to the player how much he has. The box labeled DOLLARS is 
called a variable because during the game the amount in it will 
vary. 

Lines 30 through 60 are simple enough-they ask the player 
to give his or her name. The computer memorizes it in another 
box called NAME$ and can now speak more personally to the 
player in lines 140 and 230. Also, the computer prints the rules of 
the game in line 60. 

Line 70 READs four names (the face cards) from the data 
tables in lines 510 on. It also makes a mental note that it already 
READ four items. So, when it's asked to READ again (line 80), it 
will start with the next unread item of data which will be CLUBS. 
By now, the computer has memorized a variety of important facts: 
the player's name, the amount of his or her betting purse, the 
names of the face cards, and the suits of a standard deck. In less 
than a second, the computer has grasped and filed away the 
necessary facts to go on to the main loop where all the action takes 
place. 

8 



The Commodore 64 As A Game Machine 1 
The Main Loop 
After checking that the player has money to bet, the computer 
asks for the bet, checks again that the bet is possible, and then 
runs through one cycle of the game starting in line 160. At this 
point, a programmer might find it worthwhile to visualize the 
steps involved in the game: draw a card for the player; draw for 
the computer; decide who won; adjust the player's purse. 

Since both draws are essentially identical actions (the only 
difference will be that we say "Bob draws a .. :' instead of "The 
computer draws"), we don't need to program the draw twice. 
This is where subroutines come in handy. 

The Subroutine 
Twice in the main loop, we GOSUB 300. First the player, then the 
computer, draws. Line 310 randomly picks two numbers, the card 
and the suit. If line 320 finds that this selection matches the one 
drawn just before by the player, it goes back for another draw. 
Line 330 makes the name of the card be the number if it is less than 
11 (a face card). 

Then line 340 announces the draw using three variables. The 
first variable (PLAYER$) is set up in either line 160 or 190 as appro­
priate. Then the CARD$ and SUIT$ variables are selected from the 
lists that were memorized back in the initialization phase (lines 
70-80). The subroutine then RETURNs to the main loop. 

Lines 210-240 decide and announce the winner of this round. 
First, if the variable CARD (the computer's card) is greater than 
(>) YOURCARD, the computer is declared the winner in line 240, 
the purse is adjusted, and the main loop is restarted (GOTO 100). 
If the cards are equal, nothing happens to the purse and the next 
round begins. Notice that we don't need to say IF YOURCARD > 
CARD at the start of line 230 to test if the player has won. It's the 
only possible thing if the computer has gotten this far. 

Once you've solved a particular problem, you'll find you can 
use the solution in many future games. This subroutine which 
draws cards, for instance, would work just as well for Poker, or 
Blackjack, or dozens of other games. Subroutines are handy not 
only because they can be used repeatedly within a program, but 
because they can also be saved and used repeatedly in future 
programs. So think up a simple, traditional game and teach it to 
your computer. There is probably no more pleasurable way to 
learn programming than to write a game. 

9 



1 The Commodore 64 As A Game Machine 

High Card 

10 REM*NECESSARY INITIAL INFORMATION* 
20 DOLLARS=500 
30 PRINT " WITH WHOM DO I HAVE THE PLEASURE" 
40 PRINT " OF PLAYING HIGH CARD SLICE?" 
50 INPUT NAME$ 
60 PRINT " HIGH CARD WINS IN THIS GAME!" 
70 DIM SUIT$(4),CARD$(14):FOR I=ll TO 14: READ CAR 

D$(I) :NEXT I 
80 FOR I=l TO 4: READ SUIT$(I): NEXT I 
90 REM 
100 REM*MAIN PROGRAM LOOP* 
110 PRINT:PRINT" YOU HAVE $" DOLLARS 
120 IF DOLLARS<=0 THEN PRINT" THE GAME IS OVER. YO 

U ARE OUT OF CASH.":END 
130 PRINT"WHAT IS YOUR BET";:INPUT BET 
140 IF DOLLARS<BET THEN PRINT" YOU ONLY HAVE $"DOL 

LARS" TO BET,"NAME$:GOTO 130 
150 YOURCARD=0:YURSUIT=0 
160 PLAYER$=NAME$ 
170 GOSUB300 
180 YOURCARD=CARD:YURSUIT=SUIT 
190 PLAYER$=" THE COMPUTER" 
200 GOSUB300 
210 IF CARD>YOURCARD THEN GOTO 240 
220 IF CARD=YOURCARD THEN PRINT " A TIEl":GOTO 100 
230 PRINT NAME$ "WINS": DOLLARS= DOLLARS+ BET:G 

OTO 100 
240 PRINT" THE COMPUTER WINS": DOLLARS= DOLLARS-B 

ET:GOTO 100 
290 REM 
300 REM*SUBROUTINE TO DRAW THE CARDS* 
310 CARD=INT(RND(5)*13)+2:SUIT=INT(RND(5)*4)+1 
320 IF CARD=YOURCARD AND SUIT=YURSUIT THEN 300:REM 

NO IDENTICAL DRAWS 
330 IF CARD<ll THEN CARD$(CARD)=STR$(CARD) 
340 PRINT PLAYER$ " DRAWS THE " CARD$(CARD) " OF " 

SUIT$(SUIT) 
350 RETURN 
490 REM 
500 REM* DATA TABLE* 
510 DATA JACK,QUEEN,KING,ACE 
520 DATA CLUBS,DIAMONDS,HEARTS,SPADES 

10 



Writing a 
Simulation Game 
Richard Mansfield 

1 

A simulation is an imitation of life. It can be the most difficult type of 
game to create. Thought, rather than fast action, is important. Try the 
short simulation offered here, then see if you can write one of your own. 

There are three basic types of computer games: arcade, adventure, 
and simulation games. Let's briefly look at the characteristics of 
arcade and adventure games and then write a simulation. 

Realtime Action 
Arcade games feature what's called realtime action. Unlike chess or 
bridge, things happen fast. You can't sit back and plan your next 
move; you must react immediately to the space invaders. In other 
words, events take place at the same speed as they would in 
reality: realtime. 

Arcade games also have a strong appeal to the eye and ear. 
There is much animation, color, and sound. In fact, your ability to 
respond quickly and effectively depends in part on all the clues 
you get from the graphics and sound effects. Strategy, while often 
an aspect of arcade play, is clearly secondary. These games are a 
new kind of athletics: the fun of man versus machine. Like auto 
racing, arcade games are essentially isometric exercises-you 
don't run around; you just stay in one place flexing and unflexing 
your muscles, tensing and relaxing. 

Story and Strategy 
Strategy, however, is more important in "adventure" games. The 
emphasis is on planning ahead and solving riddles. It can be like 
living inside an adventure novel. There is drama, characteriza­
tion, and plot. You might start out, for example, in a forest with a 
shovel and a trusty, if enigmatic, companion parrot. As you try to 
figure out what to do next, the parrot keeps saying "piny dells, 
piny dells:' After wandering aimlessly through the trees, it 

11 



1 The Commodore 64 As A Game Machine 

suddenly comes to you that the bird is saying "pine needles" and 
you dig through them and find a treasure map. 

Your "character" will travel, meet friends and enemies, and 
have the opportunity to pick up or ignore potentially useful items 
such as food, magic wands, and medicine. It's customary that you 
cannot haul tons of provisions. You'd have to decide whether or 
not to leave the shovel in the forest. Yet you might be sorry that 
you'd dropped it if you're involved in a cave-in later in the game. 

In any case, adventure games are fundamentally verbal. The 
computer displays the words: 

YOU ARE IN A BOAT ON A LAKE. NIGHT IS 
FALLING. 

to which you can respond in any number of ways. You might 
type: 

DIVE OFF BOAT. 
and the computer would reply that you now see an underwater 
cave or whatever. You move through the scenes the way a char­
acter moves through a novel. There is generally no penalty if you 
take time to plan your next move. It's not realtime. 

Imitations of Life 
The third category, simulation, is the least common kind of 
computer game. This is because to really imitate something, to 
simulate it effectively, you need lots of computer memory to hold 
lots of variables. However, memory has recently become far less 
expensive so we can expect to see increasingly effective simula­
tion games. Star Trek and Hammurabi, both simulations, have long 
been popular home computer games. Although they are similar to 
adventure games, simulations are random. That is, there is no 
secret to discover, no puzzle to solve, no plot. Like real life, things 
happen with unpredictable, complex results. 

Here's a program which simulates investing. The key to 
simulating is to arrange realistic interactions between variables. 
Look at line 600. If there is "international unrest;' the price of gold 
(PGLD) goes up and the price of Bundtfund stock (PB) goes 
down. This relationship between gold, stock, and an interna­
tional crisis is true to life. Alternatively, stock goes up and gold 
goes down on line 700 during a "market rally." 

The game allows you to make investment decisions, and then 
a "month" passes during which the value of your investments will 
go up or down. In line 510, three variables are given random 
values. Stock can gain or lose up to 10 points (variable X), and 

12 



The Commodore 64 As A Game Machine 1 
gold can change by $20 an ounce (Y). Variable Z will be used to 
simulate flipping a coin. Also notice lines 520 and 525. In 520, we 
determine whether or not there will be unrest. The variable CH is 
just a counter. Each "month;' CH is raised by one. Two conditions 
are required for unrest to happen: in a given month, CH must be 
greater than 4 and it must be less than whatever X turns out to be. 
If both these conditions are met, CH is reset to zero and we've got 
international unrest. This has the effect of creating unrest roughly 
every four to six months. Likewise, another rhythm is set up in 
line 525 to cause market rallies. In both cases, however, you 
cannot be certain exactly when to invest in gold or in stocks. 

The decision to raise or lower stock prices is made in line 530 
and based on the coin toss variable, Z. Again, stocks move in 
opposition to gold. Prices will rise about 50 percent of the time, 
but you can never know what will happen in a given month. 

Suggested Complications 
This is the core, a rough sketch, of an investment simulation 
game. There is much you can do to make it a more effective simu­
lation and thereby a more enjoyable game. The more variables in 
a simulation, the better. For example, add leverage and additional 
"incidents" which affect prices, improve the randomizing, and 
include other types of investments. You could even use a separate 
counter which, every five years, causes the X and Y variables to 
swing more widely to reflect recession/recovery cycles. 

As you can see, a simulation should be lifelike. It has inter­
dependent cycles and a degree of unpredictability. Its realism 
derives from including a sufficient number of variables. And those 
variables must interact in plausible ways and with just the right 
amount of randomness. A simulation is a little world you create. 
You can define cause and effect and then fine-tune the whole 
thing until it seems well-balanced. Adventure and arcade games 
are certainly enjoyable, but this investment simulation can be 
built up to the point where it's just as much fun as any other kind 
of game. 

Mixing Styles 
Of course, these three categories-arcade, adventure, and simu­
lation-are somewhat arbitrary. Some of the best games contain 
elements of each. There are adventure games with graphics-you 
see the forest, the shovel, the pine needles. After you say DIVE, 
your character jumps into a lake and the screen transforms into an 

13 



1 The Commodore 64 As A Game Machine 

underwater scene. Likewise, arcade games can include the 
different "settings" so characteristic of adventure games. Popular 
arcade games such as Tron and Donkey Kong change the playfield 
as you earn more points. 

There are several ways to add to the appeal of our investment 
simulation, beyond just making it a more complex, more accurate 
simulation. You could add the visuals and sound of arcade games. 
Try creating a ticker tape across the top of the screen to show price 
changes and news events. Maybe add a bell sound to indicate the 
end of further transactions. And from adventure games you could 
borrow two elements: riddles and the necessity of planning 
ahead. One easy way to incorporate these two elements would be 
to make paying taxes a part of the game. After all, the closer it is to 
real life, the better the simulation. 

Investment Simulation 
5 PRINT"{CLR}" 
10 CASH=l00000:PGLD=400 
15 POKE 53272,23:REM SHIFT TO LOWER CASE 
20 PB=80 
31 PRINT: PRINT"BUNDTFUND IS $"PB" PER SHARE.YOU H 

AVE "B"{4 SPACES}SHARES. -- $"PB*B 
33 PRINT" GOLD IS(4 SPACES}$"PGLD" PER OUNCE. 

{2 SPACES}YOU HAVE "GLS" OUNCES. -- $"GLD*PGLD 
34 T=PB*B+GLD*PGLD 
35 PRINT:PRINT" TOTAL INVESTMENTS -- $"T 
36 PRINT:PRINT" YOU HAVE $"CASH" TO SPEND." 
40 PRINT:PRINT"GRAND TOTAL":PRINT"(INVESTMENTS + C 

ASH){4 SPACES}$"T+CASH 
45 IFCK=lTHEN500 
50 PRINT: PRINT"l.BUY(2 SPACES}2.SELL{2 SPACES}3.D 

ONE" 
60 INPUTA:IFA=3THENCK=l:GOT031 
100 PRINT"WHICH?{3 SPACES}l.GOLD{4 SPACES}OR 

(4 SPACES}2.STOCK" 
110 INPUTF 
120 PRINT"HOW MANY (SHARES(3 SPACES}OR{3 SPACES}OU 

NCES)?" 
130 INPUTN 
140 IFF=lTHEN160 
150 PRINCE=PB*N:IFA=lTHENCASH=CASH-PRICE:B=B+N:GOT 

0400 
155 CASH=CASH+PRICE:GLD=GLD-N 
160 PRICE=PGLD*N:IFA=lTHENCASH=CASH-PRICE:GLD=GLD+ 

N:GOT0400 
170 CASH=CASH+PRICE:GLD=GLD-N 

14 



The Commodore 64 As A Game Machine 1 
400 GOT050 
500 PRINT"PRESS ANY KEY TO CONT" ; 
503 GET C$:IF C$=""THEN 503 
505 CK=0:PRINT:PRINT"(CLR}ONE MONTH LATER ... ":FOR 

T=lT0700:NEXTT:PRINT - -
510 X=INT((RND(l)*l00)/10):Y=INT((RND(l)*200)/10): 

Z=RND(l) 
520 CH=CH+l:IFCH>4ANDCH<XTHENCH=0:GOT0600 
525 IFCH=2GOT0600 
530 IF Z>.5 THENPB=PB+X:PGLD=PGLD-Y:GOT031 
540 PB=PB-X:PGLD=PGLD+Y:GOT031 
600 PRINT"INTERNATIONAL UNREST ... ":PGLD=PGLD+2*Y:P 

B=PB-2*X:GOT031 
700 PRINT"MARKET RALLY ... (2 SPACES}":PGLD=PGLD-2* 

Y:PB=PB+3*X:GOT031 

15 



1 
Writing an 
Arcade Game 
Richard Mansfield 

Using the memory-mapped video could help you create faster moving 
games. The sample program here will assist you in designing your own 
fast-moving game. 

When you bring home your computer, usually the first thing 
everyone expects you to do is to write an arcade game. Who's 
"everyone"? It could be your children, your friends, even you­
anybody who is tired of spending lots of money and wants you to 
program a game to play at home for free . 

The best defense is to politely point out that: 

1. Arcade games are among the hardest types of software to 
write. 
2. Professionals, working in teams, can take a year to write 
one. 

However, it is well worth trying to write action games. You 
might not be able to duplicate the speed or complexity of profes­
sional games, but you can create very entertaining games of your 
own. After you've spent a few weeks getting familiar with BASIC 
and have typed in a few games, you are ready to take up the chal­
lenge. This is one of the best ways to learn some important 
programming techniques and to explore the graphics and sound 
capabilities of your computer. 

Ten Million lffTHENs 
Your main problem is going to be speed. BASIC, though fast 
enough for most jobs, is pretty slow when it has to keep track of 
ten aliens, two mother ships, torpedoes, stars, and the player's 
position. All these things are in motion at once. You need to have 
a way to control players, to detect collisions, to score points, etc. 
We at COMPUTE! received a letter from reader John Anderson 
which touches on these problems: 

16 



The Commodore 64 As A Game Machine 1 
In order to make a fast, effective "arcade-style" game, I 

would like to know how to let my computer know where a large 
number of things are on the screen (like walls in a maze) 
without 10,000,000 IF/THEN statements. I would also like to 
know how to keep things, like the little figures racing around 
during a game, from plowing through walls and wiping them 
out or coming back onto the other side of the screen. 
As Anderson points out, the first solution that comes to mind 

is to use an IFrrHEN test for every possible event in the game. IF 
the ball hits the target, TI-IEN raise the score. IF the ball misses the 
target, TI-IEN let it move one more space. And on and on. This 
quickly slows the action down to a crawl. 

POKE Ping-Pong 
One of the simpler arcade games is a simulation of Ping-Pong. You 
need to keep track of only three things: two paddles and one ball. 
Let's start off by solving the hardest problem. How can we bounce 
a ball around the screen both quickly and accurately? 

The key to the problem is the fact that many computers have 
an area set aside in RAM which is an image of what you see on 
screen. This is called memory-mapped video and most computers 
have it. It means that if you POKE into that area of RAM, a char­
acter will appear on the screen. The next RAM byte address is the 
next space on screen, and so on. You can use this built-in "map" 
to tell what is where by using the fast PEEK command, and you 
can move things quickly with POI<Es. 

The example program will work on all VICs. 
SCR = The address where screen RAM memory starts. 
LN = The length of one screen line. 
WALL = A solid square that appears when this number is 
POI<Ed anywhere into SCR. 
BLANK = A blank space character that returns the screen 
to normal if POI<Ed into SCR on top of a WALL or 
FIGURE. 
FIGURE = A character that, when POI<Ed into SCR, looks 
like a ball. 
The memory cells holding the screen image are located in 

different places. The VIC determines where it starts by using the 
formula in line 100. First, draw a border around your screen like a 
picture frame. Perhaps print reversed spaces all around. (See lines 
250-310.) This border is very useful. It will let you know when 
your ball has hit the edge. 

17 



1 The Commodore 64 As A Game Machine 

LOC is a variable in the program that's always changing 
whenever the ball changes. It keeps track of the current location of 
the ball. What you do is keep another variable (VECTR, in this 
example) which holds the direction and distance of the ball's 
current motion. When VECTR is added to LOC, we know where 
to move the ball next. 

There are four possible directions to go in the simplest kind of 
animated games. Traveling up, VECTR = -LN since you subtract 
the number of spaces in one screen line to move the ball to the line 
above. Going down is + LN, right is + 1, left is -1. 

Notice line 180. That is how the computer tells if the ball has 
reached a border. The next position the figure is supposed to be 
POKEd into is checked to see if the WALL variable is sitting there. 
If not, the figure is moved (lines 200-220). If there is a wall, line 190 
reverses the figure's direction. 

If you type in the example program, you'll be on your way to 
making a Ping-Pong game that will be as fast as you could want. 
What's left is to play around with VECTR to get different angles of 
bounce off walls so the ball can go anywhere. Then add two 
movable pieces of wall (paddles) and scorekeeping. 

Ping-Pong 

100 SCR=l024:COL=55296:POKE53281,0 
110 WALL=l60:REM WALL CHARACTER, SOLID SQUARE.TRY 

(SPACE}OTHER CHARACTERS. 
120 LN=40 
130 GOSUB 260:REM DRAW BORDER 
140 LOC=SCR+LN*l0+LN/2:CLOC=COL+LN*l0+LN/2:REM SCR 

EEN AND COLOR LOCATION 
150 VECTR=LN:REM ALSO TRY -1,+l,LN-l,LN+l,ETC. 
160 BLANK=32 
170 FIGURE=8l:REM "BALL"CHARACTER. 
180 IF PEEK(LOC+VECTR)<>WALL THEN 200 
190 VECTR=-VECTR:REM REVERSE DIRECTION 
200 POKE LOC,BLANK:REM ERASE OLD BALL 
210 LOC=LOC+VECTR:CLOC=CLOC+VECTR:REM CALCULATE NE 

W POSITION 
220 POKELOC+54272,l:POKELOC,8l:REM PLACE BALL 
230 GOT0180 
240 END 
250 REM BORDER SUBROUTINE 
260 PRINT"(CLR}";:REM CLEAR SCREEN. 
270 FOR I=0 TO LN-l:POKE SCR+I,WALL:POKE COL+I,2:N 

EXTI:REM TOP 

18 



The Commodore 64 As A Game Machine 1 
280 FOR I=0 TO LN-l:POKE SCR+LN*24+I,WALL:POKECOL+ 

LN*24+I,2:NEXT I:REM BOTTOM 
290 FOR I=0 TO 24: POKESCR+I*LN,WALL:POKECOL+I*LN, 

2:NEXTI:REM LEFT 
300 FOR I=0 TO 24:POKE SCR+LN-l+I*LN,WALL:POKECOL+ 

LN-l+I*LN,2:NEXTI:REM RIGHT 
310 RETURN 

19 



1 
Adding Joysticks 
to Your Games 
Charles Brannon 

Taking advantage of the Commodore 64s fascinating capabilities often 
involves PEEKs and POK.Es which can be confusing at first. This article 
explains the essentials of using joysticks in your own BASIC programs. 

First of all, if you don't yet own a Commodore joystick, you can 
use the readily available Atari joysticks, or any Atari-compatible 
joystick-which gives you quite a choice. A number of custom 
sticks are available from outside companies. 

The Inside Story 
To really understand joysticks, you have to know how they work. 
Don't worry; joysticks are no more complicated than a light 
switch. In fact, inside the base of the joystick are five switches that 
act like push buttons. When you press the joystick north (up), 
south (down), east (right), or west (left), or press the joybutton, a 
switch is dosed. 

You can also move the stick diagonally (NE, SE, SW, NW). 
How can four buttons give you eight directions? Simple. The 
joystick is designed so that diagonal movement closes two 
switches simultaneously. 

Joy Bit 
Each switch controls one part of a memory location inside your 
computer. These are called bits. A bit can hold only two values­
either zero or one. Zero normally means nothing, false, empty, 
off. One means positive, true, on. Although it may seem 
confusing at first, the joystick bits are reversed. When the joystick 
is centered (not deflected in any direction), all the bits are on. 
They are all ones. But if you move the joystick up, the north bit 
will become a zero. If you move the joystick diagonally to the 
lower right, both the south and east bits will become zeros. 

20 



The Commodore 64 As A Game Machine 1 
Siliconomics 
Joysticks would be easier to use if each direction had its own sepa­
rate memory location. That way, you could check the north, 
south, east, west, and joybutton bits separately. But to economize 
(and you always do when designing microchips, where the cost is 
more than proportional to the amount of silicon used), all the bits 
are grouped together into a single memory byte (eight bits = one 
byte) . The bits are ordered like this: 

Direction 
North: 
South: 
West: 
East: 
Button: 

Value When Off 
(Zero When On) 

1 
2 
4 
8 

16 

As we'll explain shortly, your program will detect which way 
the joystick is deflected by looking at this byte. The number in the 
byte will be the sum of all these values. Here's how it works. 

Let's ignore the joybutton for a moment. If the stick is not 
moved, the summed value in the byte would be 15 
(1+2+4+8=15). If the stick were moved up (north), the north 
value would become.zero, and the remaining numbers would add 
up to 14. If the joystick were moved left (west), the west value 
would become zero, and the remaining numbers would add up 
to 11. 

The easiest way to use the joystick is to read the memory 
location with the BASIC command PEEK and use IFrrHEN state­
ments to take appropriate actions for each direction. Refer to this 
diagram: 

14 

10~[/6 
11• 15 •7 

9/ l""'s 
13 

21 



1 The Commodore 64 As A Game Machine 

A series of IF!IHEN statements might look like this: 

10 V=PEEK(5632l)AND15 
20 IF V=l4 THEN PRINT "NORTH" 
30 IF V=l3 THEN PRINT "SOUTH" 
40 IF V=7 THEN PRINT "EAST" 
50 IF V=ll THEN PRINT "WEST" 
60 IF V=6 THEN PRINT "NORTHEAST" 
70 IF V=5 THEN PRINT "SOUTHEAST" 
80 IF V=9 THEN PRINT "SOUTHWEST" 
90 IF V=l0 THEN PRINT "NORTHWEST" 
100 IF V=l5 THEN PRINT "CENTER" 
110 GOTO 10 

Line 10 reads the value of the joystick byte and keeps it in a 
variable, V. The number 56321 is the memory location for joystick 
port #1. PEEK reads this location, but you won't get just values 
from 0-15. Other functions are also read here, such as the 
joybutton. The ANDIS isolates the values we're looking for by 
turning off all the other unwanted bits. I won't explain here why 
this works-just take my word for it. 

Who's on First? 
You can read the second joystick (port #2) by substituting the 
number 56320 for 56321inline10. It might seem logical that the 
joystick which is read by PEEKing location 56320 should be the 
first joystick, since it has the lower number, but that's not the way 
it works. You can't argue with the lettering on the side of your 
Commodore 64 which dearly shows which is first and which is 
second. 

Also, you'll notice that the first joystick will seem to press 
certain keys on your keyboard. This is a hardware anomaly, but 
you can play some joystick games by pressing keys in the upper­
left part of your keyboard. It is not a reliable method, however. 

Another Way 
Although the sample program above will read the joystick, it's not 
necessarily the best way. IFffHEN statements are among the 
slowest statements in BASIC, so if speed is important (as in 
games), there are better ways to go. Here's a faster method. 
Change line 10 to: 

10 V=l5-(PEEK(5632l)AND 15) 

22 



The Commodore 64 As A Game Machine 1 
Now the values returned will be: 

2 

Notice that the range is smaller here. You can now use the 
values as the index to an array. Watch how it works. Let's shorten 
the example program: 

10 FOR I=0 TO 10:READ A$:MESSAGE$(I)=A$:NEXT I 
20 DATA CENTER,NORTH,SOUTH,,WEST,NORTHWEST,SOUTHWE 

ST,,EAST,NORTHEAST,SOUTHEAST 
30 V=l5-(PEEK(5632l)AND15) 
40 PRINT MESSAGE$(V):GOTO 30 

MESSAGE$ (pronounced message-string) is a string array. A 
string array is a single variable name that holds a whole list of 
strings (a string is any series of characters). Each string has its 
own box or place in the array. We address the item in the list by 
calling its number. The READ loop on line 10 fills the MESSAGE$ 
array with the ten strings. If we say PRINT MESSAGE$(0) we'll 
get CENTER. PRINT MESSAGE$(5) gives NORTHWEST. 

Some of the DATA items are followed by two commas, which 
are separators. The computer interprets this to mean that between 
the commas there is a null (empty) string. It saves us from having 
to include items we don't need (since some of the numbers in the 
range 0-10 don't correspond to any joystick direction). 

Table Look-Up for Speed 
Printing the messages indirectly by using the joystick number is a 
form of table look-up. Instead of having the computer go through a 
bunch of IFffHENs, or searching a list for an answer, table look­
up is direct and fast. All the answers are already determined. This 
is especially useful for games, where speed is important. For 

23 



1 The Commodore 64 As A Game Machine 

example, you could use a different character for any direction the 
player is facing, and put them into an array to be selected by the 
joystick number. 

Tricky Techniques 
You can also read the joystick by masking (isolating) the bits you 
are looking for. Remember that each direction has a number asso­
ciated with it. If we want to check for north, we just check to see if 
the north bit has turned to zero. If we're checking for north this 
way, we'll capture northeast and northwest as well, which we 
wouldn't have caught with a mere IFm-IEN statement. 

Here we'll mask out the north bit: 

V=(l5-PEEK(5632l)AND15) AND l 

If V = 0, the joystick is not deflected north. If V = l, the 
joystick is being moved north, northeast, or northwest. 

To check for left (west): 

V=(l5-PEEK(5632l)AND15) AND 4 

If V = 0, there is no movement to the left. If V = 4 (yes, 4, not 
1), the stick is being pressed left, northwest, or southwest. See 
how you can separate the original four directions from the eight 
possible ones? 

So, to check for any direction, use: 

V=PEEK(l5-PEEK(5632l)AND15) AND number 

V (or whatever variable you use) will be either zero (not deflected) 
or nonzero (deflected). Substitute 1, 2, 4, or 8 for number (l =up, 
2=down, 4=left, 8=right). 

The Joybutton 
You can check for the joybutton, also called the fire button or 
trigger, with: 

Bl=PEEK(5632l)AND16 (for port #1) 
B2=PEEK(56320)AND16 (for port #2) 

A zero value means the button is pushed. A nonzero value 
(16) means the button is not pushed. For example, if you are 
waiting for the user to press the button to begin a game, you could 
use a loop: 

500 IF (PEEK(5632l)AND16)<>0 THEN 500 

24 



The Commodore 64 As A Game Machine 1 
It's a Natural 
Using a joystick in your next game will make it easier to play, 
since joysticks seem more natural than pressing keys on the 
keyboard. But remember that a joystick is just a tool. It will not 
move objects around for you - it will just tell you how the user is 
deflecting the joystick. 

There are other uses for joysticks besides games. Unlike the 
keyboard, with its 50-odd keys to deal with, the joystick limits 
input to just nine possibilities (the eight directions and the 
joybutton). The joystick can be used to select menu options, 
answer simple questions (left= no, right= yes), and even enter 
text (as you do with arcade games when you set the high score). 
Study the following example program for more ideas. 

Program Explanation 
This program contains three subroutines you can use in your own 
programs. Lines 10-70 just test the subroutines and show you 
how to use them. The subroutine at SOO will accept a yes or no 
answer (left= no, right= yes) and return it in A$. 

Lines 700-770 let the user enter a number by counting it up 
and down with the joystick. The number can be found in the vari­
able C. C will not exceed the limits of MN (minimum) and MX 
(maximum). The user presses the joybutton to exit. Notice the 
POKE 198,0. Since the first joystick interferes with the keyboard, 
this POKE is used to clear it out. 

You can use the subroutine at 800 to accept a letter of the 
alphabet. The letter is returned as a number from 1-26 in the vari­
able C. In the sample program (line 20), it is used to accept a 
three-digit string of initials. 

Joystick Example 

10 PRINT"ENTER YOUR INITIALS:": 
20 GOSUB800:N$=N$+CHR$(C+64):IFLEN(N$)<3THEN20 
30 PRINT: PRINT"HOW OLD ARE YOU? "::GOSUB700:AGE=C 
40 PRINT:PRINTN$:", YOU CLAIM TO BE":AGE:"YEARS OL 

D." 
50 PRINT:PRINT"IS THAT TRUE?"::GOSUB500 
60 PRINTA$:IFA$="YES"THENPRINT"GOOD FOR YOU":END 
70 PRINT"SO WHAT IS THE TRUTH'?":GOTO 30 
500 REM SUBROUTINE FOR YES/NO 
505 A$="" 
510 V=l5-(PEEK(5632l)AND15) 
520 IF (VAND4)>0 THEN A$="NO" 

25 



1 The Commodore 64 As A Game Machine 

530 IF (VAND8)>0 THEN A$="YES" 
540 IFA$=""THEN510 
550 POKE 198,0:REM GET RID OF ANY EXTRA KEYS 
560 RETURN 
600 REM COUNTING SUBROUTINE 
610 REM C WILL CONTAIN THE COUNT 
620 REM VARIABLE MX AND MN CONTROL 
630 REM THE MAXIMUM AND MINIMUM 
640 REM VALUES ALLOWED.{2 SPACES}USE 
650 REM GOSUB 700 FOR THE DEFAULT 
660 REM (1 AND 10), OR GOSUB 710 
670 REM IF YOU ALTER MX AND MN 
700 MN=l:MX=99 
710 C=MN 
720 PRINTRIGHT$("{2 SPACES}"+STR$(C),2):"{2 LEFT}" 

I 

730 V=l5-(PEEK(5632l)AND15) 
740 C=C+((VAND8)=8)*(C<MX)-((VAND4)=4)*(C>MN) 
750 REM IF FIRE BUTTON PRESSED, EXIT 
760 IF(PEEK(5632l)AND16)=0THENPOKE198,0:PRINT" 

{ 2 RIGHT} " : : RETURN 
770 GOTO 720 
800 REM TEXT ENTRY:SIMILAR TO NUMBER COUNTING ROUT 

INE 
810 C=l 
820 PRINT CHR$(64+C):"{LEFT}": 
830 V=l5-(PEEK(5632l)AND15) 
840 C=C+((VAND8)=8)*(C<26)-((VAND4)=4)*(C>l) 
850 IF(PEEK(5632l)AND16)=0THENPOKE198,0:PRINT" 

{RIGHT} 11
:: RETURN 

860 GOT0820 

26 







2 
Rats! 
Mike Steed 64 Translation by Gregg Peele 

This impressive game makes you feel that you are inside a maze, not just 
seeing it from a"bove. Three-dimensional views appear as hallways, doors, 
and corners as you struggle to find the way out. 

You must find your way through a maze displayed from a rat's eye 
view. After you have solved the maze, the program displays the 
top view and traces your steps. 

First, you are asked what maze size you want, up to 15 by 15 
(you may wish to change the DIM statement in line 49-add two 
to the largest dimension you want - and line 43). Line 45 checks 
to see if the machine code has been POI<Ed in, so you have to 
wait for that only the first time. 

The space bar is used to move forward, and the J and L keys 
are used to turn left and right, respectively (turning doesn't 
change your location; it just gives you the view in another direc­
tion). The M key will display the top view of the maze, mark your 
position, and tell you in which direction you are headed. 

There are five machine language routines in "Rats!" LINE, as 
its name implies, draws a line; this routine is similar to Applesoft's 
HPLOT TO or Atari BASIC's DRAWTO command. PLOT sets the 
hi-res cursor to the position from which the next line is to be 
drawn, and plots that point on the screen. The COLOR routine 
fills the screen with color. 

INIT removes everything that is not a letter or number from 
the screen (thus the quarter-square graphics are erased, but not 
the MOVE XX at the bottom of the screen), and sets all the varia­
bles used by the other routines (locations 826-837) to zero. 

SCR either loads or saves something to or from the screen. 
This routine is used to save the screen to memory after the top 
view of the maze has been displayed the first time, and from then 
on is used to display the maze ahnost instantly, so you have to 
wait only once. 

29 



2 Maze Games 

Typing in the Programs 
Whenever you run Rats!, you must prepare the computer by first 
running Program 1. Tape users should not enter line 180; likewise, 
disk users should not enter line 190. 

Program 1 will automatically LOAD and RUN Program 2. 
Therefore, it is necessary for tape users to SAVE Program 2 imme­
diately following Program l, and disk users should SAVE 
Program 2 on the same disk as Program 1, using the filename 
Rats. 

Program 1. Rats! Part 1 
100 POKE16384,0:POKE16385,0 
110 POKE56578,PEEK(56578)0R3 
120 POKE56576,(PEEK(56576)AND252)0Rl 
130 POKE53272,4:POKE648,128 
140 POKE53280,12:POKE53281,12 
145 POKE641,0:POKE642,64 
150 POKE43,l:POKE44,64:POKE55,0:POKE56,128:POKE646 

,l:PRINT"{CLR}" 
160 REM DISK USERS ENTER LINE 180 
170 REM CASSETTE USERS ENTER LINE 190 
180 LOAD"RATS",8:RUN:END:REM DISK USERS ONLY 
190 POKE 198,l:POKE 631,13l:END:REM CASSETTE USERS 

ONLY 

Program 2. Rats! Part 2 

2 REM DISK USERS SAVE WITH THE FILENAME RATS 
3 PRINT CHR$(142):GX=49152:GOTO 38 
4 REM DRAW 3-D VIEW 
5 N=2:A=H:B=V:FF=2i(F-l):SYS IN 
6 Z=M%(A,B)*FF:IF ((Z/16) AND l)=l THEN RL=-l:GOSU 

B 25:GOTO 8 
7 W=M%(A+S,B-R)*FF:IF ((W/128) AND l)=l THEN RL=-1 

:GOSUB 21 
8 IF ((Z/64) AND l)=l THEN RL=l:GOSUB 25:GOTO 10 
9 W=M%(A-S,B+R)*FF:IF ((W/128) AND l)=l THEN RL=l: 

GOSUB 21 
10 IF ((Z/128) AND l)=l THEN 14 
11 N=N+l:IF N>S THEN 15 
12 A=A+R:B=B+S:IF B<2 THEN 15 
13 GOTO 6 
14 GOSUB 17 
15 RETURN 
16 REM DRAW CENTER BACK 
17 POKE HX,VX+DX(N):POKE HY,YU(N):SYS PL:POKE HY,Y 

D(N) :SYS LI 

30 



MazeGames2 

18 POKE HX,VX-DX(N):SYS LI:POKE HY,YU(N):SYS LI:PO 
KE HX,VX+DX(N):SYS LI 

19 RETURN 
20 REM DRAW BACK SIDE 
21 POKE HX,VX+RL*DX(N-l):POKE HY,YU(N):SYS PL:POKE 

HX,VX+RL*DX(N):SYS LI 
22 POKE HY,YD(N):SYS LI:POKE HX,VX+RL*DX(N-l):SYS 

{SPACE}LI 
23 RETURN 
24 REM DRAW RIGHT OR LEFT SIDE 
25 POKE HX,VX+RL*DX(N-l):POKE HY,YU(N-l):SYS PL:PO 

KE HX,VX+RL*DX(N) 
26 POKE HY,YU(N):SYS LI:POKE HY,YD(N):SYS LI:POKE 

{SPACE}HX,VX+RL*DX(N-1) 
27 POKE HY,YD(N-l):SYS LI:POKE HY,YU(N-l):IF N>2 T 

HEN SYS LI 
28 RETURN 
29 REM GET KEYBOARD CHARACTER 
30 GET A$:IF A$= 1111 THEN 30 
31 RETURN 
37 REM INITIALIZE 
38 HX=828:HY=829:LINE=l2288:PLOT=l2665:INIT=l2685: 

SCR=l2725 
39 FL=l2726:FH=l2730:TL=l2734:TH=l2738 
40 PRINT 11 

{ CLR} { 5 DOWN} { l 7 RIGHT} RATS 1 
41 PRINT 11 

{ 2 DOWN}{ 3 RIGHT} SOLVE A MAZE FROM A RAT 
'S EYE VIEW 

42 INPUT 11 {3 DOWN} {7 RIGHT}MAZE SIZE (H,V) 
{3 SPACES}3,3{5 LEFT}";H,V 

43 IF H<3 OR H>l5 OR V<3 OR V>l5 THEN 40 
44 PRINT 11 {CLR}{DOWN}PLEASE WAIT ..• 
45 IF PEEK(LI)=32 AND PEEK(LI+l)=33 AND PEEK(LI+2) 

=48 THEN 48 
46 CK=0:FOR L=l2288 TO 1276l:READ A:POKE L,A:CK=CK 

+A:NEXT:FORK=GXTOGX+23:READGX 
47 POKEK,GX:NEXT:IF CK<>50144 THEN PRINT 11 {DOWN}ER 

ROR IN DATA STATEMENTS 11 :STOP 
48 N=H*V-l:H=H+l:V=V+l:D=l 
49 DIM M%(17,17),WALK(l00),CUT(5),DX(8),YU(8),YD(8 

) 
50 FOR J=l TO V+l:M%(1,J)=4:M%(H+l,J)=l:NEXT 
51 MX=79:MY=49:VX=39:VY=24:X=VX 
52 FOR J=l TO 8:DX(J)=X:YU(J)=INT(VY-X*VY/VX):YD(J 

)=INT(VY+X*(MY-VY)/VX) 
53 X=INT(X*7/10):NEXT 
54 FOR I=2 TO H:M%(I,V+l)=B:M%(I,1)=2:FOR J=2 TO V 

:M%(I,J)=l5:NEXT:NEXT 
55 R=INT(H/2)+l:S=INT(V/2)+l:M%(R,S)=l5 
56 PRINT "{CLR}{DOWN}GENERATING MAZE ..• ";:GOSUB 20 

00 

31 



2 Maze Games 

57 REM GENERATE RANDOM MAZE (ALGORITHM FROM ROGERS 
AND STRASSBERGER) 

58 FOR IWALK=l TO N 
59 I=Z 
60 IF M%(R-l,S)>l4 THEN I=I+l:CUT(I)=l 
61 IF M%(R,S-1)>14 THEN I=I+l:CUT(I)=2 
62 IF M%(R+l,S)>l4 THEN I=I+l:CUT(I)=3 
63 IF M%(R,S+l)>l4 THEN I=I+l:CUT(I)=4 
64 IF !=0 THEN 75 
65 IF I<>l THEN I=INT(RND(l)*I)+l 
66 ON CUT(!) GOTO 67,69,71,73 
67 M%(R,S)=M%(R,S)-(M%(R,S) AND l):R=R-1 
68 M%(R,S)=M%(R,S)-((M%(R,S)/4) AND 1)*4:GOTO 86 
69 M%(R,S)=M%(R,S)-((M%(R,S)/8) AND 1)*8:S=S-l 
70 M%(R,S)=M%(R,S)-( (!'i%(R,S)/2) AND 1)*2:GOTO 86 
71 M%(R,S)=M%(R,S)-((M%(R,S)/4) AND 1)*4:R=R+l 
72 M%(R,S)=M%(R,S)-(M%(R,S) AND !):GOTO 86 
73 M%(R,S)=M%(R,S)-((M%(R,S)/2) AND 1)*2:S=S+l 
74 M%(R,S)=M%(R,S)-((M%(R,S)/8) AND 1)*8:GOTO 86 
75 IF D=-1 THEN 79 
76 IF R<>H THEN 83 
77 IF S<>V THEN 82 
78 R=2:S=2:GOTO 84 
79 IF R<>2 THEN 83 
80 IF S<>V THEN 82 
81 R=H:S=2:GOTO 84 
82 S=S+l:D=-D:GOTO 84 
83 R=R+D 
84 IF M%(R,S)=l5 THEN 75 
85 GOTO 59 
86 NEXT !WALK 
87 MH=H:MV=V:I=INT(RND(l)*(MH-1))+2 
88 M%(I,1)=0:M%(I,2)=M%(I,2)-((M%(I,2)/8) AND 1)*8 
89 H=INT(RND(l)*(MH-1))+2:Hl=H:Vl=V 
90 PRINT "{CLR}{DOWN}MAZE COMPLETED.":GOSUB 2000:G 

OTO 105 
91 REM DISPLAY TOP VIEW OF MAZE 
92 HZ=INT(79/MH):VZ=INT(49/MV) 
93 SYS IN:POKE 214,24:PRINT TAB(25);"{UP} 

{9 SPACES}{HOME}"; 
94 POKE HX,l+HZ:POKE HY,l+VZ:SYS PL:POKE HY,MV*VZ+ 

!:SYS LI 
95 FOR J=l TO MV:FOR !=2 TO MH:N=M%(I,J):X=I*HZ+l: 

Y=J*VZ+l 
96 IF ((N/2) AND l)=l THEN POKE HX,X:POKE HY,Y:SYS 

PL:POKE HX,X-HZ:SYS LI 
97 IF ((N/4) AND l)=l THEN POKE HX,X:POKE HY,Y:SYS 

PL:POKE HY,Y-VZ:SYS LI 
98 NEXT:NEXT 

32 



MazeGames2 

99 RETURN 
100 REM MARK PLAYER'S POSITION 
101 X=H*HZ-l:Y=V*VZ-l:POKE HX,X+l:POKE HY,Y+l:SYS 

{SPACE}PL 
102 POKE HX,X-HZ+2:POKE HY,Y-VZ+2:SYS LI:POKE HY,Y 

+2:SYS PL 
103 POKE HX,X+2:POKE HY,Y-VZ+2:SYS LI 
104 RETURN 
105 FOR X=l TO MH:FOR Y=l TO MV:M%(X,Y)=M%(X,Y)+M% 

(X,Y)*l6:NEXT:NEXT 
106 REM PLAY 
107 F=INT(RND(l)*4)+l:ON F GOTO 108,109,110,111 
108 R=0:S=-l:GOTO 112 
109 R=+l:S=0:GOTO 112 
110 R=0:S=+l:GOTO 112 
111 R=-l:S=0 
112 PRINT "{CLR}{DOWN}PRESS {RVS}J{OFF} TO TURN LE 

FT 
113 PRINT "{DOWN}PRESS {RVS}L{OFF} TO TURN RIGHT 
114 PRINT 11 {DOWN}PRESS {RVS}SPACE{OFF} TO GO FORWA 

RD 
115 PRINT "{DOWN}PRESS {RVS}M{OFF} TO DISPLAY TOP 

{SPACE}VIEW OF MAZE 

116 PRINT "{3 DOWN}{RVS} PRESS ANY KEY TO CONTINUE 

117 GOSUB 30:PRINT "{CLR}"r:SYS49152:GOSUB 5 
118 REM GET KEYSTROKE 
119 GOSUB 30 
120 ON -(A$="J")-2*(A$="L")-3*(A$= 11 ")-4*(A$="M") 

{SPACE}GOTO 122,124,131,136 
121 GOSUB2000:GOTO 112 
122 F=F-l:IF F<l THEN F=4 
123 GOTO 125 
124 F=F+l:IF F>4 THEN F=l 
125 ON F GOTO 126,127,128,129 
126 R=0:S=-l:GOTO 130 
127 R=+l:S=0:GOTO 130 
128 R=0:S=+l:GOTO 130 
129 R=-l:S=0 
130 GOTO 135 
131 Z=M%(H,V):T=Z*2f(F-l):T=(T/128) AND l:IF T=l T 

HEN GOSUB 2000:GOTO 119 
132 NM=NM+l:POKE 214,24:PRINT TAB(25)r 11 {UP}MOVE"rN 

Mr 11 {HOME } 11 r 
133 IF NM<l00 THEN WALK(NM)=F 
134 H=H+R:V=V+S:IF V<2 THEN 147 
135 GOSUB 5:GOTO 119 
136 IF NOT MS THEN 138 

33 



2 Maze Games 

137 POKE FL,218:POKE FH,49:POKE TL,0:POKE TH,128:S 
YS SC:GOTO 139 

138 GOSUB 92:POKE FL,0:POKE FH,128:POKE TL,218:POK 
E TH,49:SYS SC:MS=-1 

139 GOSUB 10l:PRINT "{HOME}YOU ARE FACING";: ON F 
GOTO 140,141,142,143 

140 PRINT "NORTH";:GOTO 144 
141 PRINT "EAST";:GOTO 144 
142 PRINT "SOUTH";:GOTO 144 
143 PRINT "WEST"; 
144 PRINT ".{2 SPACES}PRESS ANY KEY TO":PRINT "CON 

TINUE":GOSUB 30 
145 PRINT "{HOME}{39 SPACES}":PRINT "{8 SPACES}" 
146 GOSUB 5:GOTO 119 
147 GOSUB2000:V=Vl:H=Hl:IF MS THEN POKE FL,218:POK 

E FH,49:POKE TL,0:POKE TH,128 
148 IF MS THEN SYS SC:GOTO 150 
149 GOSUB 92 
150 GOSUB 101 
151 PRINT II {HOME}{ DOWN} CONGRATULATIONS-YOU I RE OUT 

{SPACE}IN";NM;"STEPl{LEFT}{INST}S" 
152 REM DRAW PATH WALKED 
153 POKE HX,H*HZ-HZ/2+l:POKE HY,v•vz-vz/2+l:SYS PL 
154 FOR N=l TO NM:IF N>l00 THEN 158 
155 F=WALK(N):V=V+(F=l)-(F=3):H=H+(F=4)-(F=2) 
156 POKE HX,H*HZ-HZ/2+l:POKE HY,V*VZ-VZ/2+l:SYS LI 
157 NEXT 
158 PRINT:END 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 

34 

DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

32, 33, 48, 173, 58, 3, 133, 2 
173, 59, 3, 133, 195, 32, 0, 49 
173, 62, 3, 205, 63, 3, 16, 8 
240, 6, 32, 173, 48, 76, 3, 48 
96, 169, 128, 24, 10.9 I 60, 3, 56 
237, 58, 3, 141, 63, 3, 169, 128 
24, 109, 61, 3 I 56, 237, 59, 3 
141, 64, 3, 162, 128, 142, 66, 3 
142, 69, 3, 232, 142, 67, 3, 142 
68, 3, 173, 63, 3, 201, 128, 176 
11, 169, 127, 141, 68, 3, 169, 0 
56, 237, 63, 3, 41, 127, 141, 63 
3, 173, 64, 3, 201, 128, 176, 11 
169, 127, 141, 67, 3, 169, 0, 56 
237, 64, 3, 41, 127, 141, 64, 3 
173, 63, 3, 205, 64, 3, 176, 32 
174, 63, 3, 172, 64, 3 I 142, 64 
3, 140, 63, 3, 173, 68, 3, 141 
66, 3, 173, 67, 3, 141, 69, 3 
169, 128, 141, 67, 3, 141, 68, 3 
173, 63, 3, 74, 141, 65, 3, 169 



MazeGames2 

370 DATA 0, 141, 62, 3, 96, 173, 68, 3 
380 DATA 56, 233, 128, 24, 109, 58, 3, 141 
390 DATA 58, 3, 173, 69, 3, 56, 233, 128 
400 DATA 24, 109, 59, 3, 141, 59, 3, 173 
410 DATA 65, 3, 24, 109, 64, 3, 141, 65 
420 DATA 3, 238, 62, 3, 173, 65, 3, 205 
430 DATA 63, 3, 48, 35, 240, 33, 56, 237 
440 DATA 63, 3, 141, 65, 3, 173, 66, 3 
450 DATA 56, 233, 128, 24, 109, 58, 3, 141 
460 DATA 58, 3, 173, 67, 3, 56, 233, 128 
470 DATA 24, 109, 59, 3, 141, 59, 3, 96 
480 DATA 169, 0, 133, 168, 169, 32, 133, 196 
490 DATA 165, 2, 201, 80, 176, 56, 165, 195 
500 DATA 201, 50, 176, 50, 234, 234, 234, 234 
510 DATA 70, 2, 38, 168, 106, 38, 168, 133 
520 DATA 195, 10, 10, 101, 195, 10, 10, 38 
530 DATA 196, 10, 38, 196, 234, 234, 234, 133 
540 DATA 195, 166, 168, 189, 99, 49, 133, 168 
550 DATA 164, 2, 177, 195, 162, 15, 221, 103 
560 DATA 49, 240, 4, 202, 16, 248, 96, 173 
570 DATA 98, 49, 240, 6, 138, 5, 168, 170 
580 DATA 208, 8, 138, 73, 255, 5, 168, 73 
590 DATA 255, 170, 189, 103, 49, 164, 2, 145 
600 DATA 195, 96, 1, 1, 2, 4, 8, 32 
610 DATA 126, 123, 97, 124, 226, 255, 236, 108 
620 DATA 127, 98, 252, 225, 251, 254, 160, 234 
630 DATA 0, 173, 60, 3, 141, 58, 3, 133 
640 DATA 2, 173, 61, 3, 141, 59, 3, 133 
650 DATA 195, 32, 0, 49, 96, 162, 128, 160 
660 DATA 0, 134, 254, 132, 253, 177, 253, 41 
670 DATA 127, 201, 64, 48, 2, 169, 32, 145 
680 DATA 253, 200, 208, 241, 232, 224, 132, 208 
690 DATA 232, 169, 0, 170, 157, 58, 3, 232 
700 DATA 224, 12, 208, 248, 96, 169, 218, 133 
710 DATA 251, 169, 49, 133, 252, 169, 0, 133 
720 DATA 253, 169, 128, 133, 254, 162, 4, 160 
730 DATA 0, 177, 251, 145, 253, 136, 208, 249 
740 DATA 230, 252, 230, 254, 202, 48, 2, 208 
750 DATA 240, 96 
1000 DATA 162, 0, 169, 1, 157, 0, 216, 157 
1010 DATA 0, 217, 157, 0, 218, 157, 0, 219 
1020 DATA 232, 208, 241, 96, 234, 234, 234, 0 
2000 S0=54272:FORE=S0TOS0+28:POKEE,0:NEXT 
2010 POKE54296, 15 :POKE54277, 51 :POKE54278, 211 
2020 POKE 54276, 33 :POKE 54273, 63 :POKE54272, 75 
2030 FORT=lTO 200 :NEXT:POKE54276, 32:FORT=lTO 100 

:NEXT 
2040 FORE=S0TOS0+28:POKEE,0:NEXT 
2050 RETURN 

35 



2 
Goblin 
Dan Goff 64 Translation by Patrick Parrish 

In "Goblin," custom characters are used to create a simple yet entertaining 
game. The object is to capture the scowling creatures with your goblin 
while avoiding the many block-shaped obstacles that lie in your path. 

After obstacles and sad faces have been positioned, "Goblin" 
begins when the main character appears at the bottom of the 
screen. As the game progresses, the goblin moves continually 
upward and the player controls only its horizontal movement. 
The 0 and P keys, in conjunction with the GET command in line 
260, enable the player to move the goblin left and right, respec­
tively. Children especially like the cumulative effect of the GET 
statement; they make rapid key punches and then wait for the 
delayed effects. 

As each sad face is captured by the goblin, the score is 
updated and printed at the upper left. If the goblin successfully 
dears the screen of all the faces, an entirely new playfield will be 
provided. A game lasts as long as you wish. 

A single round ends when the goblin crashes into an 
obstacle. At this point, the remaining sad faces smile, and you are 
asked if you wish to play again. 

If you play again, your previous highest score will be posted 
as the new game begins. The incentive to exceed a record score 
makes any game more fun. 

Goblin 
80 POKE 53280,2:POKE 53281,1 
90 PRINT"{CLR}{7 DOWN}{4 RIGHT}PLEASE WAIT ... DEFIN 

ING CHARACTERS II ; 

100 POKE 52,48:POKE 56,48:CLR:POKE56334,PEEK(56334 
)AND254 

105 POKE1,PEEK(l)AND251 
108 FORN=0T02047:POKEN+l2288,PEEK(N+53248):NEXTN 
109 FOR N=0 TO 7:POKEN+l2320,PEEK(N+54064):NEXT N 
110 IFS>HSTHENHS=S 
112 RESTORE:B=4:Z=l964:Zl=Z+54272:W=0:S=J:G=0 

36 



MazeGames2 

115 VS=54296:AD=54277:SR=54278:WF=54276:LB=54272:H 
B=54273 

120 FOR X=0T03l:READ A:POKEX+l2288,A:NEXT 
123 POKE l,PEEK(l)OR4:POKE56334,PEEK(56334)0Rl 
125 POKE 53272,(PEEK(53272)AND240)+12 
130 PRINT"{CLR}{GRN}{l4 RIGHT}{RVS}G 0 B L I N" 
140 PRINT" {HOME} {RED} { 2 DOWN} { RVS} "SPC ( 1 7) "HS="HS 
145 PRINT"{HOME}{BLK}{22 DOWN}{RVS}O=LEFT";SPC(27) 

;"P=RIGHT" 
150 FOR I=l TO 118 
160 X=INT(RND(l)*680)+1144 
170 IFPEEK(X)=BTHEN 160 
180 POKEX,B:POKEX+54272,0:NEXTI 
190 FORI=lT036 
195 Gl=0 
200 X=INT(RND(l)*680)+1144 
210 IF PEEK(X)=BORPEEK(X)=lORPEEK(X)=3THEN 200 
220 IFPEEK(X+39)=BANDPEEK(X+40)=BANDPEEK(X+4l)=BTH 

ENPOKEX,3:POKEX+54272,0:Gl=l 
225 IF Gl=l THEN G=G+l:GOTO 240 
230 POKEX,l:POKEX+54272,0 
240 NEXT I 
250 POKEZ,32:Z=Z-40:Zl=Zl-40:IF Z<ll44 THEN Z=Z+76 

0:Zl=Zl+760 
260 GET A$:IFA$="0"THENZ=Z-l:Zl=Zl-l 
270 IFA$="P"THENZ=Z+l:Zl=Zl+l 
280 IFPEEK(Z)=B THEN 410 
290 IFPEEK(Z)=l THEN GOSUB 330 
300 POKEZ,0:POKEZl,0:FORT=lT0220:NEXT 
310 IFW=36-G THEN J=S:GOSUB350:GOT0110 
320 GOTO 250 
330 W=W+l:S=S+25:PRINT"{HOME}{BLU}{2 DOWN}"S:POKE 

{SPACE}VS,15:POKE AD,30:POKE SR,200:POKE WF,17 
340 POKEHB,7l:POKELB,12:FORT=lT090:NEXTT:POKEVS,0: 

POKEHB,0:POKELB,0:RETURN 
350 PRINT"{HOME}{RED}{l8 DOWN}{S RIGHT}{RVS}****** 

ALL RIGHT!******" 
355 FORI=lT010:GETC$:NEXTI:REM COLLECT GARBAGE 
360 POKE VS,15:POKE AD,30:POKE SR,200:POKE WF,17:F 

OR I=l TO 17 
370 H=INT(RND(0)*10)+2l:L=INT(RND(0)*45)+210:POKE 

{SPACE}HB,H:POKE LB,L 
380 FOR T=l TO 80:NEXT T:NEXTI:POKE VS,0:POKE HB,0 

:POKE LB,0 
400 RETURN 
410 POKEZ,2:POKEVS,15:POKEAD,30:POKESR,200:POKEWF, 

129:POKE HB,2:POKE LB,125 
415 FOR I=l TO 400:NEXT I:POKE VS,15:POKE HB,0:POK 

E LB,0 

37 



2 Maze Games 

420 FORX=ll44T01823:IF PEEK(X)<>lTHEN NEXTX 
430 IFPEEK(X)=lTHEN POKEX,3:NEXTX 
440 J=0 
445 FORI=lT010:GET C$:NEXTI 
450 PRINT"{HOME}{BLU}{20 DOWN}{RVS}PLAY AGAIN? (Y/ 

N)":POKE 646,14 
465 GET C$:IF C$="" THEN 465 
470 IFC$="Y"THEN 110 
490 POKE53272,2l:POKE53280,14:POKE53281,6:POKE 52, 

50:POKE56,50:PRINT"{CLR}SEE YAl" 
500 DATA126,219,219,255,165,90,90,165,60,66,165,l2 

9,153,165,66,60 
510 DATA 170,85,170,85,126,219,255,lB9,60,66,l65,l 

29,165,153,66,60 
520 DATA 0,0,0,0,0,0,0,0 

38 



2 
Snake Escape 
Daryl Biberdorf 64 Translation by Patrick Parrish 

You'll have to watch out for poisonous mushrooms as you race against the 
clock towards your goal in "Snake Escape." 

In "Snake Escape;' your goal is to move a snake out of a poisonous 
garden. There are approximately 150 poisonous plants on the 
screen after you enter your skill level. The snake appears in the 
upper-left comer after all poisonous plants have been placed. You 
then attempt to get the snake to the escape hole within the time 
limit you chose earlier. 

The snake must reach the hole without hitting a poisonous 
plant, running into itself, or running out of time. If it reaches the 
escape hole safely, you will receive a bonus in addition to your 
score. The snake grows as it moves along; you receive one point 
for each body segment it adds while moving. If it runs into itself 
or a poisonous plant, a cross will appear in the center of the screen 
with your score and the number of remaining snakes. You may 
stop the snake if you wish by simply releasing all keys, but 
remember this costs you time. 

Strategy 
If you are running your snake near the left or right edges of the 
screen, remember that the 64 has horizontal screen wraparound. 
You may end up hitting a poisonous plant on the other side of the 
screen, so be careful! Occasionally, the snake will be cornered 
between plants and itself due to a miscalculation in maneuvering. 
Try to fill up all the spaces you can in the cornered-off area. You 
may lose a snake, but you will still receive a few extra points. 
Also, try to keep moving at all times. And watch where you're 
going. 

The direction in which the snake moves is determined in 
lines 200 through 230. As written, keys I (up), J (left), K (right), 
and M (down) move the snake. If you aren't comfortable control­
ling the snake with these keys, you can easily change the program 
to accept other key commands. 

39 



2 Maze Games 

For instance, suppose you want to use the Z key rather than 
the J key to move the snake left. Since location 197 reads the 
keyboard, you must first determine the number which is POKEd 
into this location when Z is pressed. Type the following line: 

1 PRINT PEEK(l97):FOR I=l TO 400:NEXT I:GOTO 1 

and then RUN the program. Next press the Z key, and the 
number in location 197 corresponding to the Z key (12) will print 
repeatedly on the screen. Try some other keys, noting their 
values, then hit the RUN/STOP key. 

You are now ready to make the modification in line 200: 
substitute 12 for 34. RUN the program (after deleting line 1, of 
course); you can move the snake left with the Z key. 

Snake Escape 
5 GOT0100 
10 POKE54296, 15 :POKE54277, 17 :POKE54278, 17 
15 POKE 54276, 17 :POKE 54273, 28 :POKE54272, 49 
20 POKE54276,0:POKE54273,0:POKE54272,0 
30 RETURN 
100 S0=0: SR=3 
110 GOSUB30000:GOSUB29000 
120 PRINT" {CLR} II 

130 GOSUB28000:GOSUB8000:GOSUB9000:GOSUB28000 
140 TI$="000000" 
150 CL=INT(RND(l)*7)+l:IFCL=50RCL=3THEN150 
160 IFTI$=L$THENGOSUB7000:GOT0130 
170 IFDH=0THENPOKEB,HC 
180 POKEB,HC:POKECO,CL 
190 K=PEEK(l97) 
200 IFK=34THENDR=-l:GOT0250:REM LEFT 
210 IFK=37THENDR=l:GOT0250:REM RIGHT 
220 IFK=33THENDR=-40:GOT0250:REM UP 
230 IFK=36THENDR=40:GOT0250:REM DOWN 
240 GOT0160 
250 POKEB,BC:B=B+DR:CO=CO+DR:SO=SO+l 
260 IFPEEK(B)=88THENDH=0:GOT09500 
270 IFPEEK(B)=l60THENGOSUB5000:GOT0120 
280 IFPEEK(B)=81THENGOT09500 
300 IFB<l0240RB>2023THENB=B-DR:CO=CO-DR 
310 GOSUB10:GOT0150 
4000 REM PRINT INSTRUCTIONS 
4010 PRINT" {CLR} {DOWN} {BLU} {5 RIGHT}YOUR GOAL IS T 

0 MOVE THE SNAKE OUT OF THE{2 SPACES}POISON P 
ATCH." 

4020 PRINT" {DOWN}{GRN }{ 5 RIGHT }TRY TO AVOID ALL PO 
ISON ( {BLK}!{CYN}). II 

40 



MazeGames2 

4030 PRINT" { 3 DOWN}{ RED} CONTROLS:": PRINT" { PUR} J= 
{ RVS} LEFT": PRINT" { GRN} K= { RVS} RIGHT" 

4040 PRINT" {CYN} I={RVS}UP" :PRINT" {RED} M={RVS}DOW 
N" 

4050 PRINT"{DOWN} {RED}POINT VALUES:" 
4060 PRINT"{BLU}BODY SEGMENT={RVS}l{OFF} POINT" 
4070 PRINT"{2 DOWN}{RED}YOU WILL RECEIVE A BONUS F 

OR ESCAPING." 
4080 PRINT"{3 DOWN}{PUR}{RVS}{8 RIGHT}HIT A KEY TO 

START II 

4090 GETA$:IFA$=""THEN4090 
4100 RETURN 
5000 VB=0:POKE53280,3:POKE53281,l 
5010 IFS=lTHENVB=20 
5020 IFS=2THENVB=30 
5030 IFS=3THENVB=40 
5035 IFS=4THENVB=50 
5040 BN=FNSC{VB) 
5050 PRINT" {CLR} {6 DOWN} {8 RIGHT} {BLU} ... YOU HAVE 

{SPACE}ESCAPED!!!" 
5060 SO=SO+BN 
5070 PRINT"{2 DOWN}{l5 RIGHT}{RED}{RVS}BONUS{OFF}: 

{ RVS} { BLU} II BN II {OFF} II 
5080 PRINT" { 2 DOWN} { 15 RIGHT} { RVS} { PUR} SCORE {OFF} : 

{ RVS} {GRN} II so 
50 90 PRINT II { 2 DOWN} { 8 RIGHT} { BLU} II SR II {RED} SNAKES 

{SPACE} REMAINING" 
5100 POKE54296, 15 :POKE54277, 83 :POKE54278, 50 
5102 FORHI=33TO 57STEP2:LO=INT{RND{0)*50)+180 
5103 POKE 54276,17:FORJ=lT060:NEXTJ:POKE 54273,HI: 

POKE54272,LO:NEXT 
5106 FORT=lTO 200 :NEXT:POKE54276,0:POKE54273,0:PO 

KE54272,0 
5120 DH=2:RETURN 
6000 PRINT" {CLR} {10 DOWN} {12 RIGHT} {BLU}VVVVWVVVV 

VVV" 
6003 PRINT" {12 RIGHT} {BLU}V{RVS} {CYN} {11 RIGHT} 

{OFF}{BLU}V" -
6005 PRINT"{l2 RIGHT}VVVVVVVVVVVVV" 
6010 PRINT"{HOME}{ll DOWN}{l3 RIGHT}{RVS}{BLK} GAM 

E" 
6020 POKE54296, 15 :POKE54277, 53 :POKE54278, 69 
6021 POKE 54276, 33 :POKE 54273, 3 :POKE54272, 244 
6022 FORT=lTO 900 :NEXT:POKE54276,0:POKE54273,0:PO 

KE54272,0 
6025 POKE36874,150:PRINT"{HOME}{ll DOWN}{l8 RIGHT} 

{RVS} {BLK} OVER II 

6026 POKE54296, 15 :POKE54277, 53 :POKE54278, 69 
6027 POKE 54276, 33 :POKE 54273, 2 :POKE54272, 163 

41 



2 Maze Games 

6028 FORT=lTO 900 :NEXT:POKE54276,0:POKE54273,0:PO 
KE54272,0 

6040 PRINT" { 3 DOWN} { 12 RIGHT} {RED} PLAY AGAIN ? " 
6050 GETP$:IFP$=""THEN6050 
6060 IFP$="Y"THENS0=0:SR=3:LK=0:GOT0120 
6070 IFP$<>"N"THEN6050 
6080 PRINT" { 3 DOWN} { 1 7 RIGHT} BYE I {HOME} " : END 
7000 SR=SR-l:POKE53280,3:POKE53281,l 
7010 PRINT"{CLR} {6 DOWN} {RED}WHEW! YOU HAVE JUST 

{SPACE}DIED OF EXAUSTIONI" 
7020 PRINTS PC ( 14) " { 4 DOWN} { GRN} Z { PUR} SCORE {OFF} : 

{RVS}{GRN}"SO -
7030 PRINTSPC(9)"{5 DOWN}{RED}"SR"{BLU}SNAKES REMA 

INING" 
7040 POKE54296, 10 :POKE54277, 31 :POKE54278, 17 
7042 POKE 54276, 33 :POKE 54273, 5 :POKE54272, 71 
7043 FORV0=15T05STEP-.5:POKE54296,V0:FORT=lT0100:N 

EXT:NEXT 
7045 POKE54276,0:POKE54273,0:POKE54272,0:POKE54296 

,0 
7050 FORT=lT02000:NEXT 
7060 IFSR=0THEN6000 
7070 RETURN 
8000 POKE53280,4:POKE53281,l:PRINT"{CLR}{3 DOWN}"S 

PC(42)"{RED}CHOOSE YOUR SKILL:" 
8005 PRINT"{2 SPACESH17 T~" 
8010 PRINTSPC ( 51) "{DOWN}[BLU }LEVEL 1=60 SECONDS" 
8020 PRINTSPC(5l)"{RED}LEVEL 2=45 SECONDS" 
8030 PRINTSPC(5l)"{GRN}LEVEL 3=30 SECONDS" 
8040 PRINTSPC(5l)"{PUR}LEVEL 4=15 SECONDS" 
8045 PRINT" {3 DOWN} { 7 RIGHT} {YEL}L{BLU}E{GRN}V 

{PUR}E{CYN}L {RED}?" 
8050 GETS$:IFS$=""THEN8050 
8060 S=VAL(S$) 
8070 IFS=lTHENL$="000100":RETURN 
8080 IFS=2THENL$="000045":RETURN 
8090 IFS=3THENL$="000030":RETURN 
8100 IFS=4THENL$="000015":RETURN 
8110 GOT08050 
9000 POKE53280,4:POKE53281,8:PRINT"{CLR}" 
9010 FORF=lT0150:D=INT(RND(l)*966)+1058 
9020 POKED,88:POKED+54272,l:FORJ=l T020:NEXTJ:POKE 

D+54272,0:NEXTF 
9030 POKE2023,160:POKE2022,160:POKE1983,160:POKE19 

82,160 
9040 POKE56295,6:POKE56294,6:POKE56255,6:POKE56254 

,6 
9050 POKE1943,32:POKE2021,32 
9060 RETURN 

42 



MazeGames2 

9500 POKE54296, 15 :POKE54277, 53 :POKE54278, 69 
9505 POKE 54276, 33 :POKE 54273, 5 :POKE54272, 71 
9510 FORT=lTO 900 :NEXT:POKE54276,0:POKE54273,0:PO 

KE54272,0 
9515 POKE54296, 15 :POKE54277, 53 :POKE54278, 69 
9520 POKE 54276, 33 :POKE 54273, 3 :POKE54272, 244 
9525 FORT=lTO 900 :NEXT:POKE54276,0:POKE54273,0:PO 

KE54272,0 
9530 POKE54296, 15 :POKE54277, 53 :POKE54278, 69 
9533 POKE 54276, 33 :POKE 54273, 2 :POKE54272, 163 
9536 FORT=lTO 900 :NEXT:POKE54276,0:POKE54273,0:PO 

KE54272,0 
9540 SR=SR-1 
9550 PRINT" {HOME} {10 DOWN} "SPC( 18) II {RVS} {WHT} 

{RIGHT} {RIGHT}"SPC(37)"RIP"SPC(37)"{RIGHT} 
{RIGHT}"SPC(37)"{RIGHT} {RIGHT}{OFF}" 

9560 FORT=lT01000:NEXTT 
9570 POKE53280,3:POKE53281,l:PRINT"{CLR}{5 DOWN}" 
9580 PRINTSPC(l4)"{RED}TOO BADii" 
9590 PRINT" { 4 DOWN} { 14 RIGHT} { RVS} { BLU} SCORE {OFF} : 

{RVS} {PUR} "SO" {OFF} II 

9600 PRINTSPC(8)"{4 DOWN}{GRN}"SR"{BLU}SNAKES REMA 
INING" 

9610 FORT=lT02000:NEXTT:IFSR=0THEN6000 
9620 GOT0120 
10000 POKEV,15:POKES3,217:POKES3,217:POKEV,0:POKES 

3,0:RETURN 
28000 BC=8l:HC=87:B=l024:S3=36876:C0=55296:LK=0:RE 

TURN 
29000 DBFFNA(L)=INT(RND(l)*L)+l064 
29010 DEFFNSC(L)=INT(RND(l)*L)+5:RETURN 
30000 POKE53280,3:POKE53281,l 
30010 PRINT"{CLR}{8 DOWN}{ll RIGHT}{RVS}{RED} 

{17 SPACES}" 
30020 PRINT"{ll RIGHT}{RVS}{RED} {GRN}{l5 SPACES} 

{RED} II 

30030 PRINT" {11 RIGHT} {RVS} {RED} {GRN} SNAKE ESCAP 
Ei {RED} II 

30040 PRINT" { 11 RIGHT} { RVS} {RED} { GRN} { 15 SPACES} 
{RED} II 

30050 PRINT"{ll RIGHT}{RVS}{RED}{l7 SPACES}" 
30070 PRINT"{2 DOWN}{l2 RIGHT}{BLU}INSTRUCTIONS ?" 
30080 GETI$:IFI$=""THEN30080 
30090 IFI$="Y"THENGOSUB4000:GOT030120 
30100 IFI$="N"THEN30120 
30110 GOT030080 
30120 RETURN 

43 



2 
The Viper 
Dave and Casey Gardner 64 Version by Charles Brannon 

"The Viper" is a fast-action game with 60 difficulty levels. A joystick is 
required. 

The Viper is a fast, furious, hungry snake. It races about, 
devouring its favorite food- asterisks! And the more it eats, the 
bigger it gets. Since snakes have a hard time growing wider, the 
Viper simply gets longer. Since the Viper has such sharp, venom­
ous teeth, it must not in its haste accidentally run into its own 
lengthening body. To make things especially interesting, the Viper 
must maneuver through a maze with electric walls. One false 
move means certain doom. 

With a joystick you can experience the perils of the Viper. The 
program is easy to set up and play. Just follow the screen instruc­
tions. Maneuver the Viper with a joystick plugged into port one. 

You can choose from various difficulty levels to control the 
Viper's speed. You also select one of three courses - no maze, the 
easy maze, or the hard maze. Your score is the number of those 
delicious asterisks eaten multiplied by the skill level you selected, 
so the harder the game, the more possible points. You get twice as 
many points for the easy maze, and five times as many for the 
hard maze. 

A Word to Programmers 
In order to get the game to run fast enough, the entire main loop 
of the program was written in machine language. The resulting 
speed was so fast that delay loops had to be inserted just to slow 
it down to a barely playable level. If you' re brave enough, try level 
20-you'll never be able to play it. If anyone can score any points 
on level 20 with the hard maze, it will be truly miraculous. 

Another feature is the word VIPER that moves about on the 
title screen. No, it's not high-resolution graphics, and it's not 
made of sprites, but rather from simple character graphics found 
on the keyboard. The movement works with programmable 
INSerts and DELetes. Again, look it over. You may be able to use 
the technique for-animation in your next game. 

44 



MazeGames2 

The Viper 

100 DT=60:DIM MA(DT),Q(l00),I%(15) 
110 I%(14)=-40:I%(13)=40:I%(11)=-l:I%(7)=1 
120 I%(10)=-4l:I%(6)=-39:I%(9)=39:I%(5)=4l:JOY=563 

21 
130 FORJ=lTODT:READMA(J):NEXT 
140 PRINT" {WHT} {CLR} "CHR$ ( 142): C=54272: SC=l024: POK 

E53281,2:POKE53280,8 
150 MZ=0:P=0:DR=0 
160 CURR=25l:SPEED=49352:INDEX=SPEED+l:LNGTH=INDEX 

+l:RTN=LN+l 
170 SID=54272:V=SID+24:Sl=SID:S2=SID:S3=S2:A=2:N=2 

:MM=0:S4=SID+4 
180 FORI=0T024:POKESID+I,0:NEXT:POKESID+l,25:POKES 

ID+5,6:POKESID+6,0 
190 POKESID+24,15 
200 GOSUB410:POKESID+5,6:POKESPEED,19-SK 
210 FORJ=l024T01063:POKEJ+C,7:POKEJ,160:NEXT 
220 FORJ=l064T02024STEP40:POKEJ+C,7:POKEJ,160:NEXT 
230 FORJ=2023T01984STEP-l:POKEJ+C,7:POKEJ,160:NEXT 
240 FORJ=l983T01063STEP-40:POKEJ+C,7:POKEJ,160:NEX 

T 
250 M=INT(RND(l)*l000)+SC 
260 IFPEEK(M)<>32THEN250 
270 POKEM,42:POKEM+C,l 
280 S=INT(RND(l)*l000)+SC 
290 IFPEEK(S)<>32THEN280 
300 POKE S,90:POKES+C,16*RND(l):IF(PEEK(5632l)AND1 

5)=15THEN300 
310 S%=S/256:POKECURR,S-S%*256:POKECURR+l,S%:POKEI 

NDEX,0 
320 POKELNGTH,N:SYS49152+5:REM MAIN LOOP GOTO 170 
330 HIT=PEEK(RTN) 
340 IFHIT<>l60ANDHIT<>214THEN360 
350 S=PEEK(CU)+256*PEEK(CU+l):POKES,42:POKES+C,7:G 

OT0770 
360 IFHIT<>42THEN320 
370 POKESID,0:POKESID+5,9:POKES4,128:POKES4,129:P= 

P+l:N=N+2:FORT=lT050:NEXT 
380 POKES4,128:POKESID,0:POKESID+5,6:POKESID+24,0: 

POKESID+24,15 
390 GOSUB880:POKEM,42:POKEM+C,l:POKESID+24,0:POKES 

ID+24,15 
400 GOT0320 
410 IFTR=lTHENPRINT"{CLR}":GOT0470 
420 GOSUB950 
430 PRINT"{2 DOWN}{3 SPACES}GET THE ' *'S BUT":PRIN 

T"{3 SPACES}DON'T HIT ANYTHING ELSE" 

45 



2 Maze Games 

440 PRINT"{2 DOWN}{3 SPACES}USE JOYSTICK IN CONTRO 
L PORT ONE. II 

450 FORJ=lT045:POKESID,230:POKES4,33:FORT=lT02:NEX 
T:POKES4,32:POKESID,0 

460 POKESID+5,2 
470 PRINT"{3 DOWN}"TAB(ll)"ENTER SKILL LEVEL:" 
480 PRINTTAB( 10) II EBHRVS} { 9 SPACES} 11111111112": 

SK=l0 
490 PRINT" {YEL}SLOW{WHT}{2 SPACES}<- EB3£RVS}l2 

345678901234567890{0FF}{WHT} ->{2 SPACES}g6~ 
FAST" 

500 PRINTTAB(l0)"{RVS}{WHT} -{CYN} -{PUR} -{GRN} -
{YEL} -El~ -E6~ -P~ -{BLU} -E3J -":PR-
INT - - - - - -

510 PRINT" {UP} "TAB ( 10+SK) i II {WHT lt {LEFT} II i 
520 J=l5-(PEEK(5632l)AND15):SK=SK+((JAND8)=8)*(SK< 

19)-((JAND4)=4)*(SK>0) 
530 IF(PEEK(5632l)AND16)=0 THEN560 
540 IF TI<T THEN530 
550 T=TI+5:PRINT" ":GOT0510 
560 IFTR=lTHENPRINT"{CLR}":GOT0610 
570 PRINT CHR$(14)"{CLR}{DOWN}YOU WILL GET 2 TIMES 

":PRINT" AS MANY POINTS WITH" 
580 PRINT" AN EASY MAZE. 
590 PRINT"{2 DOWN} YOU WILL GET 5 TIMES":PRINT" AS 

MANY POINTS WITH" 
600 PRINT" A HARD MAZE. 
610 PRINT CHR$(14)"{2 DOWN}EB~ PRESS {WHT}LEFT 

ES~ FOR HARD MAZE" -
620 PRINT"{DOWN} PRESS {WHT}~IGHTE8~ FOR EASY MA 

ZE" 
630 PRINT"{DOWN} PRESS {WHT}JOYBUTTONE8~ FOR NO 

{SPACE}MAZE" 
640 IFPEEK(56321)<>255 THEN640 
650 MZ=0:J=PEEK(5632l):IF(JAND16)=0THENPRINT"{CLR} 

"CHR$(142);:RETURN 
660 IF(JAND15)=15 THEN650 
670 PRINT"{CLR}"CHR$(142):IF(JAND4) THEN720 
680 I=-l:PRINT"{HOME}{RVS}HARD MAZE" 
690 FORJ=lTODT:POKESC+80+I*320+MA(J)+C,3:POKESC+MA 

(J)+80+I*320,160:NEXTJ 
700 I=I+l:IFI<2 THEN690 
710 MZ=l:RETURN 
720 IF(JAND8)THEN570 
730 I=-l:PRINT"{HOME}{RVS}EASY MAZE" 
740 FORJ=lT032:POKESC+MA(J)+C+80+320*I,3:POKESC+MA 

(J)+80+320*I,160:NEXT 
750 I=I+l:IFI<2THEN740 
760 MZ=2:RETURN 

46 



MazeGames2 

770 POKESID,0:POKESID+5,15:POKES4,129:FORJ=l5T04ST 
EP-.l:POKESID+24,J:NEXT 

780 POKESID+24,15:FORT=lT0500:NEXT:POKES4,128:FORT 
=1T0200:NEXT:POKESID+5,6 

790 IFMZ=lTHENP=P*5 
800 IFMZ=2THENP=P*2 
810 R=P*(SK+l) 
820 PRINT"{CLR}{2 DOWN}{YEL} YOUR SCORE:"R 
830 IFR>HSTHENHS=R 
840 PRINT" { 2 DOWN} { CYN} HIGH SCORE: "HS 
850 PRINT:PRINT"{WHT}PRESS E33{RVS}JOYBUTTON 

{OFF} {WHT}TO PLAY AGAIN. II 
860 IF(PEEK(5632l)AND16)THEN860 
870 GOT0140 
880 M=INT(RND(l}*l000)+SC:MM=0 
890 IFPEEK(M)<>32THEN880 
900 RETURN 
910 DATA 259,260,336,337,338,341,342,343,376,383,4 

11,412,413,414,415,416 
920 DATA 423,424,425,426,427,428,456,463,496,497,4 

98,501,502,503,579,580 
930 DATA 258,259,330,331,332,333,334,345,346,347,3 

48,349,418,419,420,421 
940 DATA 490,491,492,493,494,505,506,507,508,509,5 

78, 581 
950 PRINT"{CLR}{WHT} "CHR$(142);:FORI=2T039:PRINT" 

*II; :NEXT: PRINT: PRINT" {4 DOWN} II 
960 PRINT" ";:FORI=2T039:PRINT 11 * 11 ;:NEXT 
970 PRINT" {HOME} {DOWN} E3 @3 E@3-E@3 E3 @3 

{SPACE}E2 @3 E3 @3" 
980 PRINT"{2 SPACES}{RVS} £{0FF}£{RVS}£{OFF}£ 

{RVS}£{0FF}£{RVS}£{0FFT£{RVST£{0FFT£ -
{RVS}£{OFF}£{RVS}£{OFF}£ - -

990 PRINT" ET3{RVS} {OFF}£{RVS}£{0FF}£{RVS}£ 
{OFF}£E2 T3{RVS}£{OFFT£ET3{RVS}£{OFF} -
£E*HRvsH*~" - - -

1000-PRINT" E2 T3 ET3 E2 TH 2 SPACES H2 T3 
E2 T3 E3 T~{3 SPACES}":IFZZ=lTHEN1070 

1010 IFPEEK(900)<>232THENGOSUB1130 
1020 FOR C0=3 TO 7:POKE894,CO:SYS893 
1030 FORI=lT020:PRINT"{HOME}{DOWN}"CHR$(148)" 

{DOWN} {LEFT} "CHR$ ( 148)" {DOWN} {LEFT} "CHR$ ( 148 
) II {DOWN} {LEFT} "CHR$ (148) II {DOWN} {LEFT} II 

1040 POKESID+l,C0*2+I:POKES4,33:POKES4,32:NEXT 
1050 FORI=l T020: PRINT" {HOME} {DOWN} 11 CHR$ (20) 11 

{DOWN} 11 CHR$(20) 11 {DOWN} 11 CHR$(20)"{DOWN} "CHR 
$(20)"{DOWN} II 

1060 POKESID+l,C0*2+20-I:POKES4,33:POKES4,32:NEXT: 
NEXT 

47 



2 Maze Games 

1070 FORI=l T010: PRINT II {HOME} {DOWN} "CHR$ ( 148) II 
{DOWN} {LEFT} "CHR$ ( 148) II {DOWN} {LEFT} "CHR$ ( 148 
)" {DOWN}{LEFT}"CHR$(148)" {DOWN}{LEFT}" 

1080 NEXT 
1090 POKESID+l,60 
1100 FORJ=l5T01STEP-l:POKE894,J:POKESID,J*l0:POKES 

4,33 
1110 SYS893:POKES4,32:POKESID+24,J:NEXT:POKESID+l, 

15:POKESID+24,15 
1120 zz;l:RETURN 
1130 FORI;893T0905:READA:POKEI,A:NEXT 
1140 PRINT"{HOME}{8 DOWN}{RVS}READY TO PLAY IN 5 S 

ECONDS ... II 
1150 DATA 169, 1, 162, 0, 157, 40, 216, 232 
1160 DATA 224, 160, 208, 248, 96 
1170 FORI=49152T049350:READA:CK=CK+A:POKEI,A:NEXT 
1180 PRINT"(HOME}(8 DOWN}(30 SPACES}" 
1190 IF CK<>29203 THEN PRINT"ERROR IN DATA STATEME 

NTS1":POKE900,0:END 
1200 RETURN 
1210 DATA169,0,141,199,192,173,l,220 
1220 DATA41,15,170,189,183,192,240,3 
1230 DATA141,199,192,173,201,192,10,170 
1240 DATA165,251,157,205,192,165,252,157 
1250 DATA206,192,56,173,201,192,237,202 
1260 DATA192,16,3,24,105,128,10,170 
1270 DATA189,205,192,133,253,189,206,192 
1280 DATA133,254,169,32,145,253,238,201 
1290 DATA192,173,201,192,16,5,169,0 
1300 DATA141,201,192,169,230,141,0,212 
1310 DATA169,32,141,4,212,169,33,141 
1320 DATA4,212,169,214,145,251,24,165 
1330 DATA251,133,253,165,252,105,212,133 
1340 DATA254,169,5,145,253,24,173,199 
1350 DATA192,16,13,101,251,133,251,165 
1360 DATA252,233,0,133,252,76,138,192 
1370 DATA101,251,133,251,165,252,105,0 
1380 DATA133,252,24,165,251,133,253,165 
1390 DATA252,105,212,133,254,177,251,201 
1400 DATA32,208,24,169,81,145,251,169 
1410 DATA4,145,253,173,200,192,240,8 
1420 DATA162,0,134,162,197,162,208,252 
1430 DATA76,5,192,141,203,192,96,0 
1440 DATA0,0,0,0,41,217,l,0 
1450 DATA39,215,255,0,40,216,0,0 

48 







3 
States & capitals 
Tutor 
Enoch L. Moser 

"States & Capitals Tutor,' in addition to being a useful tool for students 
who are learning the American states and capitals, also demonstrates the 
use of arrays in programs and the storage and retrieval of data on cassette. 
Both of these concepts are important to programmers, but nonprogram­
mers may use States & Capitals Tutor without delving into the working 
details. 

"States & Capitals Tutor" asks a student the name of either a state 
or a capital, and keeps track of correct and incorrect responses. 
The program randomly decides whether to quiz the student on 
either states or capitals and also chooses the questions randomly. 

Questions answered correctly are not repeated. However, the 
program will repeat questions that are missed. And like any good 
teacher, States & Capitals Tutor will help students who ask for it. 
Students who are stumped can simply type HELP. The program 
gives the correct answer and comes back to the troublesome ques­
tion later. It also keeps track of how many times the student asks 
for help. 

When all SO states have been correctly matched with their 
capitals, and if the student has not asked for help or missed any 
questions, he or she is rewarded with a perfect score message. 

A Two-Part Program 
The program reads the states and capitals from a disk or tape file 
which is generated by Program 2, ''File Maker:' 

To use these programs, follow this procedure: 
1. Type in Program 1. Line 5 for tape users should be 

5 OPEN 1, 1,0, "STATES" 
Line 5 for disk users should be 

5 OPEN 1,8,0, "STATES" 
2. SAVE Program 1 to disk or tape. Tape users should leave 

the tape at its position after the SAVE. 

51 



3 Thinking Games 

3. Type in Program 2 (File Maker). Line 40 for tape users 
should be 

40 OPEN 1, 1, l, "STATES" 
Line 40 for disk users should be 

40 OPEN 1,8, l, "STATES" 
4. RUN the program. The states and capitals will be on the 

tape or disk under the filename STATES. (Tape users 
should leave the tape in its position.) 

5. SAVE Program 2. 
6. Rewind the tape. 
7. LOAD Program 1; leave the PLAY button pressed and the 

tape in position when loading is complete. 
8. RUN Program 1. 

How the Programs Work 
As mentioned, the File Maker program stores the states and capi­
tals on tape or disk under the filename STATES. The main 
program, States & Capitals Tutor, reads this file and stores the 
data in ST$ {I,J), a two-dimensional array (more on this in a 
moment). When a right answer is given, the range of the random 
number generator (line 100) is decreased by one (line 205), and 
that state/capital is moved to the top part of the list (lines 180-200), 
out of the range of selection. Otherwise, the program is fairly 
straightforward. 

The definitions of the variables are: 
ST$ (49,1) States and capitals array. 
K Number of elements moved to top of list. 
Rl % State pointer. 
R2% State or capital selector. 
AN$ Answer. 
RT% Number right. 
WR% Number wrong. 
HE% Number of helps. 
1$ Temporary string for exchanging data. 

Arrays 
An array is simply an ordered set of data. It may have one or more 
dimensions. A one-dimensional array is merely a list whose data 
elements are numbered starting with 0. For example, a grocery 
list of 20 items, numbered 0to19, would be a one-dimensional 
array with 20 data elements. 

To define an array, you must use a special type of variable 
called a subscripted variable. This takes the form AN(I), where AN 

52 



Thinking Games 3 
is the Array Name and I is the number (subscript) of the desired 
element. In our grocery list example, if I= 19, then AN(I) would 
be the last item on the list. 

The array name may be any legal variable name, with$ 
(string variable) or % (integer variable) appended if appropriate. 
(This would indicate that the data contained in the array are 
strings or integers.) 

Let's say you want a one-dimensional array with four 
elements. The four elements are integers (whole numbers): 21, 23, 
25, and 27. The array would be represented by AN%(1) . That is to 
say, AN%(0)=21, AN%(1) = 23, AN%(2)=25, andAN%(3) = 27. 

A two-dimensional array is also an ordered list, but one whose 
elements are each an ordered list themselves. It's easier to under­
stand if you picture it as a chart. For example, a two-dimensional 
array might look like this: 

l=O 1=1 1=2 1=3 

J=O 21 23 25 27 

J=l 43 45 47 49 

J=2 51 53 58 59 

A proper name for this array could be AN% and its elements 
identified as AN%(1,J). If I = 0 and J = 0, then AN%(1,J) = 21. If 
I= 3 and J = 2, then AN% (l,J) = 59. The advantage of arrays is that 
they let you store lots of numbers or other data without using lots 
of variables, and you can access any data element with a simple 
mathematical calculation. But be careful: arrays also consume big 
chunks of memory. 

Arrays can become very complicated. It's easy to picture one­
and two-dimensional arrays, but how about arrays of three or 
even four dimensions? Elements of three-and four-dimensional 
arrays are identified in the form AN%(1,J,K) and AN%(1,J,K,L), 
respectively. 

Creating Arrays 
Typically, arrays are created with nested FOR/NEXT loops, each 
containing a READ from a DATA statement or an INPUT from a 
storage device. Each FOR/NEXT level creates one ordered list. For 
example, the following program could be used to define the 
contents of the two-dimensional array shown above: 

53 



3 Thinking Games 

10 DIM AN%(3,2) 
20 FOR I=0 TO 3 
30 FOR J=0 TO 2 
40 READ AN% (I I J) 
50 NEXT J 
60 NEXT I 
70 DATA 21,43,Sl,23,4S,53,25,47,SB,27,49,59 

The inner (or nested) FOR/NEXT loop (lines 30-50) creates the 
ordered list of elements in the J-dimension within each element of 
the I-dimension. Compare the above chart to the DATA statement 
in line 70 to see how the array is set up. 

The DIMension statement (line 10) is required to tell the 
computer how much memory to set aside for the array. Note that 
dimension sizes in a DIMension statement are one less than the 
number of elements in the dimension. The numbers of dimen­
sions and the number of elements in each dimension are limited 
only by the amount of memory available. 

Remember that an array can hold other types of data besides 
numbers. States & Capitals Tutor uses a two-dimensional string 
array, ST$(1,J), to store the 50 states and 50 capitals. See lines 10-35 
in Program 2. 

Storing Data 
Data can be added to a program by using DATA statements or 
keyboard inputs, or from data files stored on tape or disk. Tape or 
disk files work best when several programs must have access to 
the same data, or when a program needs several different data 
files, or when the amount of data you need to store exceeds 
memory capacity. Note that when arrays are filled from DATA 
statements, twice as much memory is required as when they are 
filled from tape or disk. 

Storing and retrieving data is quite simple if you adhere to a 
few rules. First, before information can be written to or read from 
a file, a communications channel between the computer and 
recorder must be opened with the OPEN command. This tells the 
computer which file is involved and in which direction the infor­
mation will flow (input from the recorder into the computer, or 
output from the computer to the recorder). If a write is indicated in 
the OPEN command, the computer will write a filename. If a read 
is indicated, the computer will search for the requested filename 
and then read the file. 

Second, the file must be dosed, after use, by the CLOSE 
command. This is especially important when creating a new file. 

54 



Thinking Games 3 
The third rule to watch when storing information on tape or 

disk is that variable types must be consistent. That is to say, data 
stored as numeric, integer, or string variables must be read back 
into variables of the same type. The variable names themselves 
are not stored, so they can be read back into entirely different 
variables, as long as you don't mismatch types. 

Fourth, data is read back in the same order in which it was 
written. Therefore, the program must expect the data in exactly 
the same order in which it will be received. 

Program 1. States & Capitals Tutor 
5 OPEN 1,1,0,"STATES":REM FOR DISK OPEN 1,8,0,"STA 

TES" 
10 DIM ST$(49,l) 
15 FOR I=0 TO 49 
20 FOR J=0 TO 1 
25 INPUT#l,ST$(I,J) 
30 NEXT J 
35 NEXT I 
40 CLOSE 1 
45 K=0:RT%=0:WR%=0:HE%=0 
48 PRINTCHR$(147) 
50 PRINT"STATES TUTOR" 
55 PRINT:PRINT"THIS PROGRAM TUTORS THE STUDENT IN 

{6 SPACES}STATES AND CAPITALS" 
60 PRINT:PRINT"IF YOU DON'T KNOW AN{2 SPACES}ANSWE 

R,TYPE 'HELP'" 
65 PRINT:PRINT"PRESS ANY KEY TO CONTINUE" 
70 GET A$:IF A$=""THEN70 
100 Rl%=INT((50-K)*RND(-RND(0))) 
105 R2%=INT(2*RND(l)) 
110 PRINTCHR$(147) 
115 IF R2%=0 THEN 130 
120 PRINT"THE CAPITAL OF ":PRINTST$(Rl%,0);" IS" 
125 GOTO 140 
130 PRINTST$(Rl%,l):PRINT:PRINT"IS THE CAPITAL OF 

{SPACE}WHAT STATE?" 
140 INPUT AN$ 
145 IF AN$=ST$(Rl%,R2%)THEN170 
150 IF AN$="HELP"THEN220 
155 GOTO 250 
1 70 RT%=RT%+ 1 
175 PRINT"THAT'S RIGHT!" 
180 FOR I=0T01 
185 I$=ST$((49-K),I) 
190 ST$((49-K),I)=ST$(Rl%,I) 
195 ST$(Rl%,I)=I$ 

55 



3 Thinking Games 

200 NEXTI 
205 K=K+l 
210 GOTO 300 
220 HE%=HE%+1 
225 PRINT:PRINT"THE ANSWER IS ... " 
230 PRINTSPC(5)ST$(Rl%,R2%) 
235 GOTO 300 
250 WR%=WR%+1 
255 PRINT:PRINT"SORRY.THE CORRECT ANSWER IS " 
260 PRINT:PRINTSPC(5)ST$(Rl%,R2%) 
300 PRINT:PRINT:PRINT:PRINT 
305 PRINT"YOUR SCORE IS:" 
310 PRINTSPC(5)RT%;" RIGHT" 
315 PRINTSPC(5)WR%;" WRONG" 
320 PRINTSPC(5)HE%;" HELPS" 
325 IF RT%=50THEN400 
330 PRINT:PRINT"PRESS ANY KEY TO CONTINUE " 
335 GET A$:IF A$=""THEN 335 
340 GO TO 100 
400 IF WR%+HE%=0THEN430 
405 PRINT"THAT'S ALL. BUT NOT ALL YOUR ANSWERS" 
406 PRINT"WERE CORRECT OR I HAD TO HELP YOU." 
408 PRINT"PRESS ANY KEY TO START OVER" 
410 GET A$:IF A$=""THEN410 
415 GOT045 
430 PRINT:PRINT"YOU DID ITlllll" 
435 PRINT"A PERFECT SCORE AND I DIDN'T HELP" 
440 PRINT:PRINT"PRESS ANY KEY TO START OVER" 
445 GET A$:IF A$= 1111 THEN 445 
450 GOTO 45 

Program 2. File Maker (Data File) 

10 DIM ST$(49,l) 
15 FOR I=0 TO 49 
20 FOR J=0 TO 1 
25 READ ST$(I,J) 
30 NEXTJ 
35 NEXTI 
40 OPEN 1,1,1,"STATES":REM FOR DISK OPEN 1,8,1,"ST 

ATES" 
45 FOR I=0 TO 49 
50 FOR J=0 TO 1 
55 PRINT#l,ST$(I,J) 
60 NEXT J 
65 NEXT I 
70 CLOSE 1 
75 DATA ALABAMA,MONTGOMERY,ALASKA,JUNEAU,ARIZONA,P 

HOENIX,ARKANSAS,LITTLE ROCK 

56 



Thinking Games 3 
80 DATA CALIFORNIA,SACRAMENTO,COLORADO,DENVER,CONN 

ECTICUT,HARTFORD,DELAWARE,DOVER 
85 DATA FLORIDA,TALLAHASSEE,GEORGIA,ATLANTA,HAWAII 

,HONOLULU,IDAHO,BOISE 
90 DATA ILLINOIS,SPRINGFIELD,INDIANA,INDIANAPOLIS, 

IOWA,DES MOINES,KANSAS,TOPEKA 
95 DATA KENTUCKY,FRANKFORT,LOUISIANA,BATON ROUGE,M 

AINE,AUGUSTA,MARYLAND,ANNAPOLIS 
100 DATA MASSACHUSETTS,BOSTON,MICHIGAN,LANSING,MIN 

NESOTA,SAINT PAUL,MISSISSIPPI,JACKSON 
110 DATA MISSOURI,JEFFERSON CITY,MONTANA,HELENA,NE 

BRASKA,LINCOLN,NEVADA,CARSON CITY 
115 DATA NEW HAMPSHIRE,CONCORD,NEW JERSEY,TRENTON, 

NEW MEXICO,SANTA FE,NEW YORK,ALBANY 
120 DATA NORTH CAROLINA,RALEIGH,NORTH DAKOTA,BISMA 

RCK,OHIO,COLUMBUS 
125 DATA OKLAHOMA,OKLAHOMA CITY,OREGON,SALEM,PENNS 

YLVANIA,HARRISBURG 
130 DATA RHODE ISLAND,PROVIDENCE,SOUTH CAROLINA,CO 

LUMBIA,SOUTH DAKOTA,PIERRE 
135 DATA TENNESSEE,NASHVILLE,TEXAS,AUSTIN,UTAH,SAL 

T LAKE CITY,VERMONT,MONTPELIER 
140 DATA VIRGINIA,RICHMOND,WASHINGTON,OLYMPIA,WEST 

VIRGINIA,CHARLESTON,WISCONSIN,MADISON 
145 DATA WYOMING,CHEYENNE 

57 



3 
Mystery Spell 
Doug Hapeman 64 Version by Eric Brandon 

This spelling game features lively graphics and sprites. It's also a clever 
teaching aid for parents, teachers, and students in which spelling lessons 
can be reviewed and then practiced. 

If you've ever played Hangman, you won't have any trouble 
learning "Mystery Spell:' Although it's similar in concept, there's a 
twist. Instead of a gallows, you'll see flying blackbirds, and hear 
cheerful music. 

When the game begins, a happy face appears in a little hut 
surrounded by trees and landscape. The letters of the alphabet 
appear near the bottom of the screen, and blank spaces repre­
senting the secret word appear near the top. When you select a 
letter, the bird moves to the selected letter if it's a correct choice. 
For each incorrect choice, a blackbird descends and lands on a 
perch. Too many blackbirds disallow any more guesses, and the 
word will be spelled correctly for you. 

The program has 53 preselected words. You can change the 
words or add to the word list simply by creating your own DATA 
statements beginning at line 2780. The only restriction is that the 
last DATA entry must be an asterisk(*). 

Animation 
The most interesting feature of Mystery Spell is the animated 
bird. The bird flies around the top of the screen, swooping down 
to pick up letters and to sit on its perch, depending on whether 
your guesses are right or wrong. 

As the bird moves around, it seems to flap its wings, creating 
an illusion of flight. This is achieved by rapidly displaying 
different poses. In films, this is done by passing many frames 
through a projector every second. To achieve the illusion of flap­
ping wings, we too must create a few frames of a bird in motion. 

Using a sprite editor program, we first drew the bird you see 
in Figure 1. Then, using that sprite, we designed two more birds, 
one with the wing up (Figure 2) and one with the wing down 

58 



Thinking Games 3 
(Figure 3). Using those shapes, we designed three more birds 
identical to the first three, but without legs. This gave us three 
frames for the bird carrying a letter, and three frames for the bird 
flying freely. We then set up the DATA statements in the program 
as if we were going to display six different sprites . 

Immediately after the screen RAM are eight memory loca­
tions that tell the 64 where in memory to find the shapes of the 
eight sprites. Usually these locations are at 2040 to 2047 ($07F8 to 
$07FF). By rapidly POKEing 2040 with the pointer to each frame, 
the bird seems to flap its wings. To see how this is done, look at 
lines 2000-2060. This is the routine which flies the bird around the 
top of the screen until you press a key. Line 2050 steps through 
the frame numbers. The actual POKEing is done at the end of line 
2000. 

Another interesting feature of the game is that when you 
guess correctly, the bird swoops down to pick up a letter, and then 
carries it up to the word. How is that letter incorporated into the 
bird sprite? 

In the character set ROM at 53248 ($0000), the shape of each 
character is contained in eight bytes. Each byte is one row, and 
each bit is a column within that row. Depending on whether the 
value of that bit is 0or1, the pixel will be clear or set inside the 
character. The sprite is 24 bits wide, which is as wide as three 
characters. This means that by putting character shape data into 
every third byte within a sprite, we can make character shapes 
inside sprites. This technique could be used in any program 
which moves letters or text around smoothly. To see how this is 
done, look at lines 2180-2260. 

Lines 2180 and 2190 make the character ROM available to be 
PEEKed. They also tum off the keyboard. Lines 2200 to 2240 take 
the character data and put it in the sprites. Finally, lines 2250 and 
2260 cover up the character ROM and reenable the keyboard. 

59 



3 Thinking Games 

Figure 1. Sprite-Created Bird 

60 



Thinking Games 3 
Mystery Spell 

HJ0 GOSUB 2660 
110 X=RND (-TI) 
120 DIM W(20),W$(500) 
130 GOSUB 1190 :REM DRAW HOUSE 
140 PRINT" {HOME} {BLU}PLEASE WAIT ... 
150 GOSUB 1380 :REM POKE IN SPRITES 
160 GOSUB 1970 :REM GET WORDS 
170 GOSUB 690{2 SPACES}:REM SET UP SPRITES 
180 PRINT"{HOME}{l4 SPACES}" 
190 W$=W$(RND(l)*N+l) 
200 GOSUB 650 
210 L$=" ABCDEFGHIJKLMNOPQRSTUVWXYZ" 
220 PRINT" (HOME} { 1 7 DOWN} { 8 RIGHT}"; 
230 FOR I=~ TO 14 
240 PRINTMID$(L$,I,l)"{RIGHT}"; 
250 NEXT 
260 PRINT: PRINT" {DOWN} { 8 RIGHT} "; 
270 FOR I=l5TO 27 
280 PRINTMID$(L$,I,l)"{RIGHT}"; 
290 NEXT 
300 PRINT"{HOME}{4 DOWN}"SPC(l8-LEN(G$)); 
310 FOR I=lTO LEN(G$) 
320 PRINTMID$(G$,I,l)"{RIGHT}"; 
330 NEXT 
340 IF COUNT<>LEN(W$) THEN420 
350 POKE 198,0 
360 FOR DL=lT0100:NEXTDL:CL=CL+l:IFCL=3THENCL=l 
370 PRINTMID$("{BLK}{CYN}",CL,l); 
380 PRINT"{HOME}{l4 SPACES}YOU WIN 1111" 
390 GETA$:IFA$=""THEN 360 
400 GOTO 2610 
410 GOSUB 2000 
420 GETA$:IFA$<"A"ORA$>"Z"ANDA$<>"~"THEN410 
430 IF A$="~"THEN 760 
440 P=ASC(A$)-64 
450 IF MID$ (L$, P+l, 1) <>II "THEN540 
460 PRINT"{HOME}{4 DOWN}{8 SPACES}LETTER ALREADY C 

HOSEN{l0 SPACES}" 
470 FOR I=l TO 800:NEXTI 
480 PRINT" {HOME} {4 DOWN} {38 SPACES}" 
490 PRINT" {HOME} { 4 DOWN} "SPC ( 18-LEN (G$)); 
500 FOR I=lTO LEN(G$) 
510 PRINTMID$(G$,I,l)"{RIGHT}"; 
520 NEXT 
530 GOTO 420 
540 L$=LEFT$(L$,P)+" "+MID$(L$,P+2) 
550 RF=0 :REM FLAG FOR CORRECT GUESS 

61 



3 Thinking Games 

560 FOR I=l TO LEN(W$) 
570 IF MID$(W$,I,l)<>A$ THEN 610 
580 G$=LEFT$(G$,I)+MID$(W$,I,l)+MID$(G$,I+2) 
590 RF=RF+l 
600 COUNT=COUNT+l 
610 NEXT I 
620 IF RF=0 THEN GOSUB 1030 
630 IF RF THEN GOSUB 2070 
640 GOTO 220 
650 G$= 11 

II 

660 FOR I=l TO LEN(W$):G$=G$+ 11 - 11 :W(I)=0:NEXT 
670 RETURN 
680 I=I+l:GOT01980 
690 REM SET UP SPRITES 
700 V=53248 
710 FOR I=0 TO 15:POKE V+I,0:NEXT 
720 POKE V+21,255 
730 FOR I=V+39 TO V+46:POKE I,0:NEXT 
740 X=0:Y=60:S=251 
750 RETURN 
760 PRINT 11 {HOME}{BLU}ENTER YOUR GUESS: " 
770 POKE V+21,PEEK(V+2l)AND254 
780 FOR I=l TO LEN(W$):PRINT 11 E@~";:NEXT 
790 PRINT"[HOME}{l8 RIGHT}";GU$; 
800 IF LEN(GU$)<LEN(W$)THENPRINT"E+~"; 
810 IF LEN(GU$)<LEN(W$)-l THEN FOR I=2 TO LEN(W$)-

LEN(GU$) :PRINT11E@~"; 
820 GET K$:IF K$= 1111 THEN 820 
830 IF K$=CHR$(20) AND LEN(GU$)>0 THEN GU$=LEFT$(G 

U$,LEN(GU$)-l):GOT0790 
840 IF K$=CHR$(13) AND LEN(GU$)=LEN(W$) THEN 870 
850 IF K$>="A" AND K$<= 11 Z" AND LEN(GU$)<LEN(W$) TH 

EN GU$=GU$+K$ 
860 GOTO 790 
870 IF GU$<>W$ THEN 930 
880 PRINT"{HOME}{38 SPACES}" 
890 PRINT"{HOME}{4 DOWN} 11 SPC(l8-LEN( 11 11 +W$)); 
900 FOR I=lTO LEN(" "+W$) 
910 PRINTMID$ (" "+W$, I, 1) " {RIGHT}"; 
920 NEXT:GOT0350 
930 PRINT"{HOME}{BLK}{13 SPACES}SORRY ... YOU LOSE 

{5 SPACES}" 
940 PRINT 11 { BLK} THE WORD WAS ... " 
950 PRINT"{HOME}{4 DOWN}"SPC(l8-LEN( 11 11 +W$)); 
960 FOR I=l TO LEN ( 11 11 +W$) 
970 PRINTMID$( 11 11 +W$,I,l) 11 {RIGHT}"; 
980 FOR D=l TO 200:NEXT 
990 NEXT 
1000 POKE 19&,0 

62 



Thinking Games 3 
1010 GETA$:IFA$=""THEN1010 
1020 GOTO 2610 
1030 DB=DB+l:S=S-3 
1040 DX=32*DB+l6:DY=225 
1050 IF DB=8 THEN DB=0 
1060 POKEV,XAND255:POKEV+l6,PEEK(V+l6)AND2540R-(X> 

255):POKE V+l,Y:POKE2040,S 
1070 IF X=0 THEN POKE V+21,PEEK(V+~l)OR1 
1080 FLAG=0 
1090 IFABS(X-DX)>lTHENX=X+3:FLAG=l:IFX>344THEN X=0 

:POKEV+21,PEEK(V+2l)AND254 
1100 IF Y<DY THEN Y=Y+2:FLAG=l 
1110 S=S+l:IFS=251THENS=248 
1120 IF FLAG THEN 1060 
1130 X=DX:Y=DY 
1140 POKEV+2*DB,XAND255:POKEV+l6,PEEK(V+l6)0R(2fDB 

)*(-(X>255)) 
1150 POKEV+2*DB+l,Y:POKE2040+DB,254 
1160 IF DB<>0 THEN POKE V+21,PEEK(V+2l)AND254 
1170 X=0:Y=60:IF DB=0 THEN 930 
1180 RETURN 
1190 POKE 53281,3:POKE 53280,4 
1200 PRINT" {CYN} {CLR} 
1210 PRINT" {4 DOWN} 
1220 PRINT 
1230 PRINT"{5 SPACES}{GRN}{3 SPACES}{RVS} 

{2 SPACES}{OFF}{l0 SPACES}{WHT}ED3{UP}{RVS} 
EB3{0FF}{DOWN}{6 SPACES}{GRN} 

1240 PRINT"{6 SPACES}{RVS}EK3{4 SPACES}{OFF} 
EJ3{6 SPACES}{RVS}{YEL}£E*3{BLK}{OFF} 
E2 G3{3 SPACES}{GRN} {RVS}EJ3 EL3{0FF} 

1250 PRINT"{6 SPACES}{RVS}EJ3{4 SPACESHL3 
{OFF}{5 SPACES}{RVS}{YEL}£{2 SPACES}E*3 
{OFF} {BLKHG3{3 SPACES} {GRN} {RVS} 
{3 SPACES}{OFF} 

1260 PRINT"{6 SPACES}{RVS}EG3{4 SPACES}EN3 
[OFF}[4 SPACES}[RVS}{YEL}£{4 SPACES}E*3 
[OFF}[GRN}[3 SPACES}{RVS}fJ3{3 SPACES}EL3 
{OFF} 

1270 PRINT" { 6 SPACES} { RVS} { 6 SPACES} {OFF} 
{4 SPACES}{RVS}{RED}{4 SPACES}E£3 [OFF} 
{GRN}[3 SPACES}[RVS}{5 SPACES}{OFF} 

1280 PRINT"{6 SPACES}E53{2 SPACES} [RVS} 
{2 SPACES}[OFF}{6 SPACES}[RVS}[RED} E£3 
{4 SPACES}{OFF}{2 SPACES}{GRN}{3 SPACES}{RVS} 
E53 {OFF} 

1290 PRINT"{RVS}E63{8 SPACES}E53{2 SPACES} 
E63[6 SPACES}[RED}{2 SPACES}EI3EF3 
E£3E6H 5 SPACES H53 E63{12 SPACES} II; 

63 



3 Thinking Games 

1300 PRINT"{8 SPACESH5H2 SPACESH6~ 
{6 SPACES}{RED}{2 SPACES}{OFF} {RVS}EK~ 
{2 SPACES}E6~{5 SPACES}E5~ E6~ 
{12 SPACES}"; 

1310 PRINT"E6HRVS}"; 
1320 FOR I=0 TO 8:PRINT"{40 SPACES}";:NEXT 
1330 FOR I=l TO 8 : L=l024+23*40+I*4 :POKE L,114:P 

OKEL+54272,0:NEXT 
1340 FOR I=0 TO 39:POKE 1024+24*40+I,160:POKE 5529 

6+24*40+I,13:NEXT 
1350 PRINT" {HOME} 
1360 PRINT" {BLK} 
1370 RETURN 
1380 I=l5872:IFPEEK(I+l)=96THENFORI=lT064*6+2:READ 

A:NEXT:RETURN 
1390 READ A:IF A=256 THEN 1410 
1400 POKE I,A:I=I+l:GOTO 1390 
1410 FOR I=0 TO 63:POKE 254*64+I,PEEK(249*64+I):NE 

XT:RETURN 
1420 DATA 0,96,0,0,113,224,0 
1430 DATA 121,176,0,125,252,117,193 
1440 DATA 192,127,255,192,113,255,128 
1450 DATA 0,252,0,0,24,0,0 
1460 DATA 24,0,0,102,0,0,102 
1470 DATA 0,0,0,0,0,0,0 
1480 DATA 0,0,0,0,0,0,0 
1490 DATA 0,0,0,0,0,0,0 
1500 DATA 0,0,0,0,0,0,0 
1510 DATA 0,0,0,0,0,1,224 
1520 DATA 0,1,176,0,127,252,117 
1530 DATA 193,192,127,255,192,113,255 
1540 DATA 128,0,252,0,0,24,0 
1550 DATA 0,24,0,0,102,0,0 
1560 DATA 102,0,0,0,0,0,0 
1570 DATA 0,0,0,0,0,0,0 
1580 DATA 0,0,0,0,0,0,0 
1590 DATA 0,0,0,0,0,0,0 
1600 DATA 0,0,0,0,0,0,l 
1610 DATA 224,0,1,176,112,127,252 
1620 DATA 127,221,192,115,185,192,l 
1630 DATA 179,128,0,172,0,0,24 
1640 DATA 0,0,24,0,0,102,0 
1650 DATA 0,102,0,0,0,0,0 
1660 DATA 0,0,0,0,0,0,0 
1670 DATA 0,0,0,0,0,0,0 
1680 DATA 0,0,0,0,0,0,0 
1690 DATA 0,0,0,0,96,0,0 
1700 DATA 113,224,0,121,176,0,125 
1710 DATA 252,117,193,192,127,255,192 

64 



Thinking Games 3 
1720 DATA 113,255,128,0,252,0,0 
1730 DATA 0,0,0,0,0,0,0 
1740 DATA 0,0,0,0,0,0,0 
1750 DATA 0,0,0,0,0,0,0 
1760 DATA 0,0,0,0,0,0,0 
1770 DATA 0,0,0,0,0,0,0 
1780 DATA 0,0,0,0,0,0,0 
1790 DATA 0,l,224,0,l,176,0 
1800 DATA 127,252,117,193,192,127,255 
1810 DATA 192,113,255,128,0,252,0 
1820 DATA 0,0,0,0,0,0,0 
1830 DATA 0,0,0,0,0,0,0 
1840 DATA 0,0,0,0,0,0,0 
1850 DATA 0,0,0,0,0,0,0 
1860 DATA 0,0,0,0,0,0,0 
1870 DATA 0,0,0,0,0,0,0 
1880 DATA 0,0,l,224,0,l,l76 
1890 DATA 112,127,252,127,221,192,ll5 
1900 DATA 185,192,l,179,128,0,l72 
1910 DATA 0,0,112,0,0,0,0 
1920 DATA 0,0,0,0,0,0,0 
1930 DATA 0,0,0,0,0,0,0 
1940 DATA 0,0,0,0,0,0,0 
1950 DATA 0,0,0,0,0,0,0 
1960 DATA 0,0,0,0,0,0,0,256 
1970 I=l 
1980 READ W$(I):IFW$(I)="*"THENN=I-l:RETURN 
1990 I=I+l:GOT01980 
2000 POKEV,XAND255:POKEV+l6,PEEK(V+l6)AND2540R-(X> 

255):POKE V+l,Y:POKE2040,S 
2010 IF X=0 THEN POKE V+21,PEEK(V+21)0Rl 
2020 X=X+3:IFX>344 THEN X=0:POKEV+21,PEEK(V+2l)AND 

254 
2030 Y=Y-l+RND(l)*2:IFY>l00THENY=99 
2040 IF Y<50 THEN Y=50 
2050 S=S+l:IFS=254THENS=251 
2060 RETURN 
2070 DX=INT(P+l3*(P>l3))*16+24+40 
2080 DY=l73+INT(P/14)*24:IF S>250 THEN S=S-3 
2090 POKEV,XAND255:POKEV+l6,PEEK(V+l6)AND2540R-(X> 

255):POKEV+l,Y:POKE2040,S 
2100 IF X=0 THEN POKE V+21,PEEK(V+21)0Rl 
2110 FLAG=0 
2120 IFABS(X-DX)>2THENX=X+3:FLAG=l:IFX>344THENX=0: 

POKEV+21,PEEK(V+2l)AND254 
2130 IF Y<DY THEN Y=Y+2:FLAG=l 
2140 S=S+l:IFS=251THENS=248 
2150 IF FLAG THEN 2090 
2160 X=DX:Y=DY 

65 



3 Thinking Games 

2170 POKEV,XAND255:POKEV+l6,PEEK(V+l6)AND2540R-(X> 
255):POKEV+l,Y:POKE2040,249 

2180 POKE 56334,PEEK(56334)AND254 
2190 POKE l,PEEK(l)AND251 
2200 FOR I=0 TO 7 
2210 B=PEEK(53248+8*P+I) 
2220 FOR J=248 TO 250 
2230 POKE J*64+40+I*3,B 
2240 NEXT J,I 
2250 POKE l,PEEK(l)OR4 
2260 POKE 56334,PEEK(56334)0Rl 
2270 PRINT"{HOME}{l7 DOWN}{8 RIGHT}"; 
2280 FOR I=2 TO 14 
2290 PRINTMID$(L$,I,l)"{RIGHT}"; 
2300 NEXT 
2310 PRINT:PRINT"{DOWN}{8 RIGHT}"; 
2320 FOR I=l5TO 27 
2330 PRINTMID$ (L$ I I, l) II {RIGHT} II; 
2340 NEXT 
2350 DX=l60-8*LEN(G$):DY=69 
2360 POKEV,XAND255:POKEV+l6,PEEK(V+l6)AND2540R-(X> 

255):POKEV+l,Y:POKE2040,S 
2370 IF X=0 THEN POKE V+21,PEEK(V+21)0Rl 
2380 FLAG=0 
2390 IFABS(X-DX)>2THENX=X+3:FLAG=l:IFX>344THEN X=0 

:POKEV+21,PEEK(V+2l)AND254 
2400 IF Y>DY THEN Y=Y-2:FLAG=l 
2410 S=S+l:IFS=251THENS=248 
2420 IF FLAG THEN 2360 
2430 X=DX:Y=DY 
2440 POKEV,XAND255:POKEV+l6,PEEK(V+l6)AND2540R-(X> 

255):POKEV+l,Y:POKE2040,249 
2450 PRINT"{HOME}{4 DOWN}"SPC(l8-LEN(G$)); 
2460 FOR I=lTO LEN(G$) 
2470 IF MID$(G$,I,l)=A$ THEN PRINT A$;:RF=RF-l:IFR 

F=0 THEN GOSUB 2560 
2480 IF MID$(G$,I,l)<>A$ THEN PRINT"{RIGHT}"; 
2490 PRINT"{RIGHT}"; 
2500 IF RF=0 THEN I=l00:GOT02540 
2510 FOR J=0 TO 15:X=X+l:S=S+l:IFS=251THENS=248 
2520 POKEV,XAND255:POKEV+l6,PEEK(V+l6)AND2540R-(X> 

255):POKE2040,S 
2530 NEXT J 
2540 NEXT I 
2550 RETURN 
2560 FOR K=0 TO 7 
2570 FOR J=248 TO 250 
2580 POKE J*64+40+K*3,0 
2590 NEXT J,K 

66 



Thinking Games 3 
2600 RETURN 
2610 PRINT" {CLR} { 7 DOWN} {BLK}DO YOU WISH TO PLAY A 

GAIN (Y/N) ?" 
2615 POKE V+21,PEEK(V+2l)AND254 
2620 PRINT"{l0 DOWN}YOU MISSED THIS MANY :" 
2630 GETA$: IFA$ < > "N"AND A$<> "Y"THEN2630 
2640 IF A$="Y"THENPOKE V+21,0:RUN110 
2650 END 
2660 POKE 53281,0:POKE 53280,0 
2670 PRINT" {CLR}{YEL}{ 13 SPACES} INSTRUCTIONS 
2680 PRINT"{2 DOWN}{WHT}(4 SPACES}CHOOSE LETTERS T 

0 GUESS THE WORD. 
2690 PRINT"{DOWN}IF YOU CHOOSE A WRONG LETTER, THE 

BIRD 
2700 PRINT"{DOWN}WILL LAND ON ITS PERCH. 
2710 PRINT"{DOWN}{4 SPACES}WHEN ALL THE PERCHES AR 

E FULL, OR 
2720 PRINT"(DOWN}YOU GUESSED THE WORD, THE GAME IS 

OVER 
2730 PRINT"(2 DOWN}(4 SPACES}YOU CAN HIT THE "CHR$ 

(34)"+-"CHR$(34)" KEY ANYTIME TO 
2740 PRINT"{DOWN}GUESS THE WORD. IF YOU GET IT WRO 

NG,{DOWN}{4 SPACES}YOU LOSE. 
2750 PRINT"{3 DOWN}(9 RIGHT}{YEL}HIT A KEY TO BEGI 

N" 
2760 GETA$: IFA$='"'THEN2760 
2770 RETURN 
2780 DATA HAPPY,BRIDGE,FAMILY,CHILDREN 
2790 DATA WINDOW,TRAIN,DWARF,BIRDS 
2800 DATA SUPERMAN,CONCERT,PEOPLE,MAGIC 
2810 DATA SPACE,SCIENCE,PLANETS,GALAXY,STARS 
2820 DATA ROOMS,TEACHER,CHALK,BLACKBOARD 
2830 DATA SCREEN,COMPUTER,KEYBOARD,PROGRAM 
2840 DATA SPELLING,WORDS,COLORS,LETTERS 
2850 DATA MARKET,STREETS,SQUARE,TRIANGLE 
2860 DATA MOVIE,SPACESHIP,LASER,AIRPLANE,BOAT 
2870 DATA STICK,ROCK,PAPER,WIN,PLACE,SHOW 
2880 DATA CHANNEL,EXECUTIVE,MONEY,SHIRT 
2890 DATA QUIET,LOUD,BILLBOARD,YACHT,MOTORCYCLE,* 

67 



3 
Oil Tycoon 
Gordon F. Wheat 64 Translation by Chris Metcalf 

You are P. J. Uing and you are about to make big money in the 
petroleum business, but drilling for oil is not as easy as it sounds. 
There are obstacles you must overcome in order to make a profit. 
There are shale formations that grind away your pipe. You can 
blast through them, but your dynamite is limited. Pockets of 
natural gas sometimes collect where you have previously pumped 
out the oil. Hit one of these and your oil rig goes up with a bang. 
There are also "devils" that live in the oil. They take a dim view of 
your draining their caverns. But you won't give up-because you 
are the Oil Tycoon. 

I designed "Oil Tycoon" to be as much fun for parents as it 
will be for children. Since the game is not based on reaction time 
but rather on strategy, it helps even the score for the arcade drop­
outs. Your strategy will slowly build, and before long you will be 
rolling in cash or attaining high scores, however you wish to look 
at it. 

Difficulty Levels 
The screen will display the high scores attained for each of the 
eight difficulty levels. The program will return to this screen after 
each game. Your score and the difficulty level of the game you 
have just completed are displayed at the top of the screen. 

At the bottom of the screen you will see "DIFF . LEVEL 
12345678:' Choose the difficulty level by moving the joystick left 
and right and pressing the fire button when the number of the 
difficulty level you want is blinking. Level one is primarily for 
small children. I would recommend that seasoned garners begin 
with level two. The higher the difficulty level, the more difficult 
the game becomes. The various conditions for the eight difficulty 
levels are shown in the table . 

68 



Thinking Games 3 
Difficulty Levels 

Level 
1 
2 
3 
4 
5 
6 
7 
8 

Sticks of 
Dynamite per 

Oil Rig 
3 
2 
3 
2 
4 
3 
4 
3 

Playing Oil Tycoon 

Pieces 
of Shale 

20 
20 
30 
30 
20 
20 
30 
30 

Invisible 
Shale 

No 
No 
No 
No 
Yes 
Yes 
Yes 
Yes 

After you choose the level, the oil field is drawn on the screen. It 
will be different for each game; you should never see the same 
screen twice. For each game, you receive five oil rigs, each of 
which has 20 lengths of pipe and a number of sticks of dynamite, 
depending on the difficulty level you choose. 

In the upper-left comer of the screen are the oil rigs you have 
remaining. In the upper-right comer is your score. Between these 
are the sticks of dynamite you have remaining for the oil rig now 
in play. The second line displays the unused lengths of pipe for 
the oil rig now in play. As you drill, this pipe will be used one 
length at a time and will be replaced as you withdraw your drill . 
The lower portion of the screen is the playing field. Yellow squares 
are dirt, black squares are oil, and the irregular squares are shale. 

Move the joystick left and right to position your oil rig over 
the column you want to drill through. To drill, pull the joystick 
down. To withdraw the drill, push the joystick up. You cannot 
move the oil rig while there is drilling pipe in the ground. You 
cannot bore through shale, through devils, or off the bottom of 
the screen. If you try, your drill will be ground up, and you will 
lose that length of pipe for the oil rig in play. This becomes very 
important in difficulty levels above four, for the shale is invisible 
and looks like dirt. At these levels, it is very easy to lose most of 
your drilling pipe before you realize that you are trying to drill 
through shale. Also try to avoid drilling through empty spaces 
from which you have previously pumped oil. Natural gas can 
collect in these empty spaces and may cause an explosion when 
you try to drill through them again. 

69 



3 Thinking Games 

Controlling the fire button takes some getting used to, 
because it does three things. As you bore, if the end of the drilling 
pipe is in oil or an empty space, pressing the fire button causes 
your oil rig to start pumping. If the end of the pipe is in dirt, 
pressing fire drops a stick of dynamite down the pipe. If you are 
not drilling, or if you have fully withdrawn the pipe, pressing fire 
replaces your current oil rig with one of your remaining rigs. Be 
careful-it is easy to lose valuable rigs. Replacing your oil rig with 
a new one is useful mainly when you have used up your allotted 
dynamite for the rig in play, or if you do not have enough pipe 
remaining to reach pools of oil near the bottom of the screen. 

Use your dynamite to blow up shale, devils, or dirt. When 
you drop dynamite down the pipe, it will continue to fall until it 
hits one of these three obstacles. This means that if there is oil or 
empty space directly below the tip of the drill, the dynamite will 
fall out of the bottom of the pipe and through this space until it 
hits shale, a devil, or dirt. 

Pumping Oil 
When you pump, all of the oil in adjacent spaces to the sides and 
above the level of the drill bit will be pumped out. In other words, 
all squares of oil connected to the one you are pumping will also 
be pumped out only if they lie directly above or to the sides of the oil 
being pumped. Any squares of oil below those which are being 
pumped out will remain where they are. 

If you uncover a devil while pumping, it will blow up your oil 
rig. If you try to pump a pool of oil which is at or below the level of 
an uncovered devil, and which is directly connected to the devil's 
space, it will also blow up your rig. 

The deeper the oil, the more it is worth when you pump it 
out. An extra oil rig is awarded for each $100,000 you acquire. In 
addition, if you pump out all the oil on the screen and then retract 
your pipe, you will be awarded an extra oil rig and a new screen is 
drawn. 

Oil Tycoon 
100 PRINT"{CLR}P~":IFPEEK(l4336)=2ANDPEEK(l4805 

)=24THEN195 
105 POKE53280,6:POKE53281,6:POKE53270,8 
110 PRINTTAB(l4)"INSTRUCTIONS"SPC(28)"El2 T~":PR 

INT"{DOWN}JOYSTICK:" 
115 PRINT"{DOWN} RIGHT AND LEFT = MOVE RIG" 
120 PRINT" DOWN= DRILL":PRINT" UP= RETRACT PIPE" 

70 



125 

130 
135 

140 
145 

150 

155 
160 

165 

170 
175 

180 

185 
190 
195 

200 

205 
210 

215 

220 

225 

230 

235 

240 
245 
250 
255 
260 

265 

270 

Thinking Games 3 
PRINT"{2 DOWN}{2 SPACES}WHEN YOU PUSH THE FIRE 

BUTTON AND THE 
PRINT"PIPE IS DOWN IN OIL OR IN SPACE, THE" 
PRINT"PUMP IS TRIGGERED.{2 SPACES}IF THE PIPE 
{SPACE}IS DOWN" 
PRINT"IN DIRT, DYNAMITE IS DROPPED. 
PRINT"{2 DOWN}WATCH OUT FOR SHALE AND GAS IN E 
MPTY","SPACES AND DEVILS IN OIL. 
PRINT"{2 DOWN}PLEASE {CYN}WAITE7! FOR FURTHE 
R INSTRUCTIONS." 
POKE52,56:POKE56,56:CLR:AD=l4336 
FORA=ADTOAD+207:READB:POKEA,B:NEXT:POKE56334,P 
EEK(56334)AND254:POKE1,51 
FORA=AD+256TOAD+47l:POKEA,PEEK(38912+A):NEXT:P 
OKEl,55 
POKE56334,PEEK(56334)0Rl 
PRINT"{UP}{2 SPACES}PRESS ANY KEY WHEN READY T 
0 BEGIN. II 

IFPEEK(l97)=64ANDPEEK(653)=0ANDPEEK(56320)=127 
THEN180 

. 
PRINT"{CLR}":POKE53280,6:POKE54296,15:DIMA%(40 
):W=ll84:JS=56320 
POKE53282,6:POKE53283,0:POKE53270,24:POKE54291 
,0:POKE54292,240 
FORI=0T02:POKE54276+I*7,8:NEXT:POKE53281,3 
POKE54284,0:POKE54285,240:POKE54277,0:POKE5427 
8,240:IFZ>B%(T)THENB%(T)=Z 
POKE53272,2l:PRINT"{CLR}{DOWN}{RED}",T," 
{2 SPACES}$"MID$(STR$(Z*l00),2)".00{BLU}" 
PRINTTAB(8)"{DOWN} LEVEL{6 SPACES}HIGH SCORE 
{DOWN} II 

FORA=lT08:PRINT,A,"{2 SPACES}$"MID$(STR$(B%(A) 
*100),2)".00":PRINT:NEXT 
PRINT"{DOWN} DIFFICULTY LEVEL? 12345678{GRN}": 
T=l 
POKE56194+T,0:Tl=T:T=T+(PEEK(JS)AND4)/4-(PEEK( 
JS)AND8)/8:T=(7ANDT-l)+l 
IFT<>TlTHENPOKE56194+Tl,6 
POKE56194+T,l:L=3:IFT/2=INT(T/2)THENL=2 
S=20:IFT=30RT=40RT>6THENS=30 
N=24:IFT>4THENN=25:L=L+l 
GETA$:IF(PEEK(56320)AND16)=16ANDA$<>CHR$(13)TH 
EN235 
POKE53272,3l:PRINT"{CLR}":POKE53280,9:POKE5328 
l,l:M=4:Z=0:K=0:GOSUB590 
POKEW+X,14:X=20:P=20:Y=L:R=l:GOSUB705:GOSUB645 
:POKE198,0 

71 



3 Thinking Games 

275 
280 
285 REM MAIN LOOP OF PROGRAM 
290 A=PEEK(JS):IF(AAND4)=0ANDR=lTHENPOKEW+X,14:X=X 

+(X>0) 
295 IF(AAND8)=0ANDR=lTHENPOKEW+X,14:X=X-(X<39) 
300 POKEW+X,2:IF(AAND2)=0ANDP>0THEN340 
305 IF(AAND1)=0ANDR>lTHEN400 
310 IF(AAND16)=0THEN435 
315 GETA$:IFR=lANDA$=" "THEN375 
320 GOT0290 
325 
330 
335 REM DRILLING AND GAS EXPLOSIONS 
340 A=R*40+W+X:C=PEEK(A):P=P-l:GOSUB675 
345 IFC=NORC=30RA>2023THENFORA=lT03:GOSUB730:NEXT: 

GOT0290 
350 IFRND(l)>.060RC<>l4THENFORB=lT03:POKEA,C+B:GOS 

UB730:NEXT:R=R+l:GOT0290 
355 FORB=lT02:POKEA,C+B:GOSUB730:NEXT:GOSUB735:B=0 
360 R=R-l:POKE54296,4:IFR<lTHENPOKE54296,15:POKEW+ 

X,23:GOSUB715:GOT0375 
365 POKE54273,B:POKE54276,129:A=R*40+W+X:C=PEEK(A) 

:PK=PEEK(A+54272):POKEA,C+l 
370 POKEA+54272,15:FORD=0T0200:NEXT:POKEA,C-3:POKE 

A+54272,PK:B=B+l0:GOT0360 
375 POKEW+X,14:X=20:M=M-l:P=20:Y=L:R=l:GOSUB705:IF 

M<0THEN205 
380 GOSUB645:GOT0290 
385 
390 
395 REM DRILLING UP 
400 R=R-l:B=R*40+W+X:C=PEEK(B):FORA=lT03:POKEB,C-A 

:GOSUB730:NEXT 
405 P=P+l:GOSUB675:IFR<>lTHEN290 
410 FORA=W+80T02023:IFPEEK(A)=9THEN290 
415 NEXT:M=M+l:FORC=lT03:GOSUB705:NEXT:GOSUB590:GO 

SUB645:GOT0290 
420 
425 
430 REM DYNAMITE, GUSHERS, DEVILS 
435 J=Z:Q=R-l:FORA=0T02l:A%(A)=0:NEXT:B=Q*40+W+X:A 

=PEEK(B):IFA<>7THEN480 
440 A=W+X:B=40:IFY<lTHEN290 
445 A=A+40:C=PEEK(A):POKEA,C+l:IFC=l40RC=9THENPOKE 

A,C+4 
450 POKE54273,B:POKE54276,33:FORD=0T0200:NEXT:D=PE 

EK(A+40) 
455 IFD<>4ANDD<>NANDD<>3ANDA<l984THENB=B-2:POKEA,C 

:GOT0445 

72 



460 
465 
470 
475 
480 

485 
490 

495 

500 

505 
510 

515 
520 

525 
530 
535 
540 
545 

550 
555 
560 
565 
570 
575 
580 
585 
590 

595 

600 

605 

610 

615 

620 
625 
630 
635 

Thinking Games 3 
POKE54276,8:GOSUB735:POKEA+54312,15 
IFC<>l4ANDC<>9THENR=R-l 
Y=Y-l:GOSUB665:GOT0290 . 
A%(X)=l:POKE54273,40:POKE54276,129:POKE54296,4 
:V=W+X-40 
IFA=l2THENPOKEB,17:Z=Z+Q:POKEV,0 
E=0:F=38:D=l:G=l:I=l:GOSUB530:POKEV,l:E=39:F=l 
:D=-l:G=D:I=D:GOSUB530 
E=0:F=39:D=l:G=-40:I=0:GOSUB530:POKEV,0:IFC<>6 
THEN515 
Z=J:POKEB,3:POKEB+54272,2:POKEV,14:FORA=0T040: 
POKE54280,88:POKE54283,17 
POKE53283,14:POKE54296,6:FORB=lT05:NEXT 
POKE54296,0:POKE53283,0:FORB=lT05:NEXTB,A:POKE 
54283,0:B=0:GOT0360 
IFHTHENQ=Q-l:GOT0490 
POKEV,14:POKE54276,8:POKE54296,15:POKE54283,2: 
GOSUB705:GOSUB645:GOT0290 

IFC=6THENRETURN 
H=0:FORA=ETOFSTEPD:IFA%(A)=0THEN570 
B=Q*40+W+A+G:C=PEEK(B) 
IFC=90RC=l2THENPOKEB,C+5:H=l:Z=Z+Q+ABS(I)-l:A% 
(A+I)=l:GOT0565 
IFC=l40RC=l7THENA%(A+I)=l:H=l:GOT0570 
IFC=3THENC=6:RETURN 
A%(A+I)=0:GOT0570 
IFRND(l)<.02ANDC<>l2THENC=6:RETURN 
NEXT:RETURN 

REM INITIALIZE THE DISPLAY 
PRINT" {HOME} { 5 DOWN}E8~"; :FORA=l T099 :PRINT"D 
DDDDDDD";:NEXT:PRINT"DDDDDDD"; 
POKE2023,4:POKE56295,15:B=400:C=l264:FORA=lT02 
:FORD=lT040 
E=INT(RND(0)*B/2)*2+C:IFPEEK(E)=90RPEEK(E+l)=9 
THEN600 
POKEE,9:POKEE+l,9:NEXT:B=360:C=l665:NEXT:FORA= 
lTOS 
B=INT(RND(l)*340)*2+1264:C=PEEK(B):IFC=90RC=NT 
HEN610 
POKEB,N:POKEB+54272,10:NEXT:FORA=0T0199:POKE55 
296+A,0:NEXT:FORA=0T039 
POKE55376+A,3:POKE1104+A,20:NEXT 
FORA=0T03:POKE55337+A,2:NEXT:RETURN 

73 



3 Thinking Games 

640 REM UPDATE SCREEN INFORMATION 
645 PRINT" {HOME} { GRN} "SPC ( 23) II$ "MID$ ( STR$ ( Z*l00) I 2 

) II .00" 
650 A=INT(Z/1000):IFA=K+lTHENK=K+l:GOSUB705:GOSUB7 

05:M=M+l 
655 IFM<lTHENPOKE1024,14:POKE55296,14:GOT0665 
660 FORA=l024T01023+M:POKEA,2:POKEA+54272,0:NEXT:P 

OKEA,14:POKEA+54272,0 
665 IFY=0THENPOKE1031,14:POKE55303,0:GOT0675 
670 FORA=l031T01030+Y:POKEA,19:POKEA+54272,0:NEXT: 

POKEA,14:POKEA+54272,0 
675 IFP<lTHENPOKE1064,14:POKE55336,0:RETURN 
680 FORB=l064T01063+P:POKEB,17:POKEB+54272,0:NEXT: 

POKEB,14:POKEB+54272,0 
685 RETURN 
690 
695 
700 REM MUSIC AND OTHER SUBROUTINES 
705 POKE54276,17:FORA=l5T00STEP-l:POKE54296,A:POKE 

54273,86:FORB=lT025:NEXTB,A 
710 POKE54276,8:POKE54296,15:RETURN 
715 POKE54276,8:POKE54276,129:POKE54273,9l:FORD=l5 

T00STEP-l:POKE54296,D 
720 POKE53281,l:POKE53280,2:FORE=lT070:NEXT:POKE53 

280,6:NEXT 
725 POKE54276,8:POKE54296,15:POKE53280,9:RETURN 
730 POKE54287,20:POKE54290,8:POKE54290,129:POKE542 

90,128:RETURN 
735 POKEA,2l:POKEA+40,22:GOSUB715:POKEA,14:POKEA+4 

0 I 14: RETURN 
740 
745 
750 REM CHARACTER DATA 
755 DATA2,138,164,73,74,52,20,8,64,81,37,146,82,44 

,40,16,24,24,36 
760 DATA60,90,102,231,153,20,42,42,20,62,73,20,20, 

136,34,136,34,136,34,136,34 
765 DATA148,22,148,34,136,34,136,34,148,22,148,22, 

148,34,136,34,148,22,148 
770 DATA22,148,22,148,22,136,62,188,62,188,62,188, 

22,170,170,170,170,170 
775 DATA170,170,170,150,150,150,170,170,170,170,17 

0,150,150,150,150,150,170,170 
780 DATA170,150,150,150,150,150,150,150,150,150,19 

0,190,190,190,190,190,150,0,0 
785 DATA0,0,0,0,0,0,20,20,20,0,0,0,0,0,20,20,20,20 

,20,0,0,0,20,20,20,20,20,20 
790 DATA20,20,20,60,60,60,60,60,60,20,0,60,60,60,6 

0 I 60 I 60 I 0., 0 I 0 I 0 I 2 5 5 I 2 5 5 I 0 I 0 I 0 

74 



Thinking Games 3 
795 DATA218,118,181,153,110,93,197,65,65,82,150,85 

,121,181,150,173,2,106,129,20 
800 DATA64,162,129,2,169,128,141,19,145,169,0,133, 

136,34,136,34,136,34,136,34 

75 



3 
Mosaic Puzzle 
Bruce Jordan 64 Translation by Chris Metcalf 

This adaptation of an old favorite will challenge your reasoning powers. 

"Mosaic Puzzle" is a computer version of those sliding-squares 
puzzles that used to drive people nuts before the advent of Rubik's 
Cube. The object of the game is to arrange the 15 squares into 
some predetermined order by sliding them around in their frame. 
The first few moves are easy, but as the game progresses, it gets a 
lot more complicated. You'll find yourself rearranging everything 
just to get the last few squares in place. 

The game has a timer for up to 23 hours, 59 minutes, 59 
seconds, and a chicken switch. It also automatically checks for the 
winning order and allows you to go back to the puzzle the way 
you left it or reset it to the beginning arrangement. 

When you start the game, you're asked if you wish to set a 
time limit. If you answer Y for yes, enter the time limit in one line 
with no spaces or punctuation between the values. For example, 
for a 1-hour, 23-rninute limit, enter 012300. 

Next, enter the goal order. This will be the order that you will 
try to match to win the game. When this is done, the upper half of 
the screen will clear, and the puzzle will appear. 

Either the RETURN key or the fire button allows you to pause 
momentarily before resuming the game, restarting the program, 
or stopping play entirely. Breaking off and resuming has no effect 
on the time clock (displayed at the top of the screen along with the 
time limit). 

As an aid to the user, various keys for up, down, right, and 
left can be selected at the beginning of the game. A joystick can 
also be used, as long as it is plugged into control port two. The 
time limit is an option in this version; if no time limit is selected, 
the screen will display elapsed time and TIME LIMIT: NONE. 

If you succeed in getting the squares in the goal order, the 
message YOU WIN! appears on the screen, accompanied by a 
short tune and the elapsed time. If the time runs out before you 
are finished, you'll hear an unpleasant sound. 

76 



Thinking Games 3 
Mosaic Puzzle 
100 POKE53280,14:POKE53281,6:POKE55,176:POKE56,29: 

CLR:POKE54276,8:POKE54283,8 
110 POKE54277,0:POKE54278,255:POKE54284,0:POKE5428 

5,255:POKE54296,15 
120 S=l355:SC=S+54272:DIMA$(16) 
130 PRINT"{CLR}":G=l632:X=0:DX=l:P=55904:Sl=54276: 

S2=54283:AD=l232:R=l4 
140 PRINT"{CLR}{DOWN}"TAB(ll)" MOSAIC PUZZLE"TAB(5 

0) II~ 1 7 YH DOWN} II 

150 
160 
170 REM FIND TIME LIMIT, MOVE KEYS 
180 PRINT"P~ DO YOU WANT A TIME LIMIT? ";:GOSUB 

270 
190 IFIN$<>"Y"THEN240 
200 H=l: INPUT" {HOME}{ 6 DOWN} HOURS MINS SECS ( 6 DI 

GITS)";T$:IFLEN(T$)<>6THEN200 
210 IFLEFT$(T$,2)>"23"0RLEFT$(T$,2)<"0"THEN200 
220 IFMID$(T$,3,2)>"59"0RMID$(T$,3,2)<"0"THEN200 
230 IFRIGHT$(T$,2)>"59"0RRIGHT$(T$,2)<"0"THEN200 
240 PRINT"{DOWN} KEY FOR UP: ";:GOSUB270:U$=IN$:PR 

INT"{DOWN} FOR DOWN: ";:GOSUB270:D$=IN$ 
250 PRINT"{DOWN} FOR LEFT: ";:GOSUB270:L$=IN$:PRIN 

T"{DOWN} FOR RIGHT: ";:GOSUB270:R$=IN$ 
260 GOT0310 
270 PRINT"~+~";:WAIT198,255:GETIN$:PRINT"{LEFT}" 

;:POKE216,l:PRINTIN$:RETURN 
280 
290 
300 REM FIND GOAL ORDER 
310 PRINT"{CLR}"TAB(43)"ENTER GOAL SETUP" 
320 PRINT"{DOWN}{3 SPACES}l 2 3 4 5 6 7 8 9"SPC(23 

)"A BCD E F {RVS}SPACE" 
330 PRINTTAB(5)"{DOWN}IN ANY ORDER":PRINTTAB(248)" 

GOAL 
340 FORK=0T03:POKE1592+K,100:POKE1792+K,99:POKE558 

64+K,R:POKE56064+K,R 
350 POKE163l+K*40,103:POKE1636+K*40,1?0l:POKE55903+ 

K*40,R:POKE55908+K*40,R:NEXT 
360 FORI=lT016:POKEG+X,63:POKEP+X,l 
370 WAIT198,255:GETA$(I):FORL=I-1T00STEP-l:IFA$(I) 

=A$(L)THEN370 
380 NEXT:IFA$(I)=" "THENFORK=0T04:POKE5547l+K,15:N 

EXT:B2=32:GOT0420 
390 IF(A$ (I)< "l "ORA$ (I)> "F" )OR(A$ (I)> "9"ANDA$ (I)<" 

A")THEN370 
400 B=VAL(A$(I)):B2=B+48:IFBTHENPOKE55417+2*B,15:G 

OT0420 

77 



3 Thinking Games 

410 B=ASC(A$(I))-64:B2=B:POKE55457+2*B,15 
420 POKEG+X,B2:X=X+DX:IFX=4THENG=G+40:P=P+40:X=0 
430 NEXT 
440 
450 
460 REM SET UP WORK AREA 
470 PRINT"(HOME}":FORI=0T064:PRINT"(4 SPACES}";:NE 

XT:PRINT"(HOME}"TAB(l27) 11 PUZZLE 11 

480 FORK=0T03:POKE1192+K,100:POKE55464+K,R:POKE139 
2+K,99:POKE55664+K,R 

490 POKE123l+K*40,103:POKE55503+K*40,R:POKE1236+K* 
40,10l:POKE55508+K*40,R:NEXT 

500 READA,B,C:IFA>=0THENPOKEAD+~ 1 B:POKE55504+A,C:G 
OT0500 

510 FORI=lT0500:NEXT:POKESl-3,80:POKESl,33:PRINT 11 

l HoME 1 11 TAB c 2 0 ' 
11 l 10 ooWN 1 l RED 1 l wHT 1 1 Go 1 n ~ 11 

520 FORT=lT0300:NEXT:PRINT 11 (HOME}"TAB(28) 11 

(10 DOWN}(4 SPACES} 11 :POKES1,8:TI$="000000 11 

530 PRINT"(HOME} 11 TAB(25)"LIMIT:(CYN} 11 ;:IFT$= 1111 THEN 
PRINT"NONE 11 :GOT0580 

540 PRINTLEFT$(T$,2) 11
:

11 MID$(T$,3,2) 11
:

11 RIGHT$(T$,2) 
II E7~ II 

550 
560 
570 REM LOOP MAIN CONTROL 
580 PRINT 11 (HOME}TIME ELAPSED:(WHT} 11 LEFT$(TI$,2)": 11 

MID$(TI$,3,2) 11 :"RIGHT$(TI$,2) 11 E7~ 11 

590 IFH=lANDT$<=TI$THEN750 
600 GETB$:J=31-PEEK(56320)AND3l:IFB$=" 11 ANDJ=0THEN5 

80 
610 IFB$=CHR$(13)0RJ=l6THENWN=0:GOT0780 
620 IFB$=D$0R(JAND2)THENDR=-40:CK=l00:GOT0660 
630 IFB$=L$0R(JAND4)THENDR=l:CK=l0l:GOT0660 
640 IFB$=R$0R(JAND8)THENDR=-l:CK=l03:GOT0660 
650 DR=40:CK=99:IFB$<>U$AND(JAND1)=0THEN580 
660 IFPEEK(S+DR)=CKTHEN580 
670 POKES,PEEK(S+DR):POKESC,PEEK(SC+DR):POKES+DR,3 

2:S=S+DR:SC=SC+DR 
680 FORM=0T0120STEP40:FORN=0T03:W=PEEK(AD+M+N)AND1 

27:IFW<>PEEK(l632+M+N)THEN580 
690 NEXT:NEXT:PRINT 11 (HOME}"TAB(24) 11 (5 DOWN}(CYN} 

(RVS}YOU WINIE7~":POKES1-3,0:POKES1,33:WN=l 
700 READN1,N2,D:IFN1=-1THENPOKES1,8:GOT0780 
710 POKESl-4,Nl:POKESl-3,N2:FORT=lTOD:NEXT:GOT0700 
720 
730 
740 REM END OF GAME 
750 PRINT"(HOME} 11 TAB(23)"(5 DOWN}(WHT}(RVS}IYOU LO 

SE I E 7~ II: POKESl-3, 10: POKESl, 1 7 :WN=l 

78 



Thinking Games 3 
760 POKES2-3,60:POKES2,129:FORT=lT0300:NEXT:POKES2 

,8:POKES1,8 
770 
780 
790 

800 
810 
820 
830 
840 

850 
860 
870 
880 
890 
900 
910 
920 
930 
940 

950 

. 
TM$=TI$:PRINT"{HOME}"TAB(21)"{9 DOWN}(!) RESET 
PRINTTAB(2l)"{DOWN}(2) QUIT":IFWN=0THENPRINTTA 
B(2l)"{DOWN}(3) AS YOU LEFT IT" 
GETV$:IFV$<"l"ORV$>"3"THEN800 
IFV$="l"THENRUN 
IFV$="2"THENEND 
IFWNTHEN800 
PRINT"{HOME}{8 DOWN}":FORI=lT06:PRINTTAB(21)" 
{18 SPACES}":NEXT 
TI$=TM$:GOT0580 

REM SETUP AND MUSIC DATA 
DATA0,49,l,l,178,3,2,51,l,3,180,3 
DATA40,53,l,41,182,3,42,55,l,43 
DATA184,3,80,57,l,81,129,3,82,2,l 
DATA83,131,3,120,4,l,121,133,3,122 
DATA6,l,123,32,3,-l,-l,-l 
DATA 96,22,150,0,0,50,96,22,75,0,0,50,96,22,75 
,49,28,175,96,22,115,49,28 
DATA175,135,33,250,0,0,0,-l,-l,-l 

79 









4 
Blockhead 
Matt Giwer 64 Version by Gregg Peele 

Here is a challenging game for the whole family. See how many balloons 
the blockhead can pop in the allotted time. Requires game paddles. 

"Blockhead" is a colorful game similar to some of the early arcade 
games. It is simple to play, and will especially appeal to young 
children, who will like the clever use of sound and color in the 
game. The program makes good use of the Commodore 64's 
graphic capabilities, for it utilizes the eight available sprites and 
even includes a machine language routine. This interrupt-driven 
routine provides optimal motion in the game, as well as monitors 
the position of the sprites. 

Once you have the program typed in, SAVEd, and LOADed, 
you can see that the machine language routine still operates, even 
if the BASIC part of the program does not. LOAD and RUN Block­
head, then press RUN-STOP. This breaks the BASIC program, but 
the blockhead can still be moved with the paddle control. 

Blockhead uses the collision register to detect when one 
sprite touches another. Since the collision register is changed only 
temporarily when sprites collide, the contents representing the 
collision must be saved until an event occurs which may again 
make the sprite collide. The register is then cleared, and the sprite 
is ready for collision. Collision detection between the blockhead 
and balloons is handled through BASIC. 

The game is played with a set of paddles, which must be 
plugged into Control Port 1. Since Blockhead is a one-player 
game, only one paddle will work. The paddle moves the block­
head's home base from side to side, with the blockhead standing 
on it. You use the fire button on the paddle to make the blockhead 
leap. 

The original version of this game is written to be used with 
Atari-style paddles. U you have Commodore paddles, you must 
change lines 1070 and 1080 to read as follows: 

1070 DATA 216,24,173,164,194,105,28,141 
1080 DATA 161,194,56,173,164,194,233,217 

83 



4oexterity 

This alteration leaves a slight glitch in the paddle movement 
around the seam but provides for optimal range for movement 
around the screen. 

Playing the Game 
This game works using a timer. The object of the game is to pop 
the balloons as they float across the sky. The more balloons you 
pop in the time limit of two minutes, the more points you'll 
receive. Not only must you pop the balloons, but you must also 
catch the blockhead before he falls below his home base. If you 
miss catching him, points are deducted until you bring him to the 
surface by pressing the fire button. He'll then leap back into the 
air. 

For each balloon that you pop, you receive 10 points. Each 
time you drop the blockhead, your score is reduced by 15 points. 

When you LOAD and RUN the program for Blockhead, a 
tune plays and the screen sets up. This takes a few moments, so 
be patient. Finally, the blockhead appears, and the balloons begin 
to float across the sky. At first, they are close to the ground and 
easy to pop. Simply press the fire button and the blockhead leaps 
into the air. If he touches a balloon, it disappears, and you'll hear a 
soft popping sound. You've just received ten points. The balloons 
will continue to float at this level until all six of them are popped 
by the blockhead. 

As soon as the first level of balloons has been popped, the 
tune plays again, then another level, slightly higher, appears from 
the left side of the screen. There are six levels of balloons alto­
gether. If you pop all the balloons, 36 in all, the game stops, even if 
there is time remaining. At this point, you're asked if you want to 
play another game. 

Of course, popping the balloons is only half the fun. You also 
have to catch the blockhead as he drops to the ground. If you miss 
him with the paddle-controlled base, he will vanish. To make him 
reappear, you need to press the fire button to make him leap back 
up. 

Going for the High Score 
After playing Blockhead a few times, you'll notice some things 
that can increase your score, or reduce the time it takes you to pop 
all the balloons. 

If you time the blockhead's leap, you can pop two balloons at 
once. This must be precise. The blockhead has his hands out-

84 

= 



Dexterity4 

stretched, and if both come in contact with a balloon at the same 
time, the balloon on either side will pop. Sometimes this works, 
and other times it doesn't. 

You can also receive points if the blockhead comes very close 
to a balloon. The balloon won't pop, but you'll hear the popping 
sound, and another ten points will be added to your score. Just as 
with trying to pop two balloons at once, this will not work all the 
time. 

If you keep the blockhead's home base stationary, most of the 
time he will fall back to it. Not always, so you have to keep your 
eye on him. 

Remember that the blockhead is not able to pop a balloon on 
the way down, only on the way up. 

Blockhead 
100 POKE49152,0 
110 DIM HA(l2),HB(l2),HC(l2),LA(l2),LB(l2),LC(l2) 
120 FORQ=lTOll:READHA(Q),LA(Q),HB(Q),LB(Q),HC(Q),L 

C(Q) :NEXT 
130 S=54272:FORE=STOS+28:POKEE,0:NEXT 
140 POKE54296,15 :POKE54277,56 :POKE54278,212 
150 POKE54284,56 :POKE54286,212 
160 POKE54291,56 :POKE54292,212 
170 POKE S+4,17:POKES+l6,17:POKES+l8,17 
180 FORD=l TOll 
190 POKES+l,HA(D):POKES,LA(D):POKES+8,HB(D) 
200 POKES+9,LB(D):POKES+l5,HC(D):POKES+l4,LC(D) 
210 FORT=lT0100:NEXT 
220 IFHC(D) =7THENFORT=lT0100:NEXT 
230 NEXT 
240 FORT=lTO 450 :NEXT:FORE=STOS+28:POKEE,0:NEXT 
250 IFPEEK(49152)=173ANDTH=lTHENRETURN 
260 DATA33,135,21,31,8,97,31,165,21,31,8,225,29,22 

3,22,96,9,104 
270 DATA 28 ,49,22,96,9,247,26,156,21,31,10,143 
280 DATA28,49,21,31,9,247,29,223,22,96,9,104,31,16 

5,22,96,8,225 
290 DATA33,135,21,31,8,97,25,30,22,96,7,233,33,135 

,21,31,8,97 
300 GOT0330 
310 S=54272 
320 POKES+24,15:POKE54276,65:POKE54275,10:POKE5427 

4,10:POKES+24,0:RETURN 
330 POKE53281,7:HI=l34:GOSUB930 
340 DATAl,255,0,7,255,192,15,239,224,31,l,240,63,l 

09,248,63,lll,248,63,l,248,63 

85 



350 DATA237,248,63,109,248,31,l,240,31,239,240,15, 
239,224,15,255,224,7,255,192,3 

360 DATA255,128,l,255,0,0,254,0,0,124,0,0,56,0,0,l 
6,0,0,56,0 

370 V=53248 
380 FOR J=960T01022:READ WQ:POKE J,WQ:NEXT 
390 POKEV+21,0 
400 POKEV+41,6:POKEV+42,0:POKEV+43,l:POKEV+44,2:PO 

KEV+4,70 
410 POKE53264,0 
420 POKEV+45,4:POKEV+46,8 
430 FORT=2042T02047:POKET,15:NEXT:POKEV+21,255 
440 IFPEEK(V+2)<50AND(PEEK(V+l6)AND2)=0THENPOKEV+2 

,254 
450 DATA0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 

0,0,0,0,0,0,255,255,255,255,255 
460 DATA255,255,255,255,255,255,255,255,255,255,25 

5,255,255,255,255,255,255,255 
470 DATA255,255,255,255,255,255,255,255,255,255 
480 V=53248 
490 FORI=832T0894:READJ:POKEI,J:NEXT 
500 FORK=834+64T0892+66:READL:POKEK,L:NEXT:POKE204 

l,14:POKEV+40,6 
510 POKE2040,13:POKEV+39,2:POKEV,150:POKEV+l,200 
520 IFPEEK(49152)<>173THENGOSUB1050 
530 POKEV+3,191 
540 IFHI<70THENHI=59 
550 TH=l:GOSUB130 
560 POKEV+2,PEEK(V):POKEV+21,255 
570 FORG=V+5TO V+l5STEP2:POKEG,HI:NEXT 
580 SYS49658 
590 DATA0 
600 DATA0,0,0,0,0,0,3,255,240,3,63,48,3,51,48,3,24 

3,240,3,63,48,3,204,240,3,243 
610 DATA240,3,255,240,0,127,128,127,243,255,127,25 

5,255,255,255,255,128,115 
620 DATA128,0,127,128,0,127,128,0,251,192,l,241,22 

4,3,224,240,7,192,120 
630 IF(PEEK(5632l)AND4)<>0THEN790 
640 X2=0:POKE49829,0 
650 FORT=(PEEK(V+3))T050STEP-4:POKEV+3,T 
660 IFPEEK(V+30)>3THENPOKEV+21,(PEEK(V+2l)ANDNOT(P 

EEK(V+30))):SC=SC+l0:GOSUB310 
670 POKE(V+21),(PEEK(V+2l)OR3) 
680 NEXT:GOT0700 
690 GOT0790 
700 POKE49829,0 
710 FORJ=(PEEK(V+3))T0255STEP20:POKEV+3,J:IFPEEK(4 

9829)=3THENX2=l:GOT0790 



Dexterity4 

720 PI=INT(RND(0)*20)-10:IF(PEEK(53250)+PI)<60AND( 
PEEK(53264)AND2)=0THENPI=0 

730 IF(PEEK(V+2)+PI)<50AND(PEEK(V+l6)AND2)=00RPEEK 
(V+2)>254THENPI=0 

740 IF(PEEK(53264)AND2)<>0AND(PEEK(53250)+PI)>20TH 
ENPI=0 

750 IF PEEK(53250)+PI<245AND PEEK(53250)+PI>l0THEN 
POKE53250,PEEK(53250)+PI 

760 IFPEEK(V+3)<201THEN780 
770 PRINT"{HOME}{3 DOWN}{7 RIGHT}{BLK}OOPSl":SC=SC 

-5:FORT=lT0100:NEXT:PRINT"{HOME}{7 RIGHT} 
{3 DOWN} {5 SPACES}" 

780 NEXT 
790 IF PEEK(V+21)=3THEN:HI=HI-15:POKEV+3,190:GOT05 

30 
800 IFX2=1ANDPEEK(V+3)>180THENPOKEV+3,190 

810 P=INT(RND(0)*20)-10:IFPEEK(53250)+P<l5THENP=0 
820 PRINT"{HOME}{l5 RIGHT}{BLK}SCORE";"{5 SPACES}" 

; 
830 PRINT"{HOME}{l5 RIGHT}{BLK}SCORE";SC 
840 IFVAL(TI$)>5900THENTI$="000000" 
850 IFTI$>="000200"THEN870 
860 PRINT"{HOME}{DOWN}{3 RIGHT}TIME ";RIGHT$(TI$,4 

);"{HOME}{DOWN}{3 RIGHT}TIME ";:GOT0630 
870 PRINT"{HOME}{l5 RIGHT}{8 DOWN}GAME OVER":POKEl 

98,0 
880 PRINT"{HOME}{DOWN}{3 RIGHT}TIME ";RIGHT$(TI$,4 

);"{HOME}{DOWN}{3 RIGHT}TIME "; 
890 PRINT" {HOME} { 10 RIGHT} { 10 DOWN} PLAY AGAIN? Y 0 

R N " 

900 IFPEEK(l97)=25THENCLR:RESTORE:GOT0110 
910 IFPEEK(l97)=39THENSYS2048 
920 GOT0890 
930 PRINT"{CLR}";:FORBO=l024T01984STEP40:POKEB0,22 

4:POKEB0+39,224 
940 POKEB0+54272,2:POKEB0+54311,2 
950 POKEBO+l,224:POKEB0+38,224 
960 POKEBO+l+54272,4:POKEB0+54310,4 
970 POKEB0+2,224:POKEB0+37,224 
980 POKEB0+2+54272,15:POKEB0+54309,15 
990 NEXT 

1000 FORFL=l864T02023:POKEFL,224:POKEFL+54272,8:NE 
XT 

1010 TI$="235952" 
1020 FORTE=l025T01062:POKETE,224:POKETE+54272,3:NE 

XT 
1030 POKE53280,l 
1040 RETURN 

87 



4oexterity 

1050 POKEV+21,0:FORV1=49152T049673:READJ2:POKEV1,J 
2:CK=CK+J2:NEXT 

1051 IF CK<>65960 THEN PRINT "DATA ERROR IN LINES 
[SPACE} 1060-1710": STOP 

1052 RETURN 
1060 DATA 173, 25, 212, 73, 255, 141, 164, 194 
1070 DATA 216, 24, 173, 164, 194, 105, 40, 141 
1080 DATA 161, 194, 56, 173, 164, 194, 233, 215 
1090 DATA 141, 162, 194, 173, 164, 194, 201, 216 
1100 DATA 176, 17, 173, 161, 194, 141, 163, 194 
1110 DATA 173, 16, 208, 41, 254, 141, 16, 208 
1120 DATA 76, 65, 192, 173, 16, 208, 9, l 
1130 DATA 141, 16, 208, 173, 162, 194, 141, 163 
1140 DATA 194, 173, 163, 194, 141, 0, 208, 173 
1150 DATA 30, 208, 141, 160, 194, 240, 3 I 141 
1160 DATA 165, 194, 173, 160, 194, 41, 1, 240 
1170 DATA 23, 169, 190, 173, 163, 194, 141, 2 
1180 DATA 208, 173, 16, 208, 41, 1, 141, 6 
1190 DATA 202, 10, 13, 6, 202, 141, 16, 208 
1200 DATA 173, 16, 202, 56, 233, 210, 141, 17 
1210 DATA 202, 173, 16, 202, 24, 105, 45, 141 
1220 DATA 18, 202, 173, 16, 202, 201, 210, 176 
1230 DATA 17, 173, 16, 208, 41, 251, 141, 16 
1240 DATA 208, 173, 18, 202, 141, 4, 208, 76 
1250 DATA 168, 192, 173, 16, 208, 9, 4, 141 
1260 DATA 16, 208, 173, 17, 202, 141, 4, 208 
1270 DATA 173, 19, 202, 56, 233, 210, 141, 20 
1280 DATA 202, 173, 19, 202, 24, 105, 45, 141 
1290 DATA 21, 202, 173, 19, 202, 201, 210, 176 
1300 DATA 17, 173, 16, 208, 41, 247, 141, 16 
1310 DATA 208, 173, 21, 202, 141, 6, 208, 76 
1320 DATA 224, 192, 173, 16, 208, 9, 8, 141 
1330 DATA 16, 208, 173, 20, 202, 141, 6, 208 
1340 DATA 173, 22, 202, 56, 233, 210, 141, 23 
1350 DATA 202, 173, 22, 202, 24, 105, 45, 141 
1360 DATA 24, 202, 173, 22, 202, 201, 210, 176 
1370 DATA 17, 173, 16, 208, 41, 239, 141, 16 
1380 DATA 208, 173, 24, 202, 141, 8, 208, 76 
1390 DATA 24, 193, 173, 16, 208, 9, 16, 141 
1400 DATA 16, 208, 173, 23, 202, 141, 8, 208 
1410 DATA 173, 25, 202, 56, 233, 210, 141, 26 
1420 DATA 202, 173, 25, 202, 24, 105, 45, 141 
1430 DATA 27, 202, 173, 25, 202, 201, 210, 176 
1440 DATA 17, 173, 16, 208, 41, 223, 141, 16 
1450 DATA 208, 173, 27, 202, 141, 10, 208, 76 
1460 DATA 80, 193, 173, 16, 208, 9, 32, 141 
1470 DATA 16, 208, 173, 26, 202, 141, 10, 208 
1480 DATA 173, 28, 202, 56, 233, 210, 141, 29 
1490 DATA 202, 173, 28, 202, 24, 105, 45, 141 

88 



Dexterity4 

1500 DATA 30, 202, 173, 28, 202, 201, 210, 176 
1510 DATA 17, 173, 16, 208, 41, 191, 141, 16 
1520 DATA 208, 173, 30, 202, 141, 12, 208, 76 
1530 DATA 136, 193, 173, 16, 208, 9, 64, 141 
1540 DATA 16, 208, 173, 29, 202, 141, 12, 208 
1550 DATA 173, 31, 202, 56, 233, 210, 141, 32 
1560 DATA 202, 173, 31, 202, 24, 105, 45, 141 
1570 DATA 33, 202, 173, 31, 202, 201, 210, 176 
1580 DATA 17, 173, 16, 208, 41, 127, 141, 16 
1590 DATA 208, 173, 33, 202, 141, 14, 208, 76 
1600 DATA 192, 193, 173, 16, 208, 9, 128, 141 
1610 DATA 16, 208, 173, 32, 202, 141, 14, 208 
1620 DATA 238, 16, 202, 238, 16, 202, 24, 173 
1630 DATA 16, 202, 105, 43, 141, 19, 202, 173 
1640 DATA 19, 202, 105, 43, 141, 22, 202, 173 
1650 DATA 22, 202, 105, 43, 141, 25, 202, 173 
1660 DATA 25, 202, 105, 43, 141, 28, 202, 173 
1670 DATA 28, 202, 105, 43, 141, 31, 202, 173 
1680 DATA 30, 208, 240, 3, 141, 160, 194, 76 
1690 DATA 49, 234, 120, 169, 0, 141, 20, 3 
1700 DATA 169, 192, 141, 21, 3, 88, 96, 0 
1710 DATA 255, 255, 0, 0, 255, 255, 0, 0 

89 



4 
Diamond Drop 
Matt Giwer 64 Version by Eric Brandon 

Catch the falling diamonds-if you can. This fast-action game is easy to 
play. 

"Diamond Drop" is a game that requires good judgrnent and 
quick reflexes. It's fast and easy to play. To insure fast action, it is 
written predominantly in machine language. BASIC is used only 
to print instructions, set up the display, select the skill level, and 
initiate the drop. 

The game display starts with six rows of objects at the top of 
the screen and a stack of six catching trays at the bottom. As the 
objects begin to drop, you must use the Land; keys to maneuver 
the trays and catch the objects. To make play more challenging, 
one tray disappears whenever the last ball drops from a row. 
Thus, you have only one tray with which to catch objects from the 
last row. When all the objects have dropped, you start again with 
six rows of objects and six trays. Play continues until a total of five 
objects hit the ground. 

Since the DATA statements comprise the machine language 
program for the game, it is essential that they be typed correctly. 
Be sure to SAVE a copy of the program before you attempt to 
RUN it, since an error in typing may cause your computer to lock 
up, forcing you to turn the power off to recover. If Diamond Drop 
fails to RUN properly, the problem will most likely be a mistyped 
number somewhere in the DATA statements, so check carefully. 

Diamond Drop 
5 POKE 53280,12:POKE53281,0 
7 IF PEEK(49152)<>120THENGOSUB49000 
9 SYS 49745 
10 PRINT"{CLR}{WHT}"TAB(l3)"DIAMOND DROP" 
20 PRINT"{S DOWN}{YEL}{S SPACES}CATCH THE DIAMONDS 

BEFORE THEY 
30 PRINT"{DOWN}{S SPACES}TOUCH THE GROUND. YOU HAV 

E FIVE 
40 PRINT"{DOWN}{S SPACES}CHANCES. 

90 



Dexterity4 

45 PRINT"{2 DOWN}{WHT}{l3 SPACES}L - MOVE LEFT 
46 PRINT"{l3 SPACES}; - MOVE RIGHT{YEL}" 
50 PRINT" { 5 DOWNH6H 9 SPACES}{RVS }HIT ANY KEY T 

0 BEGIN" 
60 GETA$:IFA$=""THEN60 
65 GOSUB 1000 
70 PRINT"{CLR}{WHT}SCORE 00000{4 SPACES}CHANCES: Q 

QQQ II 

71 SPEED = 53241 
72 PADDLES=l2*4096+4095 
73 FLAG=l2*4096+4094 : POKE FLAG,0 
74 WIDTH = 12*4096+15*256+15*16+11 
75 POKE PADDLES,6 : POKE WIDTH,W : POKE SPEED,10-S 
78 ROW(6)=8l:ROW(5)=8l:ROW(4)=207:ROW(3)=207:ROW(2 

)=90:ROW(l)=90 
80 PRINT" {YEL}{RVS}";:FORI=lT038:PRINT"Z";:NEXT:P 

RINT" {OFF} II; -

85 PRINT" {YEL}{RVS}"; :FORI=lT038:PRINT"Z"; :NEXT:P 
RINT" {OFF} II; -

90 PRINT" {CYN}{RVS}";:FORI=lT038:PRINT"P";:NEXT:P 
RINT" {OFF} II; -

95 PRINT" {CYN}[RVS}";:FORI=lT038:PRINT"P";:NEXT:P 
RINT" {OFF} II; -

100 PRINT" [OFF}P~"; :FORI=lT038:PRINT"~"; :NEXT: 
PRINT" "; 

102 PRINT" {OFF}P~"; :FORI=lT038:PRINT"~"; :NEXT: 
PRINT" "; 

105 PRINT"{WHT}"; 
109 REM 40 SPACES IN NEXT LINE 
110 FORI=lT017:PRINT"{40 SPACES}";:NEXT 
120 PRINT"[HOME}"; 
130 FOR I=l984 TO 2023 : POKE I,248:POKE I+54272,l 

0:NEXT 
140 IF PEEK(789)<>12*16THENSYS 12*4096 
150 FOR ROW= 6 TO lSTEP-l:FOR CHAR=! TO 38 
155 FOR K=l TO 600-CHAR*l0+(6-ROW)*20-50*(9-PEEK(S 

PEED) ) : NEXT 
157 IF PEEK(FLAG) THEN 2000 
160 P=RND(l)*38+1 
170 IF PEEK(l024+ROW*40+P)=32THEN160 
180 POKE 1024+ROW*40+P,ROW(ROW) 
190 NEXTCHAR 
191 SYS 49745 
192 FORQ=lT02:POKE54296,05 :POKE54277,5:POKE54278, 

218 
193 POKE 54273,150 :POKE54272,139:POKE54276,17 
194 FORT=lT050:NEXT:POKE54276,16:FORT=lT010:NEXT 
195 NEXTQ 
197 IF ROW >l THENSYS 49691 

91 



4oexterity 

200 NEXTROW 
201 FOR K=l TO 300:NEXTK 
205 POKE PADDLE,6 
206 IF PEEK(SPEED)=2 AND PEEK(WIDTH)>l THEN POKE W 

IDTH,PEEK(WIDTH)-1 
207 IF PEEK(SPEED)>2 THEN POKE SPEED,PEEK(SPEED)-1 
210 PRINT" {HOME} {DOWN} II: 
220 GOTO 80 
999 END 
1000 PRINT"{CLR}{7 SPACES}DIFFICULTY{4 SPACES} 

{5 DOWN} II 

1010 INPUT" {WHT} SPEED ( 1-9) {YEL} { 3 RIGHT} 5 { 3 LEFT} 
II; s 

1015 IF S>9 OR S<l THEN 1010 
1020 INPUT"{3 DOWN}{WHT}WIDTH OF PADDLES (1-9) 

{YEL}{3 RIGHT}4{3 LEFT}":W 
1030 IF W>9 OR W<l THEN 1020 
1040 RETURN 
2000 PRINT" {HOME} { 10 DOWN} { 2 SPACES} {YEL}GAME OVER 

- HIT SPACE TO CONTINUE" 
2010 POKE 198,0 
2020 GETA$:IFA$<>" "THEN2020 
2030 RUN 65 
49000 PRINT"{WHT}{CLR}{2 DOWN}LOADING MACHINE LANG 

UAGE ... {3 DOWN}":TI$="000000" 
49005 1=49152 
49007 PRINT"READY IN"STR$(31-VAL(TI$))" SECONDS 

{UP} II 

49010 READ A:CK=CK+A:IF A=256 THEN 49030 
49020 POKE I,A:I=I+l:GOTO 49007 
49030 IFCK<>89323 THEN PRINT "ERROR IN LINES 49152 

TO 49840":STOP 
49040 RETURN 
49152 DATA 120,169,192,141,21,3,l69 
49160 DATA 29,141,20,3,88,169,18 
49168 DATA 141,253,207,169,0,141,250 
49176 DATA 207,141,247,207,141,248,207 
49184 DATA 96,173,255,207,141,252,207 
49192 DATA 172,253,207,169,32,153,l51 
49200 DATA 7,200,169,160,174,251,207 
49208 DATA 153,151,7,200,202,208,249 
49216 DATA 169,32,153,151,7,206,252 
49224 DATA 207,208,3,76,3,193,l72 
49232 DATA 253,207,169,32,153,71,7 
49240 DATA 200,169,160,174,251,207,153 
49248 DATA 71,7,200,202,208,249,169 
49256 DATA 32,153,71,7,200,206,252 
49264 DATA 207,208,3,76,3,193,172 
49272 DATA 253,207,169,32,153,247,6 

92 



Dexterity4 

49280 DATA 200,169,160,174,251,207,153 
49288 DATA 247,6,200,202,208,249,169 
49296 DATA 32,153,247,6,200,206,252 
49304 DATA 207,240,123,172,253,207,169 
49312 DATA 32,153,167,6,200,169,160 
49320 DATA 174,251,207,153,167,6,200 
49328 DATA 202,208,249,169,32,153,167 
49336 DATA 6,200,206,252,207,240,91 
49344 DATA 172,253,207,169,32,153,87 
49352 DATA 6,200,169,160,174,251,207 
49360 DATA 153,87,6,200,202,208,249 
49368 DATA 169,32,153,87,6,200,206 
49376 DATA 252,207,240,59,172,253,207 
49384 DATA 169,32,153,7,6,200,169 
49392 DATA 160,174,251,207,153,7,6 
49400 DATA 200,202,208,249,169,32,153 
49408 DATA 7,6,200,206,252,207,240 
49416 DATA 27,172,253,207,169,32,153 
49424 DATA 183,5,200,169,160,174,251 
49432 DATA 207,153,183,5,200,202,208 
49440 DATA 249,169,32,153,183,5,200 
49448 DATA 165,197,201,42,208,13,173 
49456 DATA 253,207,201,1,240,24,206 
49464 DATA 253,207,76,40,193,201,50 
49472 DATA 208,14,173,253,207,24,109 
49480 DATA 251,207,201,39,240,3,238 
49488 DATA 253,207,238,250,207,173,250 
49496 DATA 207,205,249,207,240,3,76 
49504 DATA 49,234,169,0,141,250,207 
49512 DATA 169,112,133,251,169,7,133 
49520 DATA 252,160,0,185,152,7,41 
49528 DATA 127,201,32,208,74,200,192 
49536 DATA 39,208,242,160,0,177,251 
49544 DATA 201,81,240,37,201,207,240 
49552 DATA 33,201,90,240,29,200,192 
49560 DATA 40,208,237,56,165,251,233 
49568 DATA 40,133,251,176,2,198,252 
49576 DATA 166,251,208,220,166,252,224 
49584 DATA 4,208,214,76,49,234,170 
49592 DATA 152,24,105,40,168,138,145 
49600 DATA 251,152,56,233,40,168,169 
49608 DATA 32,145,251,32,251,193,76 
49616 DATA 99,193,169,32,153,152,7 
49624 DATA 32,81,194,169,15,141,24 
49632 DATA 212,169,17,141,5,212,169 
49640 DATA 213,141,6,212,169,2,141 
49648 DATA 3,212,169,100,141,2,212 
49656 DATA 169,5,141,1,212,169,135 
49664 DATA 141,0,212,169,65,141,4 

93 



4oexterity 

49672 DATA 212,160,0,162,0,142,32 
49680 DATA 208,232,208,250,200,208,247 
49688 DATA 169,12,141,32,208,169,64 
49696 DATA 141,4,212,160,39,185,0 
49704 DATA 4,201,81,240,11,136,208 
49712 DATA 246,169,1,141,254,207,76 
49720 DATA 49,234,169,32,153,0,4 
49728 DATA 76,49,234,152,72,160,10 
49736 DATA 185,0,4,201,57,208,9 
49744 DATA 169,48,153,0,4,136,76 
49752 DATA 255,193,185,0,4,24,105 
49760 DATA 1,153,0,4,104,168,96 
49768 DATA 174,255,207,202,142,255,207 
49776 DATA 232,169,152,133,251,169,7 
49784 DATA 133,252,56,165,251,233,80 
49792 DATA 133,251,176,2,198,252,202 
49800 DATA 208,242,160,0,177,251,201 
49808 DATA 160,240,4,200,76,59,194 
49816 DATA 174,251,207,169,32,145,251 
49824 DATA 200,202,208,250,96,160,0 
49832 DATA 152,153,0,212,200,192,9 
49840 DATA 208,248,96,256 

94 



4 
Laser Bounce 
Frank L. Broadnax 

Don't let the ball get by you. The longer you can chip away at the bricks, 
the higher your score. 

"Laser Bounce" is a game of movement and trajectory similar to 
some of the earlier videogames. Using only the character set 
provided with the Commodore 64, it displays a spaceship, the 
laser balls which rebound from the ship, and the walls of energy 
you are trying to break through. 

Played with a joystick plugged into Control Port 2, the game 
begins with a simple title screen and a short musical introduction. 
At that point you're asked if you want to read the instructions 
before the game. If this is your first game, you would press Y, and 
the instructions appear. Once you've played the game, however, 
you can press N and go directly to the screen setup. 

The screen sets up quickly, with the present and high scores 
displayed at the top, your spaceship in the middle, and the six 
colored energy walls below. The number of spaceships remaining 
is indicated by the small circles near the top-right-hand corner of 
the display. 

As soon as the screen is completed, the game begins. Your 
spaceship fires its laser, and the ball appears. The ball will travel in 
one of four directions to start the game. It will move up and to the 
right, up and to the left, down and to the right, or down and to 
the left. Be especially watchful for the ball to move up, toward 
your spaceship, for you won't have much time to intercept it. 

Intercepting the laser ball makes it rebound and move toward 
the energy walls or the side of the screen. It will bounce off both, 
but you'll receive points only if it hits the wall and eliminates a 
brick. Ten points are awarded for each gap created. 

Although it doesn't matter which part of the ship the ball 
touches, it's best to use its center. Sometimes you may think 
you're in the right position, but the ball misses one wing of the 
ship and gets by you. Unlike other games of trajectory, the ball 
will not bounce at a different angle depending on where it strikes 

95 



4oexterity 

the ship. No matter where the ball touches the spaceship, it will 
simply rebound. 

The ship moves rather slowly, so it's a good idea to keep track 
of the ball, especially when it gets trapped in the wall and is busy 
eliminating bricks. You should be able to tell when the ball will 
escape from the wall and head back toward you. Anticipating it is 
important: if your spaceship is out of position, it will be hard to 
recover in time to intercept. Because the spaceship moves three 
columns at a time, its movement is sometimes jerky, and can 
make it seem like the spaceship is changing position faster than it 
actually is. 

The laser ball is also hard to keep track of at times. Because it 
is drawn and erased each time it moves, it blinks off and on. 
However, when it erases bricks from the energy wall, it seems to 
disappear for a moment. If it is eliminating bricks rapidly, the best 
way to keep track of it is to watch the pattern of erasing bricks. 
Plotting where it will return toward your ship, you can move to 
that position. 

If you miss intercepting the ball, and it gets by you, your 
spaceship will reappear in the middle of the screen, fire its laser, 
and another round begins. You have a total of five spaceships 
during a game, the number remaining indicated by the display. 

If you erase all five energy walls, the game isn't over. Another 
five walls are drawn when you reach 4800 points, the total you 
should have after eliminating all the bricks. Each time all five 
walls are erased, another five appear to take their place. You 
receive no additional spaceships, however. 

As the game ends, a message appears asking if you want to 
play another game. Pressing Y sets up another screen after you've 
indicated whether you need to read the instructions again. The 
score will return to 0, but the previous high score remains as long 
as the computer is left on. The high score only prints once a ball is 
missed. You can quit playing simply by entering N when the 
prompt appears at the end of a game. 

Laser Bounce Variations 
It's easy to create several variations of this game simply by altering 
a few of the program lines. 

An interesting variation can be created by changing line 400. 
Instead of the value DY= - DY, insert DX= - DX. This will make 
the laser ball wind its way down through the energy walls, reap­
pearing and moving toward the spaceship only after it's erased its 
way free. 

96 



Dexterity4 

Another change can be made in lines 460 and 470. Insert 
GOTO 310 instead of GOTO 320. After a ball is missed, the energy 
screens will be redrawn, in effect making you start over. Your 
score will not return to 0, however. 

Changing the value of DX in line 335 will also create another 
variation of Laser Bounce. DX= 2 will alter the angle at which the 
ball rebounds. This can make the ball difficult to intercept, espe­
cially as the game begins and the ball moves up and to one side. 
You'll have to be fast to intercept it before it gets by you. 

Programmer's Notes 
It may be useful to outline some of the major subroutines of this 
game program so you can see how it all fits together. 
Lines 
5-170 

180-220 

230-335 
330 

335 
336-337 
400 
420-450 
10100 

12000-12130 

15000-15160 

20000-20080 

25000-25020 

Function 
Set up the title screen and send the program to the 
subroutine which plays the opening music. 
Begin the setup of the game instructions, and send the 
program to the subroutine at 35000, which contains the 
rest of the game description. 
Set variables and the screen. 
Ball movement loop begins. This is the main loop of the 
program. 
Ball starts from the end of the laser. 
Alter the direction of the ball each time it appears. 
Check to see if the ball touches a brick in the energy wall. 
Check to see if the ball is in contact with the spaceship. 
Subroutine to create the firing laser using only standard 
graphic characters. 
POKE in the graphic character and colors to create the 
energy walls. The reversed space with screen code value 
of 160 was used to make the walls. 
Create the spaceship using the graphic characters with 
screen code values of 73, 81, and 83, and two characters 
with the value of 67. 
Subroutine to move the spaceship. The ship moves three 
columns at a time by erasing its previous position and 
POKEing in the new location. The value is read from the 
joystick (PEEK 56320). This subroutine also keeps the 
spaceship on the screen. 
Scoring subroutine which starts in line 400, then moves 
to this section of the program. The score is printed to the 
screen, changing by 10 each time a brick is erased. Lines 
25011to25019 redraw the bricks once the screen is 
cleared, depending on the score displayed. 

97 



4oexterity 

27000-27040 Sound subroutine for the effect as the ball hits and erases 
the bricks. Values are POKEd into sound memory 
locations for attack (A), waveform (W), high sound 
register (HF), and low sound register (LO). The sound 
variables are set in line 260, at the opening of the 
program. 

30000-30070 Subroutine to handle a missed ball and the high score. 
The spare spaceships are controlled here as well. Line 
30030 increases PL by 1 each time a ball is missed. If PL 
exceeds 1098, then the game ends; otherwise, line 30070 
POKEs a value of 102 in location PL, erasing one spare 
spaceship. 

35000-35100 Remainder of the screen and game instructions. 
40000-40240 Set values and the DATA statements for the music which 

plays at the opening of the game 
45000-45030 Subroutine which asks the player whether another game 

is wanted. 

Laser Bounce 
5 PRINT"{CLR}" 
10 PRINT 
20 PRINT 
30 PRINT 
40 PRINT 
50 PRINTSPC(8)"***********************" 
60 PRINTSPC(8)"*{21 SPACES}*" 
70 PRINTSPC(8)"*{4 SPACES}LASER{2 SPACES}BOUNCE 

{4 SPACES}*" 
80 PRINTSPC(8)"*{21 SPACES}*" 
160 PRINTSPC(8)"***********************" 
170 GOSUB40010 
180 PRINTTAB(.l.28)"00 YOU WISH INSTRUCTIONS" 
190 PRINTTAB(96)"Y ORN" 
200 GETA$:IFA$=""THEN200 
210 IFA$="Y"THENPRINT"{CLR}":GOSUB35010 
220 IFA$<>"Y"THEN230 
230 PRINT"{CLR}":POKE53280,ll:POKE53281,0 
240 Pl=l094:SC=0:C0=54272 
250 FORR=54272T054296:POKER,0:NEXT 
260 L=54296:W=54276:A=54277:HF=54273:LF=54272 
270 POKEL,15 
302 FORUl=l024T01063:POKEUl,160:POKEUl+CO,ll:NEXT 
304 FORU2=1064T01103:POKEU2,102:POKEU2+CO,ll:NEXT 
306 FORU3=1095T01098:POKEU3,87:POKEU3+CO,l:NEXT 
307 PRINTTAB(6)"{UP}{WHT}SCORE=" 
308 PRINTSPC(23)"{3 UP}{WHT}HI=" 
310 GOSUB12010 

98 



Dexterity4 

320 GOSUB15010 
325 C=ll6l:V=ll62:B=ll63:N=ll64:M=ll65 
330 REM BALL 
335 X=l9:Y=9:DX=l:DY=l 
336 IFRND(l)<.5THENDY=-DY 
337 IFRND(l)<.5THENDX=-DX 
340 POKE1024+X+40*Y,8l:POKE55296+X+40*Y,l 
370 POKE1024+X+40*Y,32 
380 X=X+DX:IFX=00RX=39THENDX=-DX 
390 Y=Y+DY:IFY=24THENDY=-DY 
395 BL=l024+X+40*Y:Cl=l60 
400 IFPEEK(BL)=ClTHENDY=-DY:SC=SC+l0:GOSUB25010:GO 

SUB27010 
420 IFPEEK(BL)=67THENDY=-DY:GOT0390 
430 IFPEEK(BL)=81THENDY=-DY:GOT0390 
440 IFPEEK(BL)=85THENDY=-DY:GOT0390 
450 IFPEEK(BL)=73THENDY=-DY:GOT0390 
460 IFPEEK(BL)=l02THENGOSUB30010:GOT0320 
470 IFPEEK(BL)=87THENGOSUB30010:GOT0320 
480 GOSUB20020:GOT0340 
10000 REM LASER DELAY 
10100 FORT=lT0100:NEXT:RETURN 
12000 REM DRAW BRICKS 
12010 FORQ1=1504T01583:POKEQl,160:POKEQl+C0,7:NEXT 
12030 FORQ2=1584T01663:POKEQ2,160:POKEQ2+C0,6:NEXT 
12050 FORQ3=1664T01743:POKEQ3,160:POKEQ3+C0,8:NEXT 
12070 FORQ4=1744T01823:POKEQ4,160:POKEQ4+C0,5:NEXT 
12090 FORQ5=1824T01903:POKEQ5,160:POKEQ5+C0,2:NEXT 
12110 FORQ6=1904T01983:POKEQ6,160:POKEQ6+C0,4:NEXT 
12130 RETURN 
15000 REM LASER SHIP & LASER FIRE 
15010 FORZ=ll44T01183:POKEZ,32:NEXT 
15020 POKE1161,85:POKE1162,67:POKE1163,8l:POKE1164 

,67:POKE1165,73 
15030 FORZ1=55416T055455:POKEZ1,l:NEXT 
15040 POKE1203,66:POKE55475,2:GOSUB10100 
15050 POKE1243,66:POKE55515,2:GOSUB10100 
15060 POKE1283,66:POKE55555,2:GOSUB10100 
15070 POKE1323,66:POKE55595,2:GOSUB10100 
15080 POKE1363,66:POKE55635,2:GOSUB10100 
15090 POKE1403,8l:POKE55675,l:GOSUB10100 
15100 POKE1203,32:GOSUB10100 
15110 POKE1243,32:GOSUB10100 
15120 POKE1283,32:GOSUB10100 
15130 POKE1323,32:GOSUB10100 
15140 POKE1363,32:GOSUB10100 
15150 POKE1403,32:GOSUB10100 
15160 RETURN 
20000 REM SHIP MOVEMENT 

99 



4oexterity 

20020 IFPEEK(56320)=119THENPOKEC,32:POKEV,32:POKEB 
,32:M=M+3:N=N+3:B=B+3:V=V+3:C=C+3 

20030 IFPEEK(ll83)=73THENM=ll83:N=ll82:B=ll81:V=ll 
80:C=ll79 

20040 POKEM,73:POKEN,67:POKEB,8l:POKEV,67:POKEC,85 
20050 IFPEEK(56320)=123THENPOKEM,32:POKEN,32:POKEB 

,32:C=C-3:V=V-3:B=B-3:N=N-3:M=M-3 
20060 IFPEEK(ll44)=67THENC=ll43:V=ll44:B=ll45:N=ll 

46 :M=ll47 
20070 POKEC,85:POKEV,67:POKEB,8l:POKEN,67:POKEM,73 
20080 RETURN 
25000 REM PRINT SCORE 
25010 PRINTTAB(l2) "{UP} {WHT} "SC 
25011 IFSC=4800THENGOSUB12010 
25012 IFSC=9590THENGOSUB12010 
25013 IFSC=l4380THENGOSUB12010 
25014 IFSC=l9170THENGOSUB12010 
25015 IFSC=23960THENGOSUB12010 
25016 IFSC=28750THENGOSUB12010 
25017 IFSC=33540THENGOSUB12010 
25018 IFSC=38330THENGOSUB12010 
25019 IFSC=43120THENGOSUB12010 
25020 RETURN 
27000 REM SOUND 
27010 POKEA,9:POKEW,17:POKEHF,67:POKELF,15 
27030 POKEW,0 
27040 RETURN 
30000 REM MISSED BALL & HI SCORE 
30010 IFSC>HITHENHI=SC 
30020 PRINTSPC(26)"{3 UP}{WHT}"HI 
30030 Pl=Pl+l:IFP1>1098THENPRINTTAB(254)"{WHT}GAME 

{3 SPACES}OVER":GOT045000 
30070 POKEPl,102:POKEPl+CO,ll:RETURN 
35000 REM INSTRUCTIONS 
35010 PRINTTAB(88)"WELCOME TO LASER BOUNCE" 
35020 PRINTTAB(40)"THE OBJECT OF LASER BOUNCE IS T 

0 REFLECT" 
35030 PRINT"THE BALL BACK TO THE BRICKS WITH YOUR" 
35040 PRINTTAB(40)"SPACE SHIP." 
35050 PRINTTAB(40)"TO MOVE YOUR SHIP USE A JOY STI 

CK" 
35060 PRINTTAB(40)"PLUGGED INTO CONTROL PORT # 2." 
35070 PRINTTAB(l26)"PRESS SPACE BAR TO PROCEED" 
35080 GETP$:IFP$=""THEN35080 
35090 IFP$<>CHR$(32)THEN35080 
35100 IFP$=CHR$(32)THENRETURN 
40000 REM SONG AT BEGINING 
40010 S0=54272 
40020 FORL=SOTOS0+24:POKEL,0 

100 



40030 POKES0+5,9:POKES0+6,40 
40040 POKES0+24,15 
40050 READHF,LF,DR 
40060 IFHF<0THENRETURN 
40070 POKESO+l,HF:POKESO,LF 
40080 POKES0+4,33 
40090 FORT=lTODR:NEXT 
40100 POKES0+4,32:FORT=lT050:NEXT 
40110 GOT040050 

Dexterity4 

40120 DATA14,24,250,ll,48,125,12,143,125,14,24,125 
40130 DATAll,48,125,12,143,125,14,24,125,15,210,25 

0 
40140 DATA12,143,125,14,24,125,15,210,125,12,143,l 

25 
40150 DATA14,24,125,15,210,125,16,195,250,18,209,2 

50 
40160 DATA14,24,125,15,210,125,ll,48,125,12,143,12 

5 
40170 DATA14,24,250,12,143,125,ll,48,l25,l6,l95,25 

0 
40180 DATA16,195,250,14,24,250,ll,48,l25,l2,l43,l2 

5 
40190 DATA14,24,125,ll,48,125,12,143,125,14,24,125 
40200 DATA15,210,250,12,143,125,14,24,l25,l5,210,l 

25 
40210 DATA12,143,125,14,24,125,l5,210,l25,l6,l95,2 

50 
40220 DATA18,209,250,14,24,125,l5,210,l25,ll,48,l2 

5 
40230 DATA12,143,125,14,24,125,16,l95,l25,l4,24,l2 

5 
40240 DATA12,143,125,ll,48,500,-l,-l,-l 
45000 PRINTTAB(44)"{WHT}DO YOU WISH ANOTHER GAME Y 

OR N" 
45010 GETA$:IFA$=""THEN45010 
45020 IFA$:z:"Y"THENPRINT"{CLR}":GOT0180 
45030 IFA$="N"THENPRINT"{CLR}":END 

101 









The Hawkmen of 
Dindrin 
Esteban V. Aguilar, Jr. 64 Version by Charles Brannon 

5 

Fly down through the dangerous skies of the planet Dindrin to collect 
stones. Retrieve enough of them and win the game, but beware of the 
fioaters and lizards. Several special techniques are used in this game, 
including animation, multicolor sprites, and sound effects, each of which 
is explained in the article. 

There's a strange planet named Dindrin where multicolor floaters 
and a giant sky skimmer drift through the daytime skies. On the 
surface of the planet, vicious land hunters come up from the 
ground and set polished golden stones in the sun. It's a form of 
worship too obscure, too alien to describe. 

Suddenly a strange-looking hawk-like creature dives down 
and snatches a stone. You are the hawkrnan. Your objective is to 
pick up the golden stones. 

Several special programming tricks went into this game. 
When you have the game running, watch the screen carefully. A 
patrol snake sweeps across the bottom of the screen. Airborne 
floaters pop up all over the screen. The hawkrnan's wings flap. 
The luminous stones at the bottom of the screen are protected by 
menacing lizards whose tongues wiggle venomously at you. 

To play the game, use a joystick plugged into the first port. 
Maneuvering is accomplished by pulling left on the joystick to go 
backward. Whenever you want to dive or fly upward, you must 
pull down or up (respectively) on the stick. One thing to keep in 
mind when ascending or descending is that you will move diago­
nally rather than straight up or down. 

The joystick response will be strange and difficult to master, 
but predictable. Once in a while, an obstacle such as a floater will 
get in your way; press the fire button to safely bump into the 
obstacle (and get points for it). 

There are a couple of things to consider before playing the 

105 



5 Arcade-Style Games 

game. As time passes, you will lose energy. If your energy runs 
out, you will lose a life. Second, when you're flying, don't run 
into anything or you'll lose one of your lives. When all your lives 
are lost, the game is over. 

How It's Done 
Multicolored characters are used for the stones and the lizards. 
The patrol snake is a multicolored sprite. 

The animation (wing flapping, tongue wiggling) is done by 
switching between two custom character sets. Every object to be 
animated has two alternate views. The same image is copied into 
both character sets for shapes that should not move, such as the 
stones or the score line. 

A machine language routine is used for smooth, even hori­
zontal motion for the patrol snake. Instead of being called when 
needed by BASIC, the machine language routine runs continu­
ously in the background. The machine language routine also flips 
the character set. 

Interrupting the Commodore 64 
We used the hardware interrupt request (IRQ). To place a 
machine language routine so that it automatically executes every 
1/60 second, you change the IRQ vector at $0314 (it normally 
points to the ROM interrupt routines) to point to your machine 
language routine. After your routine executes, it exits with a JMP 
to the normal ROM routine. 

The setup is a little tricky. While you're storing the new IRQ 
value, you have to use SEI (SEt Interrupt disable bit) to prevent 
any interrupts from happening. If you don't, an interrupt could 
occur after you had stored the first byte of the vector value but 
before you changed the second. The interrupt would then vector 
through a "half-baked" value, and end up in limbo. 

After you've changed the IRQ vector, you clear the interrupt 
disable bit (CU) and return with RTS to BASIC. The machine 
language routine will then be running continuously in the back­
ground, flipping the character set and moving the sprite. 

Multicolor 
Multicolor graphics are important for good arcade effects. A few 
years ago, graphic objects (such as a tank or plane) were always a 
single color. But increasing realism has been a feature of arcade 
graphics, and multicolored objects are an important aspect of this 
realism. 

106 



Arcade-Style Games 5 
Normally, when you define a custom character set, you create 

eight rows of pixels (picture elements, dots). Each row is eight 
dots (or bits) wide. With multicolor, each row is divided up into 
four two-bit pairs. Each pair of bits can hold a number from 0-3: 
00, 01, 10, 11. You use a different number for each color. This 
reduces the resolution to four multicolor pixels per row, so the 
lizards and stones are composed of two characters each. You also 
have to tell the VIC-II chip that you are using multicolor. Do this 
with: 

POKE 53270, PEEK (53270) OR 16 

Disable multicolor with: 
POKE 53270, PEEK (53270) AND 239 

Here is a sample multicolor shape: 
rrrr r =red (arbitrary colors) 
rbbb b=blue 
rbgg g =green 
rbgg 

Let's say the binary codes for red, green, and blue are (respec­
tively) 01, 10, and 11. Substituting gives: 

01 01 01 01 01010101 
01 10 10 10 01101010 
01 10 11 11 01101111 
01 10 11 11 01101111 

You can change the colors according to this key: 

00 Background #0 color register - 53281 
01 Background #1 color register - 53282 
10 Background #2 color register - 53283 
11 Color in lower 3 bits in color memory. 

That last line needs explaining. You know that to get 
variously colored characters, you POKE a number from 0-15 into 
the corresponding color memory location. However, colors 8-15 
(accessed by the Commodore key) are really multicolors. Multi­
color characters always are displayed with a color from 8-15. You 
won't get the eight alternate colors (such as gray), but the normal 
color on the key (15 =yellow). Just add eight to the normal color 
number. So, a bit value of 11 will take on the value in color 
memory. The other colors will come from the color registers (00 is 
transparent). 

107 



5 Arcade-Style Games 

Multicolored sprites are similar. Instead of the normal 24-bit 
resolution, the bits are grouped into 12-bit pairs. The colors come 
from: 

00 - Transparent, screen color 
01- Sprite multicolor register #0 53285 
10 - Normal sprite color register 
11- Sprite multicolor register #1 53286 

You tell the VIC-II chip that you are using a multicolored 
sprite by: 

POKE 53276, PEEK (53276) OR (2 i X) 

X is the sprite number, from 0 to 7. You can mix multicolored and 
regular sprites on the same screen. But all multicolored sprites 
will share the same two multicolor registers. 

Simple SID Chip Sound 
The "thrumming" noise is made by playing a low-pitched tone 
through the SID using the variable pulse wave and a fairly long 
(one-second) decay. Another sound effect (I can't really describe 
it) is made with white noise and a medium decay. The high byte 
of the pitch is changed as the note is played. There is also another 
sound effect created by the sawtooth waveform affecting the low 
byte of the pitch. 

Hawkmen of Dindrin 
100 REM HAWKMEN OF DINDRIN 
110 REM COMMODORE 64 VERSION 
120 POKE52,48:POKE56,48:CLR:GOSUB500:EN=500:GOT016 

0 
13 0 PRINT II {HOME} { RVS } {RED} II ; TAB ( 9 ) II {LEFT } II ; EN; II 

{BLU} 11 ;TAB(26-LEN(STR$(SC)));SC; 
140 IF EN<=0THEN410 
150 RETURN 
160 IF(PEEK(5632l)AND15)<>15THENJS=PEEK(5632l)AND1 

5 
170 IFRND(l)>.9THENQ=LL*RND(l)+(l5*RND(l)+2)*LL:PO 

KET+Q,FOOL:POKEC+Q,6*RND(l)+2 
180 IFRND(l)<.7THEN200 
190 Q=920+INT(20*RND(l))*2:Z=33-2*(RND(l)>.7):POKE 

T+Q,Z:POKET+Q+l,Z+l 
200 IFPEEK(V+3l)THEN410 
210 Q=PX+LL*PY:POKET+Q,PC:POKEC+Q,6:EN=EN-l-9*(1-( 

PEEK(5632l)AND16)/16) 
215 PRINT" {HOME} {RVS} {RED} "TAB( 9); II {LEFT} II ;-EN* (EN 

>0); 11 {LEFT} 11 ;:IFEN<=0THEN410 

108 



Arcade-Style Games 5 
220 NX=PX+l+2*(JS=ll):NY=PY+(NX<0)-(NX>39):NX=-NX* 

(NX<40)-40*(NX<0) 
230 NY=NY-(JS=l3)+(JS=l4):IFNY<20RNY>23THENJS=27-J 

S:NY=PY 
240 WHATSIT=PEEK(T+NX+LL*NY) 
250 IF NY>22 THEN 300 
260 IFWHATSIT=32THENPOKET+PX+LL*PY,32:PX=NX:PY=NY: 

GOT0160 
270 IFPEEK(5632l)AND16THEN410 
280 POKET+PX+LL*PY,32:POKES+24,15:POKES+5,9:POKES+ 

6,0:POKES+l,10 
281 FORI=0T010:POKES,I*20:POKES+4,32:POKES+4,33:NE 

XT:POKES+24,0 
290 WHATSIT=32:SC=SC+l0:EN=EN-50:GOSUB130:GOT0250 
300 JS=27-JS:IFWHATSIT<330RWHATSIT>34THEN330 
305 Q=(NXAND254)+LL*NY:POKET+Q,32:POKET+Q+l,32:EN= 

EN+50 
310 GOT0320 
320 POKET+PX+LL*PY,32:PX=NX:SC=SC+50:GOSUB130:GOTO 

160 
330 IFWH=32THEN160 
340 REM GRAB'EM AND EAT 'EM UP! 
350 POKET+PX+LL*PY,32:Q=LL*NY+(NXAND254):POKET+Q,3 

7:POKET+Q+l,38:POKET+Q-LL,42 
360 POKET+Q-LL+l,36:POKEC+Q-LL,13:POKEC+Q-LL+l,13 
370 POKES+24,15:POKES+l,0:POKES,255:POKES+3,8:POKE 

S+2,0:POKES+5,12:POKES+6,0 
375 POKES+4,64:POKES+4,65:FORW=lT01500:NEXT:POKES+ 

4,64:FORL=STOS+24:POKEL,0:NEXT 
380 POKE T+Q,33:POKET+Q+l,34:POKET+Q-LL,32:POKET+Q 

-LL+l,32 
390 GOTO 430 
400 REM PLAYER MEETS HIS DEMISE 
410 POKES+24,15:POKES+5,9:POKES+6,0:POKES,200 
420 FORI=0T090STEP6:Q=PX+LL*PY:POKET+Q,44+I/30:POK 

EC+Q,8*RND(l) 
425 POKE53280,16*RND(l):POKES+l,I:POKES+4,128:POKE 

S+4,129:NEXT 
427 FORL=STOS+24:POKEL,0:NEXT 
430 POKE53280,0:IFLI<3THENPOKET+35+LI*2,32 
440 POKET+PX+LL*PY,32:Z=PEEK(V+3l):LI=LI+l:IFLI<4T 

HENEN=500:GOSUB720:GOT0160 
450 SYS52992:REM TURN OFF ML 
460 PRINT" {HOME} {3 DOWN} {RVS} II ;TAB( 15); II {BLK}G 

{RED}A{CYN}M{PUR}E{RIGHT}{GRN}O{BLU}V{YEL}E 
{RED}R{BLU} II 

470 PRINTTAB(7)"{DOWN}{RVS}PRESS {RED}FIRE{BLU} TO 
PLAY AGAIN" 

480 IF(PEEK(5632l)AND16)THEN480 

109 



5 Arcade-Style Games 

490 RUN 
500 REM INITIALIZATION 
510 POKE53280,0:POKE53281,l 
515 T=l024:C=55296:S=54272:LL=40 
520 CHSET=l2288:IFPEEK(CHSET+264)=2 THEN 570 
530 PRINT" {CLR} II :C$=" {BLK} {RED} {CYN} {PUR} {GRN} 

{YEL} {BLU} II: FORI=l T07: PRINT" {HOME} {DOWN} II; MID$ 
(C$,I,l);:GOSUB2000:NEXT 

550 PRINTTAB(l0)"{3 DOWN}{2 RIGHT}{BLK}READY IN 
{RED}22{BLK} SECONDS"; 

560 GOSUB750:GOSUB 840 
570 PRINT" {CLR} II; :FOOL=41 
575 FORL=STOS+24:POKEL,0:NEXT 
580 PC=43:POKE53282,10:POKE53283,2 
590 POKE 53272,(PEEK(53272)AND240)0R12:REM ENABLE 

{SPACE}NEW CHARACTER SET 
600 POKE 53270,PEEK(53270)0R16 :REM SET MULTICOLOR 

MODE 
610 PRINT"{HOME}{RED}{RVS}{2 SPACES}ENERGY 500 

{2 SPACES}{BLU}{2 SPACES}SCORE{4 SPACES}0 
{GRN} {2 SPACES}LIVES {OFF} {PUR}+ + +" 

630 FORI=0T039STEP2:Q=24*LL+I:POKET+Q,39:POKET+Q+l 
,40:POKEC+Q,7:POKEC+Q+l,7:NEXT 

640 FORI=0T039STEP2:Q=23*LL+I:POKET+Q,33:POKET+Q+l 
,34:POKEC+Q,13:POKEC+Q+l,13:NEXT 

650 Q=l0+23*LL:POKET+Q,35:POKET+Q+l,36 
660 V=53248:REM START OF VIC-II CHIP REGISTERS 
670 POKEV,220:POKEV+l,194:POKEV+21,l:POKEV+39,7:PO 

KE2040, 13 
680 POKEV+23,l:POKEV+29,l:POKE53285,3:POKE53286,4: 

POKE53276,PEEK(53276)0Rl 
681 FORI=0T063:POKE832+I,0:NEXT:RESTORE 
685 FORI=0T018:READA:POKE832+8+I,A:NEXT 
690 DATA192,0,3,240,0,15,124,85,95,255,0,12,8,0,3, 

0,0,0,240 
700 FORI=lT05:Q•40*RND(l)+(l0*RND(l)+3)*LL:POKET+Q 

,FOOL:POKEC+Q,6*RND(l)+2:NEXT 
710 SYS52992:REM START ML ROUTINE 
720 PX=5:PY=5:PC=43:POKET+PX+LL*PY,PC:POKEC+PX+LL* 

PY,6 
730 IF(PEEK(5632l)AND15)=15THEN730 
740 RETURN 
750 RESTORE:FORI=0T018:READA:NEXT:FORI=0T096:READA 

:POKE52992+I,A:NEXT:RETURN 
760 DATA 120,173,21,3,201,234,208,19 
770 DATA 169,39,141,20,3,169,207,141 
780 DATA 21,3,169,0,133,251,133,252 
790 DATA 76,37,207,169,49,141,20,3 
802 DATA 169,134,141,21,3,88,96,165 

110 



Arcade-Style Games 5 
804 DATA 251,141,0,208,173,16,208,41 
806 DATA 254,5,252,141,16,208,24,165 
808 DATA 251,105,4,133,251,165,252,105 
810 DATA 0,133,252,240,12,165,251,201 
812 DATA 91,144,6,169,0,133,251,133 
814 DATA 252,165,162,74,144,8,173,24 
816 DATA 208,73,2,141,24,208,76,49 
818 DATA 234 
840 POKE56334,PEEK(56334)AND254:POKE1,PEEK(l)AND251 
841 FORI=0T05li:POKE13312+I,PEEK(54272+I):POKE1536 

0+I,PEEK(54272+I):NEXT 
842 POKE1,PEEK(l)OR4:POKE56334,PEEK(56334)0Rl 
860 READA:IFA=-lTHENRETURN 
870 FORJ=0T07:READB:POKECHSET+A*8+J,B:NEXTJ:GOT0860 
880 DATA 32,0,0,0,0,0,0,0,0 
890 DATA 33,2,9,9,9,9,9,2,0 
900 DATA 34,160,88,88,88,88,88,160,0 
910 DATA 35,12,3,16,196,195,63,3,3 
920 DATA 36,0,192,252,236,252,240,192,192 
930 DATA 37,3,35,131,139,139,171,35,3 
940 DATA 38,192,192,224,232,202,194,194,200 
950 DATA 39,64,80,84,85,85,85,85,85 
960 DATA 40,l,5,21,85,85,85,85,85 
970 DATA 41,0,102,219,36,126,137,66,60 

980 DATA 42,0,15,0,51,63,15,15,3 
990 DATA{2 SPACES}288,0,0,0,0,0,0,0,0 
1000 DATA 289,2,9,9,9,9,9,2,0 
1010 DATA 290,160,88,88,88,88,88,160,0 
1020 DATA 291,12,3,0,192,195,63,3,3 
1030 DATA 292,0,192,252,204,252,240,192,192 
1040 DATA 293,3,3,35,171,139,139,131,35 
1050 DATA 294,192,200,194,194,202,232,224,192 
1060 DATA 295,64,80,84,85,85,85,85,85 
1070 DATA 296,1,5,21,85,85,85,85,85 
1080 DATA 297,129,102,90,36,126,82,36,24 
1090 DATA 298,0,15,0,48,63,3,15,15 
1100 DATA 43,153,219,231,255,90,24,36,66 
1110 DATA 299,24,90,231,255,219,153,36,66 
1120 DATA 44,217,219,231,75,2,24,36,66 
1130 DATA 45,216,225,235,69,7,2,40,66 
1140 DATA 46,192,192,145,3,67,1,72,130 
1150 DATA 47,192,128,8,1,1,0,16,128 
1160 DATA 300,217,219,247,99,22,24,36,68 

1170 DATA 301,216,225,227,71,23,130,32,66 
1180 DATA 302,192,200,129,3,131,1,64,130 
1190 DATA 303,192,144,0,1,1,0,8,128 

1200 DATA -1 

111 



5 Arcade-Style Games 

2000 PRINT" { RVS} { 2 RIGHT} { 2 RIGHT} { 2 SPACES} 
{2 RIGHT} {3 RIGHT} {RIGHT} {2 RIGHT} {RIGHT} 

{3 RIGHT} {RIGHT}{3 SPACES}{RIGHT} {3 RIGHT} 
II 

2010 PRINT" {RVS} {2 RIGHT} {RIGHT} {2 RIGHT} 
{RIGHT} { 3 RIGHT} {RIGHT} {RIGHT} { 2 RIGHT} 
{2 SPACES}{RIGHT}{2 SPACES}{RIGHT} {3 RIGHT} 
{2 SPACES}{2 RIGHT} " 

2020 PRINT" {RVS} {4 SPACES} {RIGHT} {4 SPACES} 
{RIGHT} {RIGHT} {RIGHT} {RIGHT}{2 SPACES} 
{3 RIGHT} {RIGHT} {RIGHT} {RIGHT} {2 SPACES} 
{ 2 RIGHT} {RIGHT} {RIGHT} " 

2030 PRINT" {RVS} {2 RIGHT} {RIGHT} {2 RIGHT} 
{RIGHT} {RIGHT} {RIGHT} {RIGHT} {RIGHT} 
{ 2 RI-GHT} { 3 RIGHT} {RIGHT} { 3 RIGHT} 
{2 RIGHT}{2 SPACES}" 

2040 PRINT" { RVS} { 2 RIGHT} {RIGHT} { 2 RIGHT} 
{2 RIGHT} {RIGHT} {2 RIGHT} {2 RIGHT} {RIGHT} 

{3 RIGHT} {RIGHT}{3 SPACES}{RIGHT} {3 RIGHT} 
{3 DOWN} II 

2060 PRINTSPC(l5);"{RVS}£{2 SPACES}g*~{2 RIGHT} 
{3 SPACES}" -

2070 PRINTSPC(lS);"{RVS} {2 RIGHT} {2 RIGHT}" 
2080 PRINTS PC ( 15) ; " { RVS} { 2 RIGHT} { 2 RIGHT} 

{3 SPACES}" 
2090 PRINTSPC(lS); "{RVS} {2 RIGHT} {2 RIGHT} " 
2100 PRINTSPC(l5);"g*~{RVS}{2 SPACES}{OFF}£ 

{2 SPACES}{RVS} {2 DOWN}" -
2110 PRINT" { 3 SPACES} { RVS} { 3 SPACES} { 2 RIGHT} 

{3 SPACES}{RIGHT} {3 RIGHT} {RIGHT}{3 SPACES} 
{2 RIGHT}{3 SPACES}{2 RIGHT}{3 SPACES}{RIGHT} 

{3 RIGHT} II 

2120 PRINT" {3 SPACES} {RVS} {2 RIGHT} {2 RIGHT} 
{2 RIGHT}{2 SPACES}{2 RIGHT} {RIGHT} 
{2 RIGHT} {RIGHT} {2 RIGHT} {2 RIGHT} 
{2 RIGHT} {2 SPACES} {2 RIGHT} " 

2130 PRINT"{3 SPACES}{RVS} {2 RIGHT} {2 RIGHT} 
{2 RIGHT} {RIGHT} {RIGHT} {RIGHT} {2 RIGHT} 
{RIGHT}{3 SPACES}{3 RIGHT} {2 RIGHT} {RIGHT} 
{SPACE}{RIGHT} II 

2140 PRINT" { 3 SPACES}{ RVS} { 2 RIGHT} { 2 RIGHT} 
{2 RIGHT} {2 RIGHT}{2 SPACES}{RIGHT} 
{2 RIGHT} {RIGHT} {2 RIGHT} {2 RIGHT} 
{2 RIGHT} {2 RIGHT} {2 SPACES}" 

2150 PRINT" {3 SPACES} {RVS} {3 SPACES} {2 RIGHT} 
{3 SPACES}{RIGHT} {3 RIGHT} {RIGHT}{3 SPACES} 
{2 RIGHT} {2 RIGHT} {RIGHT}{3 SPACES}{RIGHT} 
{SPACE}{3 RIGHT} II 

2160 RETURN 

112 



5 
Minefield 
Sean Igo 64 Translation by Gregg Peele 

Your job is to get your trucks in quickly, defuse the bombs (especially the 
fiashing ones which are about to go off), and get out as fast as you can. 
This game has four skill levels. 

In this game, you drive a truck around to gather and defuse time 
bombs before they explode-all the while avoiding mines and 
bomb craters. 

Playing the Game 
You find yourself in the center of a small minefield with several 
bombs, represented by circles, and a generous number of mines, 
shown as X's. Your truck is a diamond. To defuse the bombs, just 
run over them with the truck. 

When the bombs first appear, they are innocent-looking little 
circles. After a short time-the rate varies from bomb to bomb­
they tum reverse-field. This means watch it. Soon they begin to 
blink, and you have only a few blinks to defuse them before they 
explode. Any mines (or heroic defusing teams) caught in the 
explosion will be instantly lost. Bombs caught in the explosion 
will explode, whether they were ready to or not. 

Your truck can move in only four directions. It can wrap 
around all four edges of the screen. Don't run it into the mines or 
the craters (*) left by the bombs or your truck will be destroyed. 
Once you begin moving, your truck cannot stop until it is blown 
up or until the current minefield is cleared of bombs. 

Skill Levels and Scoring 
"Minefield" has four skill levels. Skill levels differ only in the 
number of trucks you get. Level 0, the easiest, has four trucks. 
Level 1 has three. Level 2 has two, and level 3 has one. 
Scoring: 10 points for a normal bomb 

20 points for a reverse-field bomb 
30 points for a blinking bomb 
-10 points at the end of an explosion for every bomb that 
went off. This is incentive to defuse more than one or two 
bombs in the later explosions. 

113 



5 Arcade-Style Games 

Minefield 
30 REM MINEFIELD FOR C-64 
45 POKE53280,0:POKE53281,0 
50 GOSUB 1130 
60 REM ---INITIALIZE VARIABLES---
70 DIM BT(37),B3(37),B4(37),BP(37),BS(37),XM(4),YM 

(4),BC(25) 
80 DEF FNY(X)=INT((X-1024)/40) 
90 DEF FNX(X)=(X-40*FNY(X))-1024 
100 DEF FNS(X)=l024+PX+40*PY 
110 DEF FNP(X)=l307+INT(34*RND(l))+40*INT(l5*RND(l 

) ) 
120 DEF FNN(X)=PEEK(FNS(X)) 
130 FORJ=l TO 4:READ XM(J),YM(J):NEXT 
140 DATA 0,-1,0,1,-1,0,l,0 
150 SC=0:BT=l680:NB=4:NW=0:D=54272 
160 PRINT"{CLR}";:POKE 53272,21 
170 PRINT"{RVS}{WHT}MINE****- SCORE: 0" 
180 PRINT"{RVS}{WHT}********={RIGHT}HI SCORE:";HS 
190 PRINT"{RVS}{WHT}***FIELD={RIGHT}WAVE: 1 11 

200 PRINT" { RVS} {WHT} { 8 SPACES}-{ RIGHT}";: IF NL<> 1 
{SPACE}THEN FORJ=l TO NL-17PRINT"Z";:NEXT 

210 FORJ=l024 TO 1183:IFPEEK(J)=32 THEN POKE J,160 
:POKEJ+D,l 

220 NEXT 
230 XP$=" {RED }U-I {DOWN} { 4 LEFT }UU-II {DOWN} { 6 LEFT} 

UUU-III{DOWN}{7 LEFT}*******{DOWN} 
(7 LEFT}JJJ-KKK" -- --

235 XP$=XP$+"(RED}(DOWN}{6 LEFT}JJ-KK{DOWN} 
{4 LEFT}J-K" 

240 S$=" {HOMffi24 DOWN} II 

250 Q$=" {WHT}{40 RIGHT} II 

260 XR$=" {WHT} { 3 SPACES} { DOWNJ { 4 LEFT} { 5 SPACES} 
{DOWN}{6 LEFT}{7 SPACES}{DOWN}{7 LEFT} 
{3 SPACES}*{3 SPACES}{DOWN}{7 LEFT}{7 SPACES}" 

265 XR$=XR$+" {DOWN} {6 LEFT} {5 SPACES} {DOWN} 
{4 LEFT}{3 SPACES}" 

270 REM ---SET UP NEXT WAVE---
280 BG=0:NW=NW+l:IF NW>ll THEN 310 
290 NB=NB+l.5:IF NW=l THEN 330 
300 IF NW<6 THEN BT=BT-180 
310 PRINT" {HOME} {2 DOWN} {RVS} ";TAB( 15); NW 
320 POKE FNS(l),32:FORJ=l TO NB:POKEBP(J),32:NEXT 
325 FORJ=l TO 25:POKE BC(J),32:NEXT 
330 BN=INT(NB):FORJ=l TO NB:BS(J)=l:NEXT 
340 FORJ=l TO NB 
350 BT(J)=(.4+INT(6l*RND(l))/100)*BT 
360 B3(J)=BT(J)+.5*BT(J):B4(J)=B3(J)+.25*BT(J) 
370 NEXT 

114 



Arcade-Style Games 5 
380 PX=l9:PY=l5:POKE FNS(l),90:POKEFNS(l)+D,l 
390 FORJ=l TO NB 
400 BP(J)=FNP(l):IF PEEK(BP(J))<>32 THEN 400 
410 POKE BP(J),87:POKEBP(J)+D,8:NEXT:NN=0 
415 FORJ=l TO 25 
416 BC(J)=FNP(l):IF PEEK(BC(J))<>32 THEN 416 
417 IF PEEK(BC(J)+l)=87 THEN 416 
419 POKEBC(J),86:POKEBC(J)+D,5:NEXT 
420 GET R$:IF R$<>"" THEN 420 
430 DR=0:TX=TI 
440 REM ---GET COMMANDS---
450 R=(l5-(PEEK(5632l)AND15))*2 
460 IFR<>0THENDR=LOG(R)/LOG(2){41 SPACES} 
470 IFR=0THEN490 
480 REM ---MOVE TRUCK---
490 IF DR=0 THEN 600 
500 POKE FNS(l),32:PX=PX+XM(DR):PY=PY+YM(DR) 
510 IF PX<0 THEN PX=39 
520 IF PX>39 THEN PX=0 
530 IF PY<4 THEN PY=24 
540 IF PY>24 THEN PY=4 
550 X=FNN(l) 
560 IF X=32 THEN POKE FNS(l),90:POKEFNS(l)+D,l:GOT 

0 600 
570 IF X=42 OR X=86 THEN 960 
580 GOTO 890 
590 REM ---UPDATE BOMBS---
600 NN=NN+l:IF NN>INT(NB)THEN NN=l 
610 IF BS(NN)=0 THEN 600 
620 TG=TI-TX 
630 IF TG>B4(NN) THEN Nl=NN:GOTO 720 
640 IF BS(NN)>2 THEN 690 
650 IF TG>BT(NN) THEN BS(NN)=2 
660 IF TG>B3(NN) THEN BS(NN)=3 
670 IF BS(NN)=l THEN 450 
680 IF BS(NN)=2 THEN POKE BP(NN),215:POKEBP(NN)+D, 

!:GOTO 450 
690 IF BS(NN)=3 THEN POKE BP(NN),87:POKEBP(NN)+D,l 

:BS(NN)=4:GOTO 450 
700 IF BS(NN)=4 THEN POKE BP(NN),215:POKEBP(NN)+D, 

l:BS(NN)=3:GOTO 450 
710 REM ---BOMB EXPLODES---
720 TQ=TI:PD=0 
725 X$="{OFF}"+LEFT$(S$,FNY(BP(Nl))-2)+LEFT$(Q$,FN 

X(BP(Nl))-1) 
730 BS(Nl)=0:N2=0:PRINTX$;XP$; 
740 FORJ=l TO NB:X=PEEK(BP(J)):IF BS(J)=0 THEN 760 
750 IF X<>87 AND X<>215 AND X<>218 THEN N2=J 
760 NEXT:IF FNN(l)<>90 AND FNN(l)<>218 THEN PD=l 

115 



5 Arcade-Style Games 

770 PRINTX$;XR$;:GR=l29{4 SPACES}:GOSUB2000 
780 FORJ=lTONB:IF PEEK(BP(J))=32 AND BS(J)<>0 THEN 

POKE BP(J),87-128*(BS(J)>l) 
790 NEXT:BN=BN-1 
800 IF PD=l THEN 960 
810 IF BN=0 THEN 840 
820 IF N2=0 THEN TX=TX+(TI-TQ):GOTO 450 
830 Nl=N2:GOTO 725 
840 PRINT"{HOME}{2 DOWN}{RVS}";TAB(20); 
850 FORJ=l TO 20:PRINT"{RVS}COMPLETED{9 LEFT}";:FO 

RK=l TO 100:NEXT 
860 PRINT" { RVS} { 9 SPACES} { 9 LEFT}"; : FORK=l TO 100: 

NEXT:NEXT 
870 SC=SC-10*(INT(NB)-BG):IF SC<0 THEN SC=0 
880 PRINT"{4 LEFT}{3 UP}{l0 SPACES}{l0 LEFT}";SC:G 

OTO 280 
885 REM ---BOMB GATHERED---
890 BG=BG+l:TQ=TI:POKE FNS(l),218 
895 FORJ=l TO NB:IF PEEK(BP(J))=218 THEN AJ=BS(J): 

BS(J)=0 
900 NEXT 
910 IF AJ=4 THEN AJ=3 
920 SC=SC+10*AJ: PRINT" {HOME} { RVS} ";TAB ( 16) i SC 
930 GR=33:GOSUB2000:BN=BN-l:IF BN=0 THEN 840 
940 TX=TX+(TI-TQ):GOTO 450 
950 REM ---PLAYER DESTROYED---
960 GR=l29:GOSUB2000 
961 TQ=TI:FORJ=l TO 20:POKE FNS(l),42:FORK=l TO 25 

:NEXT:POKE FNS(l),170 
970 FORK=l TO 25:NEXT:NEXT:POKE FNS(l),32:NL=NL-l 

{19 SPACES} 
980 POKE ll53+NL,160:DR=0:PX=l9:PY=l5 
990 IF NL=0 THEN 1045 
1000 IF BN=0 THEN 840 
1010 GET R$:IF R$<>"" THEN 1010 
1020 FORJ=lTONB:IF PEEK(BP(J))=32 AND BS(J)<>0 THE 

N POKE BP(J),87-128*(BS(J)>l) 
1030 NEXT 
1040 POKE FNS(l),90:TX=TX+(TI-TQ):GOTO 450 
1045 IF SC> HS THEN HS=SC: PRINT" {HOME} {DOWN} { RVS} "i 

TAB(l9) ;HS 
1050 FORJ=l TO 1500:NEXT:PRINT"{HOME}{WHT}{2 DOWN} 

{RVS}";TAB(20);"GAME OVER{DOWN}{WHT}{9 LEFT}P 
LAY AGAIN?"; 

1060 PRINT"(Y/N){4 LEFT}"; 
1080 PRINT" { RVS }Y/ {OFF }N{ 3 LEFT}"; 
1081 FORJ=l TO 99:NEXT 
1082 PRINT"{OFF}Y{RVS}/N{3 LEFT}"; 
1083 FORJ=l TO 99:NEXT 

116 



Arcade-Style Games 5 
1084 GET R$: IF R$= "Y" THEN 1110 
1090 IF R$<>"N" THEN 1080 
1100 PRINT" {CLR}{WHT }LATER ON!" :END 
1110 GOSUB 1130:GOTO 150 
1120 REM ---INSTRUCTIONS---
1130 PRINT" { CLR} { RVS} { WHT} M {SHIFT-SPACE} I 

{SHIFT-SPACE}N{SHIFT-SPACE}E{SHIFT-SPACE}F 
{SHIFT-SPACE}I{SHIFT-SPACE}E{SHIFT-SPACE}L 
{SHIFT-SPACE}D":POKE 53272,23 -

1140 PRINT" {WHT}DO-YOU NEED INSTRUCTIONS er/~) II 

1150 GET R$:IF R$="N" THEN 1410 
1160 IF R$<>"Y" THEN 1150 
1180 PRINT"{CLR} {WHT} (DOWN}THE OBJECT OF THIS GAME 

IS TO PICK UP" -
1190 PRINT" { WHT} AS MANY BOMBS AS YOU CAN BEFORE TH 

EY" 
1200 PRINT"{WHT}EXPLODE. TO PICK UP A BOMB, JUST R 

UN" 
1210 PRINT"{WHT}OVER IT WITH YOUR TRUCK." 
1220 PRINT"{WHT}~OMBS WILL EXPLODE AFTER A SHORT T 

IME." 
1230 PRINT"{WHT}IF A BOMB TURNS REVERSE-FIELD, BE 

{SPACE}CARE=" 
1240 PRINT"{WHT}FUL WITH IT . .!_F IT STARTS TO BLINK 

I IT" 
1250 PRINT"{WHT}WILL VERY SHORTLY EXPLODE-WATCH OU 

TI!" 
1260 PRINT"(WHT}BOMBS WILL CHAIN-REACT; ONE BOMB C 

AUGHT" -
1270 PRINT"{WHT}IN ANOTHER'S EXPLOSION WILL ALSO B 

LOW" 
1280 PRINT"{WHT}UP. IF YOU ARE CAUGHT IN A BOMB'S 

{SPACE}" -
1290 PRINT"{WHT}EXPLOSION, YOU WILL BE BLOWN UP." 
1300 PRINT"{WHT}ALSO, DO NOT RUN INTO BOMB CRATERS 

(*)II -
1310 PRINT" {WHT}OR MINES (~) OR YOU'LL BE TOTALLED . 
1320 PRINT"{WHT}THE CONTOLS ARE: 1 TO GO UP" 
1330 PRINT"(WHT}Tl7 SPACES}CTRL TO GO LEFT" 
1340 PRINT" { WHT }{ l 7 SPACES} 2 TO GO RIGHT" 
1350 PRINT"{WHT}{l7 SPACES}~ TO GO DOWN" 
1355 PRINT"{WHT}OR YOU CAN USE A JOYSTICK IN PORT 

{SPACE}!. II 
1360 PRINT"{WHTJrouR TRUCK CANNOT STOP ONCE YOU BE 

GIN" 
1370 PRINT"{WHT}MOVING. IT CAN WRAP-AROUND BOTH TH 

E" 
1380 PRINT"{WHT]THE TOP AND SIDES OF THE SCREEN." 

117 



5 Arcade-Style Games 

1390 PRINT"{DOWN}{WHT}~{WHT}RESS RETURN TO CONTINU 
E"; 

1400 GET R$:IF R$<>CHR$(13) THEN 1400 
1410 PRINT"{CLR}S{WHT}ELECT SKILL SETTING (0-3)" 
1420 GET R$:IF R$<"0" OR R$>"3" THEN 1420 
1430 NL=4-VAL(R$):RETURN 
1900 END 
2000 REM SOUND OF EXPLOSION 
2010 QW=54272 
2020 FORS=QWTOQW+24:POKES,0:NEXT 
2025 POKEQW+24,47 
2030 POKEQW+S,64+7 :POKEQW+6,240 
2050 POKEQW+4,GR :POKEQW+l,36:POKEQW,85 
2060 FORT=lT0250:NEXT 
2070 FORT=l5T00STEP-l :POKEQW+24,INT(T):NEXT 
2080 RETURN 

118 



5 
CylonZap 
Mark Dudley 64 Translation by Gregg Peele 

Quick reflexes are what you'll need for this fast-action game. 

"Cylon Zap" is an arcade-style game. A space station in the center 
of the screen, which you must defend at all costs, is attacked 
continually by Cylon ships. You must shoot them before they dive 
(kamikaze style) into the space station. 

To defend against the Cylons, you have two weapons. First, 
the joystick is moved up, down, right, or left to fire lasers in any 
of these four directions . Second, the fire button detonates a smart 
bomb, which immediately clears the screen of all visible attackers. 
Smart bombs should be used sparingly, for only three are avail­
able at the beginning of play. 

The score and the number of remaining bombs are contin­
ually updated at the upper-left comer of the screen. When the 
score reaches 30, the flank attackers begin to increase speed. 
When your score reaches 50, the attackers from the top and 
bottom increase their speed. If your score exceeds 60, you win 
bonus smart bombs. 

If your point total is a high score since the program was first 
loaded, you enter your initials with the joystick. Moving the stick 
right or left lets you step through the alphabet forward or back­
ward. When you find the correct letter, select it with the fire 
button. Be sure not to hold the fire button down too long when 
selecting your initials, or you may inadvertently choose the wrong 
letters. 

Cylon Zap 
100 POKE52,48:POKE56,48:CLR 
125 DATA28,149,100,25,30,100,33,135,100,37,162,50, 

50,60,50 
130 DATA42,62,100,37,162,50,50,60,50,42,62,100,33, 

135,100 
140 DATA28,49,100,25,30,100 
145 FORX=lT036:READRT:NEXT 
150 PRINT"(CLR}":POKE53281,0:POKE53280,0:PRINTCHR$ 

(14) 

119 



5 Arcade-Style Games 

160 GOSUB590 
1 70 PRINT" { 3 DOWN}{ 11 SPACES }{RVS}LOADING 

{SHIFT-SPACE}CHARACTERS" 
180 POKE56334,(PEEK(56334)AND254):POKE1,PEEK(l)AND 

251 
190 FORA=0T02047:POKE(A+l2288),PEEK(A+53248):NEXT 
200 FORA=l2552T012672 
210 READO 
220 IFD<>-lTHENPOKEA,D:NEXT 
230 FORA=l2288T014335:READD:IFD<>-1THENPOKEA,PEEK( 

A): NEXT 
240 FORA=l2504T012527:READD:POKEA,D:NEXT 
250 POKEl,55 
260 POKE56334,PEEK(56334)0Rl 
270 GOSUB750:PRINT"{UP}{l0 SPACES}INSTRUCTIONS 

{OFF} {RVS}Y{OFF} OR {RVS}N{OFF} " 
280 GETA$:IFA$=11"THENPOKE56079-;INT(RND(l)*7+l):POK 

E56084,INT(RND(l)*7+l):GOT0280 
290 IFA$="Y"THENPOKE53272,(PEEK(53272)AND240)+12:G 

OSUB380 
300 GOT01000 
310 DATA24,24,60,126,24,24,126,255,l,19,51,255,255 

,51,19,1,128 
315 DATA200,204,255,255,204,200 
320 DATA128,255,126,24,24,126,60,24,24,24,24,60,24 

,60,126,219,195 
325 DATA3,7,44,254,254,44,7,3 
330 DATA192,224,52,127,127,52,224,192,195,219,126, 

60,24,60 
335 DATA24,24,16,8,16,8,16,8,16,8 
340 DATA145,74,44,113,142,52,82,137,0,0,0,170,85,0 

,0,0,-1 
350 DATA0,0,0,119,68,116,20,119,0,0,0,119,85,87,86 

,117,0,0,0,112,64,96,64,112 
360 DATA0,0,0,206,170,206,170,202,0,0,0,238,136,23 

6,40,238,0,0,0 
365 DATA224,128,224,32,224,-l 
370 DATA0,0,0,206,170,202,170,206,0,0,0,139,218,17 

1,138,139,0,0,0 
375 DATA56,160,56,136,56 
380 PRINT"{CLR}[RED}WELCOME TO CYLON ZAP" 
390 PRINT"YOU HAVE A BASE NAMED ALPHA"{10 SPACES}: 

PRINT 
400 PRINT"{CYN}YOUR MISSION IS T0{2 SPACES}PROTECT 

THE":PRINT"NUCLEAR REACTOR" 
410 PRINT" { PUR} FROM THE KAMIKAZE STAR ":PRINT" FIG 

HTERS" 
420 PRINT"{DOWN}{GRN}YOU HAVE 4 LASERS{2 SPACES}CO 

NTROLLED BY THE{4 SPACES}JOYSTICK" 

120 



Arcade-Style Games 5 
430 PRINT"{BLU}YOU ALSO HAVE SMART BOMBS LAUNCHED 

{SPACE}BY THE FIRE BUTTON" 
440 PRINT"{DOWN}{YEL}ALL YOU DO IS POINT THE GUN A 

ND THE{6 SPACES}LASER FIRES AUTOMATICALLY" 
450 GOSUB500 
460 PRINT"{CLR}{PUR}{DOWN}THE FIGHTERS WILL FLY FA 

STER THE MORE{3 SPACES}OF THEM YOU DESTROY " 
470 PRINT"{DOWN}{YEL}BONUS BASE AND BOMB AT 60 POI 

NTS" 
480 PRINT" { BLU} {DOWN} { 9 SPACES} { RVS} GOOD LUCK" : GOS 

UB500:RETURN 
490 GOT065535 
500 A$="{RVS}" 
510 FORL=l T01000 
520 PRINT" {HOME}" 
530 PRINTTAB(2)A$;"{CYN}{20 DOWN}HIT RETURN TO CON 

T" 
540 GETR$:IFR$=CHR$(13)THENRETURN 
550 FORI=lT0333:NEXT 
560 IFA$="{RVS}"THENA$="{OFF}":GOT0580 
5 70 IFA$= 11 {OFF} "THENA$=" { RVS} ": GOT0580 
580 NEXTL 

590 A$="{RED}*** *[3 SPACES}* *{4 SPACES}*** 
{2 SPACES}*{2 SPACES}*":X=LEN(A$):Z$="{DOWN}": 
GOSUB710 

600 A$="*{4 SPACES}* *{2 SPACES}*{4 SPACES}* * 
{2 SPACES}** *":X=LEN(A$):Z$="{2 DOWN}":GOSUB7 
10 

610 A$="*{5 SPACES}*(3 SPACES}*(4 SPACES}* * 
(2 SPACES}* **":X=LEN(A$):Z$="(3 DOWN}":GOSUB7 
10 

611 A$="*{5 SPACES}*(3 SPACES}*(4 SPACES}* * 
{2 SPACES}* **":X=LEN(A$):Z$="(4 DOWN}":GOSUB7 
10 

620 A$="***(3 SPACES}*(3 SPACES}***{2 SPACES}*** 
(2 SPACES}*(2 SPACES}* ":X=LEN(A$):Z$=" 
{5 DOWN}":GOSUB710 

630 A$="{YEL}(2 SPACES}***(2 SPACES}***{2 SPACES}* 
**{2 SPACES}* *(2 SPACES}":X=LEN(A$):Z$=" 
( 8 DOWN}": GOSUB710 

640 A$="{4 SPACES}*(2 SPACES}* *{2 SPACES}* * 
(2 SPACES}* *{3 SPACES}":X=LEN(A$):Z$=" 
(9 DOWN}" :GOSUB710 

650 A$= 11 (3 SPACES}*(3 SPACES}***{2 SPACES}*** 
(2 SPACES}* *(3 SPACES} 11 :X=LEN(A$):Z$=" 
{10 DOWN} II :GOSUB710 

660 A$= 11 {2 SPACES}*(4 SPACES}* *{2 SPACES}* 
{10 SPACES}":X=LEN(A$):Z$="(11 DOWN}":GOSUB710 

121 



5 Arcade-Style Games 

670 A$="{2 SPACES}***{2 SPACES}* *{2 SPACES}* 
(4 SPACES}* *{2 SPACES}":X=LEN(A$):Z$=" 
{12 DOWN}":GOSUB710 

680 PRINT:PRINT 
700 GOT0170 
710 S=54272 
711 POKE54296,l5 :POKE54277,l8:POKE54278,240 
712 POKE 54276,33 
720 FORI•lTOLEN(A$):POKE54273,I+40 
721 PRINT"[HOME}{DOWN}{8 RIGHT}"Z$;SPC(X)LEFT$(A$, 

I):POKE54272,(I*2)+180 
730 X=X-l:NEXT:FORG=l5T00STEP-l:POKE54296,G:NEXT:P 

OKES+4,16 
735 FORE=STOS+28:POKEE,0:NEXT:RETURN 
750 FORA=49152T049453 
760 READO 
770 POKEA, D 
780 NEXT 
790 RETURN 
800 DATA169,12,14l,33,208,l69,l47,32,210,255,l62,8 

,160,16,32,240,255,l69,l8,32 
810 DATA210,255,l69 
820 DATA169,32,210,255,l69,l27,32,210,255,l69,l46, 

32,210,255,169,32,32,210 
825 DATA 255,169,18,32 
830 DATA210,255,l69,l69,32,210,255,l69,l27,32,210, 

255,24,162,9,160,15,32 
835 DATA 240,255,169,169 
840 DATA32,210,255,l69,l60,l62,5,32,210,255,202,22 

4,0,208,248,169,127 
845 DATA 32,210,255,24 
850 DATA162,l0,l60,15,32,240,255,l69,l46,32,210,25 

5,169,127,32,210,255 
855 DATA 169,18,32,210,255 
860 DATA169,l60,l62,5,32,210,255,202,224,0,208,248 

,169,146,32,210,255 
865 DATA 169,169,32,210,255 
870 DATA24,162,ll,l60,l5,32,240,255,l69,32,32,210, 

255,169,18,32,210 
875 DATA255,l69,160,l62,5,32 
880 DATA210,255,202,224,0,208,248,l69,l46,32,210,2 

55,169,32,32,210,255,24 
885 DATA 24,162,11,160,7 
890 DATA32,240,255,l69,l8,32,210,255,24,162,l2,160 

,15,32,240,255,169,l69 
895 DATA 32,210,255,169 
900 DATA160,l62,5,32,210,255,202,224,0,208,248,169 

,127,32,210,255,24 
905 DATA l62,i3,l60,l5,32,240 

122 



Arcade-Style Games 5 
910 DATA255,169,146,32,210,255,169,127,32,210,255, 

169,18,32,210,255 
915 DATA 169,160,162,5,32,210 
920 DATA255,202,224,0,208,248,169,l46,32,210,255,l 

69,169,32,210,255,24 
925 DATA 169,146,32,210 
930 DATA255,24,162,14,160,16,32,240,255,l69,l27,32 

,210,255,169,169,32 
935 DATA 210,255,169,32,32 
940 DATA210,255,169,127,32,210,255,l69,l69,32,210, 

255,24,96 
1000 RESTORE:CLR 
1060 DEFFNA(A)=INT(RND(l)*X+A):TT=l482 
1070 POKE53272,(PEEK(53272)AND240)+12 
1080 Nl=l042:N2=1922:N3=1464:N4=1502:Vl=36876 
1090 CS=5328l:C=54272:Wl=30:W2=20:W3=10:W4=5:W5=1 
1100 Al$="D .. ":A2$="U .. ":A3$="D .. ":A4$="C .. ":A5$=" 

o .. " 
1110 POKECS,l:PRINT"{CLR}":GOT02190 
1120 BASE=3:Sl=l:S2=l:S3=l:S4=l:BOM=3:SC=0 
1130 POKECS,12:X=l5:Y=l:I=40 
1140 PRINT"{CLR}{WHT}":POKECS,8 
1150 GOSUB1450 
1160 PRINT" {HOME} {WHT} SCORE"SC: PRINT" {HOME} {DOWN} B 

ASES"BA:PRINT"{WHT}BOMBS"BO 
1170 J0=15-(PEEK(5632l)AND15) 
1180 G=42:FB=(PEEK(5632l)AND16) 
1190 POKETT, 102 
1200 POKETT+C,INT(RND(l)*7+1) 
1210 IFJ0=1 THEN1510 
1220 IFJ0=2 THEN1570 
1230 IFJ0=4 THEN1630 
1240 IFJ0=8 THEN1690 
1250 IFFB=0ANDBOM>0THEN2590 
1260 Al=FNA(l) 
1270 A2=FNA(2) 
1280 A3=FNA(3) 
1290 A4=FNA(4) 
1300 IFA1=1ANDS1<>0THENS1=0: GOSUB2680 
1310 IFA2=2ANDS2<>0THENS2=0: GOSUB2680 
1320 IFA3=3ANDS3<>0THENS3=0: GOSUB2680 
1330 IFA4=4ANDS4<>0THENS4=0: GOSUB2680 
1340 IFS1=0ANDPEEK(Nl+40)<>102THENNl=Nl+I:POKENl+C 

,4:POKEN1,40:POKEN1-I,32 
1350 IFPEEK(Nl+40)=102THENGOSUB2050 
1360 IFS2=0ANDPEEK(N2-40)<>102THENN2=N2-I:POKEN2+C 

,3:POKEN2,37:POKEN2+I,32 
1370 IFPEEK(N2-40)=102THENGOSUB2050 
1380 IFS3=0ANDPEEK(N3+1)<>102THENN3=N3+Y:POKEN3+C, 

5:POKEN3,39:POKEN3-Y,32 

123 



5 Arcade-Style Games 

1390 IFPEEK(N3+1)=102THENGOSUB2050 
1400 IFS4=0ANDPEEK(N4-1)<>102THENN4=N4-Y:POKEN4+C, 

6:POKEN4,38:POKEN4+Y,32 
1410 IFPEEK(N4-1)=102THENGOSUB2050 
1420 IFBASE=0THENGOT02130 
1430 IFSC>50THENX=4 
1440 GOT01160 
1450 PRINT"{RED}":SYS49152:POKECS,ll 
1460 POKE1362+C,l:POKE1362,33:POKE1602+C,l:POKE160 

2,36:POKE1479+C,l:POKE1479,34 
1470 POKE1485+C,l:POKE1485,35 
1480 POKETT-l,102:POKETT+l,102:POKETT-40,102:POKET 

T+40,102 
1490 POKETT-l+C,l:POKETT+l+C,l:POKETT-40+C,l:POKET 

T+40+C,l 
1500 RETURN 
1510 POKE54296,15:POKE54273,33:POKE54272,133:POKE5 

4277,50:POKE54278,120 
1520 POKE54276,129 
1530 FORF=l362T01042STEP-40 
1540 IFPEEK(F-40)<>40THENPOKEF+C,l:POKEF,4l:FORT=l 

T05:NEXT:POKEF,32:NEXT 
1550 IFPEEK(F-40)=40THENPOKENl+C,2:POKENl,42:GOSUB 

1830:POKEN1,32:Nl=l042:Sl=l 
1560 POKE54296,0:POKE1362,33:GOT01260 
1570 POKE54296,15:POKE54273,33:POKE54272,133:POKE5 

4277,50:POKE54278,120 
1,80 POKE54276,129 
1590 FORF=l602T01944STEP40 
1600 IFPEEK(F+40)<>37THENPOKEF+C,l:POKEF,4l:FORT=l 

TOS:NEXT:POKEF,32:NEXT 
1610 IFPEEK(F+40)=37THENPOKE2+C,2:POKEN2,42:GOSUB1 

830:POKEN2,32:N2=1922:S2=1-40 
1620 POKE54296,0:POKE1602,36:GOT01260 
1630 POKE54296,15:POKE54273,33:POKE54272,133:POKE5 

4277,50:POKE54278,120 
1640 POKE54276,129 
1650 FORF=l479T01464STEP-l 
1660 IFPEEK(F-1)<>39THENPOKEF+C,l:POKEF,43:FORT=lT 

05:NEXT:POKEF,32:NEXT 
1670 IFPEEK(F-1)=39THENPOKEN3+C,2:POKEN3,42:GOSUB1 

830:POKEN3,32:N3=1464:S3=1 
1680 POKE54296,0:POKE1479,34:GOT01260 
1690 POKE54296,15:POKE54273,33:POKE54272,133:POKE5 

4277,50:POKE54278,120 
1700 POKE54276,129 
1710 FORF=l485T01502 
1720 IFPEEK(F+l)<>38THENPOKEF+C,l:POKEF,43:FORT=lT 

OS:NEXT:POKEF,32:NEXT 

124 



Arcade-Style Games 5 
1730 IFPEEK(F+l)=38THENPOKEN4+C,2:POKEN4,42:GOSUB1 

830:POKEN4,32:N4=1502:S4=1 
1740 POKE54296,0:POKE1485,35:GOT01260 
1745 FORS0=54272T054272+28:POKES0,0:NEXT 
1750 POKE54296,15:POKE54277,53:POKE54278,69:POKE54 

276,33 
1770 RESTORE:FORGB=lT012:READHA,LA,DU:POKE54273,HA 

:POKE54272;LA 
1780 FORT=lTODU:NEXTT 

1790 NEXTGB:FORS0=54272T054272+28:POKES0,0:NEXT 
1800 RETURN 
1810 DATA217,200,213,200,223,200,227,100,234,100,2 

30,200 
1820 DATA227,100,234,100,230,200,223,200,227,200,2 

17,200,213,300,-1 
1830 POKE54296,15:POKE54277,53:POKE54278,67:POKE54 

276,129 
1840 POKE54272,200:POKE54273,33 

1850 FORL=l5T00STEP-l 
1860 POKE54296,L 
1870 NEXT:POKE54276,0 
1880 SC=SC+l 
1890 IFSC=30THENX=INT(X/2):Y=2 
1900 IFSC=50THENX=4:I=80:BOM=BOM+l 
1910 IFSC=600RSC=ll00RSC=l50THENGOT01930 
1920 RETURN 
1930 PRINT" { CLR} { 10 DOWN} { 10 SPACES} BONUS"; 
1940 PRINT" BASE - BOMB":L=0 
1950 POKE54296,15:POKE54277,50:POKE54278,167:POKE5 

4276,17 
1960 FORT=lT010 

1970 POKE54272,230:POKE54273,33 
1980 NEXT 
1990 FORT=lT010 
2000 POKE54272,180:POKE54273,28 
2010 NEXT 
2020 IFL<6THENL=L+l:GOT01950 
2030 FORD=54272T054272+28:POKED,0:NEXT 
2040 BOM=BOM+l:BA=BA+l:SC=SC+5:PRINT"{CLR}":GOSUB1 

450:GOT01890 
2050 POKE54296,14:Ql=l482:Q2=1484:Q3=1522:Q4=1524: 

K=0:Q5=Ql-4l:Q6=Q3+4l:Q7=Ql+39 
2060 Q8=1526:POKE54277,44:POKE54278,56:POKE54276,l 

29 
2070 POKE54272,200:POKE54273,34:KK=8 
2080 FORZ=l5T00STEP-2 
2090 POKE54296,Z:GOSUB2260:NEXT:POKECS,8:POKE54276 

I 0 

125 



5 Arcade-Style Games 

2100 Nl=l042:Sl=l:N2=1922:S2=l:N3=1464:S3=l:N4=150 
2:S4=l:PRINT"{CLR}" 

2110 BASE=BASE-l:IFBASE<>0THENGOSUB1450 
2120 RETURN 
2130 PRINT"{CLR}" 
2140 IFSC=>WlTHENA5$=A4$:A4$=A3$:A3$=A2$ 
2150 IFSC=>WlTHENA2$=Al$:W5=W4:W4=W3:W3=W2:W2=Wl:W 

l=SC:GOT02730 
2154 REM LINE 2155 MUST BE ENTERED USING KEYWORD A 

BBREVIATIONS 
2155 IFSC>=W2ANDSC<WlTHENA5$=A4$:A4$=A3$:A3$=A2$:W 

5=W4:W4=W3:W3=W2:W2=SC:GOT02740 
2160 IFSC=>W3ANDSC<W2THENA5$=A4$:A4$=A3$:W5=W4:W4= 

W3:W3=SC:GOT02750 
2170 IFSC=>W4ANDSC<W3THENA5$=A4$:W5=W4:W4=SC:GOT02 

760 
2180 IFSC=>W5ANDSC<W4THENW5=SC:GOT02770 
2190 GOSUB2510:PRINT"{HOME}{BLK}{21 DOWN} 

{12 SPACES}TO PLAY HIT {RVS}{BLK}Y" 
2200 GETZ$:IFZ$=""THENFORCC=55312T055315:POKECC,IN 

T(RND(l)*7+l):NEXT 
2210 POKE56165,INT(RND(l)*7+1) 
2220 IFZ$=""THEN2200 
2230 IFZ$="Y"THEN1120 
2240 IFZ$="N"THENPRINT"(CLR}{BLU}":POKECS,27:END 
2250 GOT02190 
2260 K=K+l:M=4l:N=40:0=39:R=INT(RND(l}*7+1) 
2270 IFK>3ANDK<ll0THENPOKECS,KK:KK=KK+31 
2280 POKEQ1,G:POKEQ2,G:POKEQ3,G:POKEQ4,G:POKEQ5,G: 

POKEQ6,G:POKEQ7,G:POKEQ8,G 
2290 POKEQl+C,R:POKEQ2+C,INT(RND(l}*7+l):POKEQ3+C, 

R:POKEQ4+C,INT(RND(l)*7+1) 
2300 POKEQ5+C,R:POKEQ6+C,INT(RND(l)*7+l):POKEQ7+C, 

R:POKEQ8+C,INT(RND(l}*7+1) 
2310 FORT=lT010:NEXT 
2320 IFK>3THENG=46:PRINT"{CLR}" 
2330 IFK<8THENQl=Ql-O:Q2=Q2-M:Q3=Q3+0:Q4=Q4+M:Q5=Q 

5-N:Q6=Q6+N:Q7=Q7-l:Q8=Q8+1 
2340 RETURN 
2350 PRINT" {CLR} II :RETURN 
2360 PRINT"{3 DOWN}":CH=ll60:E=l 
2370 J0=15-(PEEK(5632l)AND15) 
2380 FB=PEEK(5632l)AND16 
2390 IFJ0=8THENE=E+l 
2400 IFJ0=4THENE=E-l 
2410 IFE=0THENE=26 
2420 IFE=27THENE=l 
2430 POKECH,E:POKECH+C,7 
2440 FORT=lT0100:NEXT 

126 



Arcade-Style Games 5 
2450 POKECH+C,l 
2460 IFFB=0 ANDCH=ll60THENN1$=CHR$(E+64):CH=CH+l:E 

=l:GOT02370 
2470 IFFB=0ANDCH=ll61THENN2$=CHR$(E+64):CH=CH+l:E= 

l:GOT02370 
2480 IFFB=0 ANDCH=ll62THENN3$=CHR$(E+64):CH=CH+l:E 

=32:GOT02370 
2490 IFCH=ll63THENN5$=Nl$+N2$+N3$:RETURN 
2500 GOT02370 
2510 POKE53281,l 
2515 REM THE NEXT LINE MUST BE ENTERED USING KEYWO 

RD ABBREVIATIONS 
2520 PRINT"{CLR}{2 SPACES}{BLK}{9 SPACES}CYLON ZAP 

HEROS":PRINT:PRINT"{RED}{l2 SPACES}BEST 5 SC 
ORES{OFF}" 

2530 PRINT" {HOME} {DOWN} { BLK} { 4 DOWN} { 14 SPACES} "Al 
$" •.• "Wl 

2540 PRINT"{BLU}{2 DOWN}{l4 SPACES}"A2$" ... "W2 
2550 PRINT"{GRN}{2 DOWN}{l4 SPACES}"A3$" ... "W3 
2560 PRINT"{PUR}{2 DOWN}{l4 SPACES}"A4$" ... "W4 
2570 PRINT"{RED}{2 DOWN}{l4 SPACES}"A5$" ... "W5 
2580 RETURN 
2590 POKE54296,15:POKE54277,43:POKE54278,73:POKE54 

276,129 
2600 FORCO=l27T08STEP-17 
2610 POKECS,CO 
2620 FORT=lT0100:NEXT:NEXTCO:POKECS,ll 
2630 IFS1=0THENSC=SC+l:GOSUB1890:POKEN1,32:Nl=l042 

:Sl=l 

2640 IFS2=0THENSC=SC+l:GOSUB1890:POKEN2,32:N2=1922 
:S2=1 

2650 IFS3=0THENSC=SC+l:GOSUB1890:POKEN3,32:N3=1464 
:S3=1 

2660 IFS4=0THENSC=SC+l:GOSUB1890:POKEN4,32:N4=1502 
:S4=1 

2670 FORS0=54272T054272+28:POKES0,0:NEXT:BOM=BOM-l 
:GOT01260 

2680 S=54272:FORE=STOS+28:POKEE,0:NEXT 
2690 POKE54296, 15 :POKE54277, 51 :POKE54278, 84 
2700 POKE 54276, 17 :FORJ=lT040STEP4:POKE 54273,J: 

POKE54272,255-J-25:NEXT 
2710 FORT=lTO 100 :NEXT:POKE54276, 32:FORT=lTO 50: 

NEXT 
2720 FORE=STOS+28:POKEE,0:NEXT:RETURN 
2730 PRINT"{HOME}NUMBER l ENTER YOUR INITIALS":GOS 

UB1745:GOSUB2360:Al$=N5$:GOT02190 
2740 PRINT"{HOME}NUMBER 2 ENTER YOUR INITIALS":GOS 

UB1745:GOSUB2360:A2$=N5$:GOT02190 

127 



5 Arcade-Style Games 

2750 PRINT"{HOME}NUMBER 3 ENTER YOUR INITIALS":GOS 
UB1745:GOSUB2360:A3$=N5$:GOT02190 

2760 PRINT"{HOME}NUMBER 4 ENTER YOUR INITIALS":GOS 
UB1745:GOSUB2360:A4$=N5$:GOT02190 

2770 PRINT"{HOME}NUMBER 5 ENTER YOUR INITIALS":GOS 
UB1745:GOSUB2360:A5$=N5$:GOT02190 

128 



5 
Laser Gunner 
Gary R. Lecompte 64 Translation by Philip I. Nelson 

This arcade-style game achieves an impressive graphics animation 
without the use of any machine language. 

"Laser Gunner" is an arcade-type action game. The player 
controls a laser gun which moves up and down on the left of the 
screen behind a force field and fires at invading enemy space­
ships. The invaders also fire lasers and attempt to open holes in 
the force field. Every hit weakens the force field until an entire 
hole is made. A hit through a hole ends the game. 

Laser Gunner is an example of animation accomplished 
without the use of machine language routines. The drawback of 
this type of programming is obvious. Only one string may be 
animated at a time with any speed. However, by working your 
game format around this limitation, you can still make action 
games fast and challenging. 

The animation of the laser gun and the position of laser fire, 
as well as the location of the invaders, are controlled by the loca­
tion routines. The row and column values are POKEd into 
memory locations 214 and 211. A PRINT statement following 
these routines will print that string beginning at the location 
determined by the row and column values. Changing the row 
and column values and printing the same string again accom­
plishes animation. 

The force field changes are made by PEE.King the location of 
the hit, determining the character at that location, and POKEing 
the value of the next character to that location. 

Invader explosions are done by coding cursor movements 
and printing characters from the invader string. 

Sound routines are intermixed with laser and explosion 
routines. This assures that animation and sound will blend. 

Invader ship location and laser fire are determined by 
randomizing routines. Skill level is provided by giving the player 
a minimum preset delay. Actual time before invader laser blasts is 
always unpredictable. 

129 



5 Arcade-Style Games 

Stars are created with simple POKE statements to predeter­
mined locations. 

All routines are placed in order of importance, with those 
used most at the beginning. This allows for the fastest program 
execution possible to increase animation speed. REM statements 
should be deleted for best effect. The key to speed is simplicity. 
The shorter the program statements, the greater the speed. 

Changing the Shapes 
It is possible to change the shape of the ships. Lines 85 and 86 
contain the statements which produce the shape. To make your 
own ships, you can use any graphic symbols from the front of the 
64 keyboard. Pick the characters you want, and substitute them 
for the shifted characters within the quotes for IN$, G1$ and G2$ 
in lines 85 and 86. Remember, you get the left-side graphic char­
acter by holding down the Commodore key rather than SHIFT. 

Laser Gunner 
5 POKE53280,0:POKE53281,0:GOSUB190:PRINT"{CLR}":GO 

TOSS 
10 POKEROW,X:POKECOL,Y:PRINT"{UP}";:RETURN 
11 POKEROW,A:POKECOL,B:PRINT"{UP}";:RETURN 
12 POKEROW,Z:POKECOL,B:PRINT"{UP}";:RETURN 
13 GOSUB10:PRINTG1$; 
14 GOT038 
16 TT=TT+l:R=l+INT(RND(l)*l0):IFTT>TDTHENIFR=l0GOT 

043 
18 IFPEEK(l97)=6THEN29 
19 IFPEEK(l97)=5THEN23 
20 IFPEEK(l97)=3THEN26 
21 GOT016 
23 X=X-l:IFX<lTHENX=l 
24 GOSUB10:PRINTG1$;:GOT016 
26 X=X+l:IFX>21THENX=21 
27 GOSUB10:PRINTG2$;:GOT016 
29 GOSUB180 
30 X=X+l:Y=3:GOSUB10:FORI=lT0185STEP5:PRINT"{PUR}> 

II; : NEXT:: GOSUB10 
31 FORI=lT037:PRINT" ";:NEXT:X=X-l:Y=0 
33 IFX+l=ATHEN60 
34 IFX+l=A+lTHEN60 
35 IFX+l=A+2THEN60 
36 GOT016 
38 A=l+INT(RND(l)*2l):IFA<3THENA=3 
39 IFA>l9THENA=l9 
41 GOSUBll:PRINTIN$:GOT016 



Arcade-Style Games 5 
43 GOSUB170:Z=A+l:B=B-l:GOSUB12:FORI=1T072STEP2:PR 

INT 11 {RED}~{2 LEFT} II; :NEXT 
45 PRINT 11 {RIGHT} {UP }N{ 2 DOWN} {LEFT} M11

: GOSUB12 :FORI 
=1T036:PRINT" {2 LEFT}"; :NEXT:PRINT"{RIGHT}{UP} 

{2 DOWN} {LEFT} II :B=B+l 
47 HT=SR+((Z-1)*40):RD=PEEK(HT) 
48 IFRD=l60THENRN=l:GOT057 
49 IFRD=231THENRN=2:GOT057 
50 IFRD=234THENRN=3:GOT057 
51 IFRD=246THENRN=4:GOT057 
52 IFRD=97THENRN=5:GOT057 
53 IFRD=l17THENRN=6:GOT057 
54 IFRD=116THENRN=7:GOT057 
55 IFRD=101THENRN=8:GOT057 
56 IFRD=32THENRN=8:GOT068 

57 FORI=1TORN:READFE:NEXT:POKEHT,FE:RESTORE:GOT016 
58 DATA 231,234,246,97,117,116,101,32 
60 GOSUBll: PRINT" {RED} { 2 LEFT}~ {UP} {YEL}+{ 2 DOWN} 

{3 LEFT} {DOWN} {2 LEFT} E*~ {DOWN} {RVS}£" 
61 FORI=lT020:NEXT:GOSUBll:PRINT 11 {2 LEFT} {UP} 

{ 2 DOWN} { 3 LEFT} {DOWN} { 2 LEFT } {DOWN} " 
62 GOSUB1l:PRINT 11 {2 UP}{LEFT}£{2 DOWN}{3 LEFT} 

{RED}M{YEL}f{2 DOWN}{3 LEFT}{YEL}~{DOWN}{LEFT} 
{DOWNT{LEFT}" 

63 FORI=lT020:NEXT:GOSUBll:PRINT"{2 UP}{LEFT} 
{2 DOWN}{3 LEFT}{2 SPACES}{2 DOWN}{3 LEFT} 
{DOWN} {LEFT} {DOWN} {LEFT} II :GOSUB160 

64 FORI=1T020:NEXT 
65 GOSUBll: PRINT" {LEFT} {DOWN} {LEFT} {DOWN} {LEFT} 

{DOWN}":GOSUB77 

67 SC=SC+l:TT=0:GOT038 
68 FORI=1T0500:NEXT 
70 PRINT"{CLR}{WHT}{3 DOWN}{l0 SPACES}YOU HIT";SC; 

11 INVADERS 11 :GOSUB170:GOSUB170:GOSUB160 
71 GOSUB160:GOSUB160:GOSUB160:PRINT"{3 DOWN} 

{14 SPACES}TRY AGAIN?{3 SPACES}" 
72 GOSUB170:GOSUB160:GETC$:IFC$= 1111 THEN72 
73 IFC$<> 11 Y"ANDC$<> 11 N11 THEN72 
74 IFC$= 11 N"THENPRINT 11 {CLR}":END 
75 SC=0:GOT0123 
76 REM------GENERATE STARS------------
77 SR=SR-2:P=46 
78 POKESR+15,P:POKESR+28,P:POKESR+127,P:POKESR+158 

,P:POKESR+l75,P:POKESR+226,P 
79 POKESR+330,P:POKESR+460,P:POKESR+474,P:POKESR+3 

90,P:POKESR+575,P 
80 POKESR+605,P:POKESR+628,P:POKESR+703,P:POKESR+7 

15,P:POKESR+730,P 

131 



5 Arcade-Style Games 

81 POKESR+806,P:POKESR+819,P:POKESR+837,P:POKESR+8 
68,P:POKESR+883,P 

82 POKESR+904,P:POKESR+928,P:POKESR+947,P:POKESR+9 
64,P:POKESR+992,P 

83 SR=SR+2:RETURN 
84 REM-------SET VARIABLES------------
85 ROW=214: COL=211 :X=5 :Y=.: IN$=" {YEL} { RVS} £{DOWN} 

{ LEFT} { RVS} -4 {OFF} {DOWN} {LEFT } g * ~ { WHT } " : B= 3 9 : 
Gl$=" {CYN} {RVS}V{OFF} {DOWN} {LEFT}+{DOWN} {LEFT} 
{RVS}V{OFF} {DOwN} {LEFT} II -

86 G2$="TCYN} {UP} {DOWN} {LEFT} {RVS}V{OFF} {DOWN} 
{LEFT}+{DOWN}{LEFT}{RVS}V{OFF}":SR=l026:M=2l:I= 
RND(-Tl) -

87 GOSUB77:GOT091 
88 REM--------LOCATION ROUTINE--------
69 POKEROW,M:POKECOL,Y:PRINT"{UP}";:RETURN 
90 REM-------TITLES TO 118-----------
91 M=M-l:GOSUB89:PRINTG1$; 
92 IFM>7THEN91 
93 FORI=lT0200:NEXT:GOSUB89 
94 PRINT"{DOWN}{2 RIGHT}";:FORI=lT0110STEP10:PRINT 

"{GRN}>"; :NEXT:PRINT"{RVS} LASER GUNNER {OFF}"; 
95 GOSUB180:FORI=lT0120STEP10:PRINT">";:NEXT 
96 GOSUB89: PRINT" {DOWN}{ 2 RIGHT}"; : FORI=l TOll: PRIN 

T" ";:NEXT:PRINT"{l4 RIGHT}"; 
97 FORI=lT012:PRINT" ";:NEXT:GOSUB160 
98 GOSUB89:M=M+l:PRINT"{DOWN}"G2$; 
99 IFM<l2THEN98 
100 GOSUB89:PRINT"{DOWN}{2 RIGHT}";:FORI=lT0200:NE 

XT 
101 FORI=lT0170STEP10:PRINT"{RED}>";:NEXT:GOSUB170 

:PRINT"{PUR}AN"; 
102 FORI=lT0170STEP10:PRINT"{RED}>";:NEXT:GOSUB170 
103 GOSUB89:PRINT"{DOWN}{2 RIGHT}";:FORI=lT017:PRI 

NT" ";:NEXT:PRINT"{2 RIGHT}";:FORI=lT017 
104 PRINT" ";:NEXT 
105 GOSUB89:M=M+l:PRINT"{DOWN}"G2$; 
106 IFM<l6THEN105 
107 GOSUB89: PRINT" {DOWN} { 2 RIGHT}"; : FORI=l T0200: NE 

XT 
108 FORI=lT0112STEP10:PRINT"{PUR}>";:NEXT:GOSUB170 

:PRINT"{YEL}ACTION GAME"; 
109 FORI=lT0110STEP10:PRINT"{PUR}>";:NEXT:GOSUB170 
110 GOSUB89:PRINT"{DOWN}{2 RIGHT}";:FORI=lT012:PRI 

NT" ";:NEXT:PRINT"{ll RIGHT}"; 
111 FORI=lT013:PRINT" ";:NEXT 
112 GOSUB89 :M=M+l: PRINT" {DOWN} "G2$; 
113 IFM<22THEN112 
114 GOSUB89:PRINT"{DOWN}{2 RIGHT}";:FORI=lT0200:NE 

XT 

132 



Arcade-Style Games 5 
115 FORI=lT090STEP10:PRINT"{RED}>";:NEXT:GOSUB180: 

PRINT"{CYN}{RVS} WANT INSTRUCTIONS?{OFF}"; 
116 FORI=lT0100STEP10:PRINT"{RED}>";:NEXT:GOSUB160 
117 GOSUB89:PRINT"{DOWN}{2 RIGHT}";:FORI=lT09:PRIN 

T" ";:NEXT:PRINT"{l9 RIGHT}"; 
118 FORI=lT010:PRINT" ";:NEXT 
119 REM-----WANT INSTRUCTIONS-------
120 GETC$:IFC$=""THENGOSUB170:GOSUB170:GOSUB170:GO 

SUB160:GOT0114 
121 IFC$="Y"THEN134 
122 REM------PICK SKILL LEVEL---------
123 PRINT"{CLR}{YEL}{6 DOWN}{5 SPACES}{RVS} 

{2 SPACES}PICK SKILL LEVEL{5 SPACES}(l-3) 
{OFF}" 

12~ GOSUB170:GETC:IFC=0THEN124 
125 IFC>3THEN124 
126 PRINT"{CLR}{YEL}{6 DOWN}{8 SPACES}{RVS} PRESS 

{SPACE}(SPACE] TO BEGIN {OFF}" 
127 GOSUB160:GETC$:IFC$=""THEN127 
128 IFC=lTHENTD=l5 
129 IFC=2THENTD=8 
130 IFC=3THENTD=0 
131 REM-----BUILD FORCE FIELD---------
132 PRINT"{CLR}":GOSUB77:PRINT"{HOME}";:FORI=0T023 

: PRINTTAB ( 2)" { RVS} {GRN} {OFF}" :NEXT :GOT013 
133 REM--------INSTRUCTIONS----------
134 PRINT" {CLR} {DOWN} {2 SPACES} {RVS} {CYN} YOU ARE 

{SPACE}LASER GUNNER ON A STARSHIP " 
135 PRINT"{DOWN} YOU ARE UNDER ATTACK BY ALIEN INV 

ADERS" 
136 PRINT"{DOWN}{5 SPACES}YOU MUST MOVE YOUR LASER 

INTO" 
137 PRINT"{4 SPACES}POSITION, AND FIRE IT TO DESTR 

OY" 
138 PRINT"{ll SPACES}THE ALIEN SHIP" 
141 PRINT"{2 DOWN}{3 SPACES}YOU ARE PROTECTED BY A 

FORCE FIELD" 
142 PRINT"{4 SPACES}BUT THE FORCE FIELD IS WEAKENE 

D" 
143 PRINT"{5 SPACES}WITH EVERY HIT BY AN INVADER" 
144 PRINT" {2 DOWN} {5 SPACES}A HIT IN A HOLE ENDS T 

HE GAME" 
145 PRINT"{2 DOWN}{? SPACES}TO MOVE UP----HIT 

{RVS} F3 {OFF} KEY" 
146 PRINT"{? SPACES}TO FIRE-------HIT {RVS} F5 

{OFF} KEY" 
147 PRINT"{? SPACES}TO MOVE DOWN--HIT {RVS} F7 

{OFF} KEY" 
148 PRINT"{2 DOWN}{8 SPACES}{RVS}PRESS SPACE TO CO 

NTINUE{OFF}" 

133 



5 Arcade-Style Games 

149 GETC$:IFC$=""THEN149 
150 GOT0123 
155 REM--------SOUND SUBROUTINES-------
160 POKEW1,2l:POKEW2,129:FORZ=20T01STEP-2:POKEH1,Z 

:POKELl,Z 
161 POKEH2,INT(RND(l)*70)+3:POKEL2,Z:NEXT:POKEW1,0 

:POKEW2,0:RETURN 
170 POKEW1,17:POKEW2,129:FORZ=35T00STEP-7:POKEH1,Z 

:POKEL1,Z:POKEL2.Z 
171 POKEH2,INT(RND(l)*70):NEXT:POKEW1,0:POKEW2,0:R 

ET URN 
180 POKEWl,2l:FORZzlT03:FORZX=0T0100STEP15:POKEHl, 

ZX:POKELl,ZX:NEXT:NEXT 
181 POKEW1,0:RETURN 
190 POKE54296,15:POKE54277,15:POKE54291,65 :Wl=542 

76:W2=54290:Hl=54273:Ll=54272 
191 H2•54287:L2•54286:RETURN 

134 







6 
Using the Machine 
Language Editor: 
MLX 
Charles Brannon 

Three of the games in this chapter are written completely in machine 
language. The "Machine Language Editor" will make typing a perfect 
copy of those games a sn.ap. 

Remember the last time you typed in a long machine language 
program? You typed in hundreds of DATA statements, numbers, 
and commas. Even then, you couldn't be sure if you'd typed it in 
right. So you went back, proofread, tried to run the program, 
crashed, went back and proofread again, corrected a few typing 
errors, ran again, crashed, rechecked your typing . . . . Frus­
trating, wasn't it? 

Until now, though, that has been the best way to enter 
machine language into your machine. Unless you happen to own 
an assembler and are willing to wrangle with machine language 
on the assembly level, it is much easier to enter a BASIC program 
that reads the DATA statements and POKEs the numbers into 
memory. 

Some of these BASIC loaders will use a checksum to see if 
you've typed the numbers correctly. The simplest checksum is just 
the sum of all the numbers in the DATA statements. If you make 
an error, your checksum will not match up. Some programmers 
have made your task easier by creating checksums every ten lines, 
so you can zero in on your errors. 

But MLX comes to the rescue! The "Machine Language 
Editor" (MLX) is a great way to enter all those long machine 
language programs with a mininum of fuss. MLX lets you enter 
the numbers from a special list that looks similar to BASIC DATA 
statements. It checks your typing on a line-by-line basis. It won't 

137 



6 Machine language Games 

let you enter illegal characters when you should be typing 
numbers. It won't let you enter numbers greater than 255. It will 
prevent you from entering the wrong numbers on the wrong line. 
In short, MLX will make proofreading obsolete. 

Boot Disks 
In addition, MLX will generate a ready-to-use tape or disk file. 
You can then use the LOAD command to read the program into 
the computer, just like any other program. Specifically, you enter: 

LOAD "program': 1, 1 (for tape) 
or 

LOAD "program': 8, 1 (for disk) 
To start the program, you need to enter a SYS command that 

transfers control from BASIC to machine language. The starting 
SYS will always be given in the appropriate article. 

Using MLX 
Type in and save MLX (you'll want to use it in the future). When 
you' re ready to type in the machine language program, RUN 
MLX. The program will ask you for two numbers: the starting 
address and the ending address. Below is a table that lists this 
information for each of the games that use MLX. 

Starting and Ending Addresses 

Game 
Munchmaze 
Richthofen's 

Revenge 
Zuider Zee 

Start address 
12288 
2049 

49152 

End address 
13956 
5817 

52040 

Command to Run 
SYS 12311 
RUN or SYS 2063 

Once you have entered the starting and ending addresses, you'll 
get a prompt to start entering the data. The prompt is the current 
line you are entering from the listing. Each line is six numbers 
plus a checksum. If you enter any of the six numbers wrong, or 
enter the checksum wrong, the 64 will ring the buzzer and prompt 
you to reenter the line. If you enter it correctly, a pleasant bell tone 
will sound, and you go on and enter the next line. 

A Special Editor 
You are not using the normal Commodore 64 editor with MLX. 
For example, MLX will accept only numbers as input. If you need 
to make a correction, press the <INST/DEL> key; the entire 

138 



Machine Language Games& 

number is deleted. You can press it as many times as necessary to 
get back to the start of the line. If you enter three-digit numbers as 
listed, the computer will automatically print the comma and go on 
to accept the next number. If you enter less than three digits, you 
can press either the comma, space bar, or RETURN key to advance 
to the next number. The checksum will automatically appear in 
inverse video; don't worry-it's highlighted for emphasis. 

When testing it, I've found it to be extremely easy to enter 
long listings. With the audio cues provided, you don't even have 
to look at the screen if you're a touch-typist. 

When you get through typing, assuming you type it all in 
one session, you can then save the completed and bug-free 
program to tape or disk. Follow the screen instructions. If you get 
any errors while writing, you probably have a bad disk, or the 
disk was full, or you made a typo when entering the MLX 
program. (Sorry, it can't check itself.) 

Command Control 
What if you don't want to enter the whole program in one sitting? 
MLX lets you enter as much as you want, save the whole schmeer, 
and then reLOAD the file from tape or disk when you want to 
continue. MLX recognizes these few commands: 

SlllFf-S: Save 
SlllFf-L: Load 
SHIFf-N: New Address 
SHIFI'-D: Display 

Hold down SHIFT while you press the appropriate key. You 
will jump out of the line you've been typing, so I recommend you 
do it at a new prompt. Use the Save command to save what 
you've been working on. It will write the tape or disk file as if 
you've finished, but the tape or disk won't work, of course, until 
you finish the typing. Remember what address you stop on. The 
next time you RUN MLX, answer all the prompts as you did 
before, then insert the disk or tape. When you get to the entry 
prompt, press SHIFT-L to reLOAD the file into memory. You'll 
then use the New Address command to resume typing. 

New Address and Display 
After you press SHIFT-N, enter the address where you previously 
stopped. The prompt will change, and you can then continue 
typing. Always enter a New Address that matches up with one of 
the line numbers in the special listing, or else the checksum won't 

139 



6 Machine Language Games 

match up. You can use the Display command to display a section 
of your typing. After you press SHIFT-0, enter two addresses 
within the line number range of the listing. You can abort the 
listing by pressing any key. 

Tricky Stuff 
The special commands may seem a little confusing, but as you 
work with MLX, they will become vcluable. For example, what if 
you forgot where you stopped typing? Use the Display command 
to scan memory from the beginning to the end of the program. 
When you see a bunch of 170s, stop the listing (press a key) and 
continue typing where the 170s start. Some programs contain 
many sections of 170s. To avoid typing them, you can use the 
New Address command to skip over the blocks of 170s. Be 
careful, though; you don't want to skip over anything you should 
type. 

You can use the Save and Load commands to make copies of 
the completed game. Use the Load command to re LOAD the tape 
or disk, then insert a new tape or disk and use the Save command 
to create a new copy 

One quirk about tapes made with the Save command: when 
you load them, the message "FOUND program" may appear 
twice. The tape will load just fine, however. 

Programmers will find MLX an interesting program, in 
protecting the user from mistakes. There is also some screen 
formatting. Most interesting is the use of ROM Kemal routines 
for LOADing and SAVEing blocks of memory. Just POKE the 
starting address (low byte/high byte) into 251and252, and POKE 
the ending address into 254 and 255. Any error code can be found 
in location 253 (an error would be a code less than ten). 

I hope you will find MLX to be a true labor-saving program. 
Since it has been tested by entering actual programs, you can 
count on it as an aid for generating bug-free machine language. 

MLX 
100 PRINT"{CLR}{RED}";CHR$(142);CHR$(8);:POKE53281 

,l:POKE53280,l 
101 POKE 788,52:REM DISABLE RUN/STOP 
110 PRINT"{RVS}{40 SPACES}"; 
120 PRINT"{RVS} {15 SPACES} {RIGHT} {OFF}g*~£{RVS} 

{RIGHT} {RIGHT}{2 SPACES}~*~{OFF}~*~£-
{RVS}!{RVS}{l3 SPACES}"; -

140 



Machine Language Games& 

130 PRINT" {RVS} {15 SPACES} {RIGHT} gGa {RIGHT} 
{2 RIGHT} {OFF}£{RVS}£g•a{OFF}g•a{RVS} 
{13 SPACES}": - -

140 PRINT"{RVS}{40 SPACES}" 
150 V=53248:POKE2040,13:POKE2041,13:FORI=832T0894: 

POKEI,255:NEXT:POKEV+27,3 
160 POKEV+21,3:POKEV+39,2:POKEV+40,2:POKEV,144:POK 

EV+l,54:POKEV+2,192:POKEV+3,54 
170 POKEV+2.9,3 
180 FORI=0T023:READA:POKE679+I,A:POKEV+39,A:POKEV+ 

40,A:NEXT 
185 DATA169,251,166,254,164,255,32,216,255,133,253 

,96 
187 DATA169,0,166,251,164,252,32,213,255,133,253,9 

6 
190 POKEV+39,7:POKEV+40,7 
200 PRINT"{2 DOWN}{PUR}{BLK}{3 SPACES}A FAILSAFE M 

ACHINE LANGUAGE EDITOR{5 DOWN}" 
210 PRINT 11 gs8{2 UP}STARTING ADDRESS?{8 SPACES} 

{9 LEFT} 11 ;:INPUTS:F=l-F:C$=CHR$(31+119*F) 
220 IFS<2560R(S>40960ANDS<49152)0RS>53247THENGOSUB 

3000:GOT0210 
225 PRINT:PRINT:PRINT 
230 PRINT 11 g58{2 UP}ENDING ADDRESS?{8 SPACES} 

{9 LEFT} 11 ;:INPUTE:F=l-F:C$=CHR$(31+119*F) 
240 IFE<2560R(E>40960ANDE<49152)0RE>53247THENGOSUB 

3000:GOT0230 
250 IFE<STHENPRINTC$: 11 {RVS}ENDING <START 

{2 SPACES} 11 :GOSUB1000:GOTO 230 
260 PRINT:PRINT:PRINT 
300 PRINT"{CLR} 11 :CHR$(14):AD=S:POKEV+21,0 
310 PRINTRIGHT$( 11 0000 11 +MID$(STR$(AD),2),5); 11

:
11 ;:FO 

RJ=lT06 
320 GOSUB570:IFN=-1THENJ=J+N:GOT0320 
390 IFN=-211THEN 710 
400 IFN=-204THEN 790 
410 IFN=-206THENPRINT:INPUT"{DOWN}!NTER NEW ADORES 

S 11 :ZZ 
415 IFN=-206THENIFZZ<SORZZ>ETHENPRINT"{RVS}OUT OF 

{SPACE}RANGE 11 :GOSUB1000:GOT0410 
417 IFN=-206THENAD•ZZ:PRINT:GOT0310 
420 IF N<>-196 THEN 480 
430 PRINT:INPUT 11 DISPLAY:FROM 11 ;F:PRINT, 11 TO"::INPUTT 
440 IFF<SORF>EORT<SORT>ETHENPRINT 11 AT LEAST 11 :S:" 

{LEFT}, NOT MORE THAN";E:GOT04J0 
450 FORI=FTOTSTEP6:PRINT:PRINTRIGHT$( 11 00.00 11 +MID$(S 

TR$(I);2);5): 11
:

11
; 

451 FORK=0T05:N=PEEK(I+K)aPRINTRIGHT$("00"+MID$(ST 
R$ ( N ) I 2 ) I 3 ) ; II I II : 

141 



6 Machine Language Games 

460 GETA$:IFA$>""THENPRINT:PRINT:GOT0310 
470 NEXTK:PRINTCHR$(20);:NEXTI:PRINT:PRINT:GOT0310 
480 IFN<0 THEN PRINT:GOT0310 
490 A(J)=N:NEXTJ 
500 CKSUM=AD-INT(AD/256)*256:FORI=lT06:CKSUM=(CKSU 

M+A(I))AND255:NEXT 
510 PRINTCHR$(18);:GOSUB570:PRINTCHR$(20) 
515 IFN=CKSUMTHEN530 
520 PRINT:PRINT"LINE ENTERED WRONG : RE-ENTER 11 :PRI 

NT:GOSUB1000:GOT0310 
530 GOSUB2000 
540 FORI=lT06:POKEAD+I-l,A(I):NEXT:POKE54272,0:POK 

E54273,0 
550 AD=AD+6:IF AD<E THEN 310 
560 GOTO 710 
570 N=0:Z=0 
580 PRUIT" E~ II; 
581 GETA$:IFA$=""THEN581 
585 PRINTCHR$(20);:A=ASC(A$):IFA=l30RA=440RA=32THE 

N670 
590 IFA>l28THENN=-A:RETURN 
600 IFA<>20 THEN 630 
610 GOSUB690:IFI=lANDT=44THENN=-l:PRINT"{LEFT} 

{LEFT}";:GOT0690 
620 GOT0570 
630 IFA<480RA>57THEN580 
640 PRINTA$;:N=N*l0+A-48 
650 IFN>255 THEN A=20:GOSUB1000:GOT0600 
660 Z=Z+l:IFZ<3THEN580 
670 IFZ=0THENGOSUB1000:GOT0570 
680 PRINT",";:RETURN 
690 S%=PEEK(209)+256*PEEK(210)+PEEK(211) 
691 FORI=lT03:T=PEEK(S%-I) 
695 IFT<>44ANDT<>58THENPOKES%-I,32:NEXT 
700 PRINTLEFT$( 11 {3 LEFT} 11 ,I-l);:RETURN 
710 PRINT"{CLR}{RVS}*** SAVE ***{3 DOWN}" 
720 INPUT 11 {DOWN} FILENAME 11 ;F$ 
730 PRINT:PRINT"{2 DOWN}{RVS}T{OFF}APE OR {RVS}Q. 

{OFF}ISK: (T/D) II -
740 GETA$:IFA$<>" 11 T"ANDA$<> 11 D11 THEN740 
750 DV=l-7*(A$= 11 D11 ):IFDV=BTHENF$="0: 11 +F$ 
760 OPEN l,DV,l,F$:POKE252,S/256:POKE251,S-PEEK(25 

2)*256 
765 POKE255,E/256:POKE254,E-PEEK(255)*256 
770 POKE253,10:SYS 679:CLOSEl:IFPEEK(253)>90RPEEK( 

253)=0THENPRINT"{DOWN}DONE.":END 
780 PRINT 11 {DOWN}ERROR ON SAVE.{2 SPACES}TRY AGAIN. 

II: IFDV=l THEN720 - -

142 



Machine Language Games& 

781 OPEN15,8,15:INPUT#l5,DS,DS$:PRINTDS;DS$:CLOSE1 
5 :GOT0720 

790 PRINT"{CLR}{RVS}*** LOAD ***{2 DOWN}" 
800 INPUT II { 2 DOWN} FILENAME II i F $ 
810 PRINT:PRINT"{2 DoWN}{RVS}T{OFF}APE OR {RVS}~ 

{OFF}ISK: (T/D)" -
820 GETA$:IFA$<">"T"ANDA$<>"D"THEN820 
830 DV=l-7*(A$="D"):IFDV=8THENF$="0:"+F$ 
840 OPEN l,DV,0,F$:POKE252,S/256:POKE251,S-PEEK(25 

2)*256 
850 POKE253,10:SYS 69l:CLOSE1 
860 IFPEEK(253)>9 OR PEEK(253)=0 THEN PRINT:PRINT: 

GOT0310 
870 PRINT"{DOWN}ERROR ON LOAD.{2 SPACES}!_RY AGAIN. 

{DOWN}":IFDV;;lTHEN800-
880 OPEN15,8,15:INPUT#l5,DS,DS$:PRINTDS;DS$:CLOSE1 

5:GOT0800 
1000 REM BUZZER 
1001 POKE54296,15:POKE54277,45:POKE54278,165 
1002 POKE54276,33:POKE 54273,6:POKE54272,5 
1003 FORT=lT0200:NEXT:POKE54276,32:POKE54273,0:POK 

E54272,0:RETURN 
2000 REM BELL SOUND 
2001 POKE54296,15:POKE54277,0:POKE54278,247 
2002 POKE 54276,17:POKE54273,40:POKE54272,0 
2003 FORT=lT0100:NEXT:POKE54276,16:RETURN 
3000 PRINTC$;"{RVS}NOT ZERO PAGE OR ROM":GOTOl000 

143 



6 
Munch maze 
Gary E. Marsa 64 Translation by Gregg Peele 

"Munchmaze" is a fast-action strategy game. Since it is written in 
111£lchine language, it requires the use of the Machine Language Editor 
(MLX) for mistake-proof entering. 

The character in "Munchmaze" hurries through the maze drop­
ping bread crumbs as it goes. You move your character around by 
using the I, J, K, and M keys trying to munch up as many of the 
bread crumbs as you can before the character catches you. The 
game ends when the two characters collide or when you accumu­
late 10,000 points. 

There are three speed levels: slow, moderate, and fast. Both 
characters move at the same speed, but the computer character 
beats you on the comers. Also, you have to change directions 
manually; it doesn't. The computer character always goes left if it 
can; it's helpful to remember this when you are looking for a 
temporary hiding place. 

There's another tricky feature, too. Sometimes, when the two 
characters are moving from opposite directions toward each other, 
the computer character goes right on by and no collision occurs. 
Just breathe a sigh of relief and continue munching-you were 
lucky. 

The maze in Munchrnaze is not constructed on the screen, 
but in another area of RAM. It is then transferred to the screen, 
where it appears all at once; then there is a one-second delay 
before the action begins. If you break out of the program for any 
reason, just type SYS 12331 and RETURN to restart. 

Typing in Munchmaze 
This program is written entirely in machine language, so it is 
necessary to enter it using the Machine Language Editor (MLX) 
found at the beginning of this chapter. Be sure to read the direc­
tions for using the MLX. 

The information needed to enter Munchmaze with the MLX 
is: 

144 



Machine Language Games& 

Starting address: 12288 
Ending address: 13956 
Once Munchmaze is saved to disk or tape, the procedure for 

loading the program is as follows: 
From disk: type 

LOAD "MUNCHMAZE'~ 8,1 

From tape: type 
LOAD"", 1,1 

When the program is loaded into memory, type SYS 12311 to 
run it. 

Munch maze 
12288 :020,004,010,000,088,178,044 
12294 :187,040,171,084,073,041,090 
12300 :058,158,049,048,052,056,l77 
12306 :000,000,000,234,234,169,l43 
12312 :021,141,024,208,169,000,075 
12318 :141,096,010,141,097,010,013 
12324 :169,147,032,210,255,169,250 
12330 :007,162,000,157,000,216,072 
12336 :157,000,217,157,000,218,029 
12342 :157,000,219,232,208,241,087 
12348 :169,120,141,229,051,169,l71 
12354 :052,141,230,051,162,031,221 
12360 :169,005,032,220,051,169,206 
12366 :000,141,098,010,141,099,055 
12372 :010,133,162,024,165,161,227 
12378 :105,002,133,166,165,161,054 
12384 :197,166,208,250,169,147,209 
12390 :032,210,255,169,000,162,l62 
12396 :000,157,000,216,157,000,l26 
12402 :217,157,000,218,157,000,095 
12408 :219,232,208,241,032,168,l96 
12414 :051,162,039,169,160,157,096 
12420 :039,004,157,151,007,202,180 
12426 :208,247,169,080,133,168,ll9 
12432 :169,004,133,169,162,021,034 
12438 :160,000,169,160,145,168,184 
12444 :160,038,145,168,032,250,181 
12450 :051,202,208,240,169,119,127 
12456 :141,229,051,169,053,141,184 
12462 :230,051,162,166,169,004,188 
12468 :032,220,051,162,000,169,046 
12474 :032,157,000,011,157,000,031 
12480 :012,157,000,013,157,000,019 
12486 :014,232,208,241,169,081,119 

145 



6 Machine Language Games 

12492 :133,168,169,040,133,170,249 
12498 :169,011,133,169,133,171,228 
12504 :162,000,160,000,169,160,099 
12510 :145,170,200,192,039,208,152 
12516 :249,024,165,170,105,040,213 
12522 :133,170,144,002,230,171,060 
12528 :232,224,023,208,229,160,036 
12534 :000,169,004,145,168,032,252 
12540 :151,224,165,143,041,003,211 
12546 :133,165,170,010,168,024,160 
12552 :185,075,052,101,168,133,210 
12558 :180,185,076,052,101,169,009 
12564 :133,181,024,185,075,052,158 
12570 :101,180,133,170,185,076,103 
12576 :052,101,181,133,171,160,062 
12582 :000,177,170,201,160,208,186 
12588 :018,138,145,170,169,032,204 
12594 :145,180,165,170,133,168,243 
12600 :165,171,133,169,076,251,253 
12606 :048,232,138,041,003,197,209 
12612 :165,208,189,177,168,170,121 
12618 :169,032,14§,168,224,004,048 
12624 c240,026,138,010,168,162,056 
12630 :002,056,165,168,249,075,033 
12636 :052,133,168,165,169,249,004 
12642 :076,052,133,169,202,208,170 
12648 :238,076,251,048,169,013,131 
12654 :141,229,051,169,054,141,127 
12660 :230,051,162,006,138,032,223 
12666 :220,051,032,228,255,208,092 
12672 :251,032,228,255,240,251,105 
12678 :201,081,208,032,169,147,204 
12684 :032,210,255,169,000,162,200 
12690 :000,157,000,216,157,000,164 
12696 :217,157,000,218,157,000,133 
12702 :219,232,208,241,032,168,234 
12708 :051,169,013,076,210,255,170 
12714 :201,049,048,211,201,052,164 
12720 :016,207,056,233,048,133,101 
12726 :166,169,147,032,210,255,137 
12732 :169,000,162,000,157,000,164 
12738 :216,157,000,217,157,000,173 
12744 :218,157,000,219,232,208,210 
12750 :241,162,000,189,000,011,041 
12756 :157,000,004,189,000,012,062 
12762 :157,000,005,189,000,013,070 
12768 :157,000,006,189,000,014,078 
12774 :157,000,007,232,208,229,039 
12780 :032,16~,051,024,165,166,074 

146 



Machine Language Games& 

12786 :105,176,141,000,004,141,041 
12792 :038,004,024,165,162,105,234 
12798 :060,133,254,165,162,197,201 
12804 :254,208,250,169,081,133,075 
12810 :168,133,180,169,004,133,029 
12816 :169,133,181,169,001,133,034 
12822 :254,162,002,134,165,160,l31 
12828 :000,169,102,145,168,169,013 
12834 :000,133,162,166,165,138,030 
12840 :010,168,024,185,075,052,042 
12846 :101,168,133,170,185,076,lll 
12852 :052,101,169,133,171,160,070 
12858 :000,177,170,201,160,208,206 
12864 :009,202,138,041,003,133,078 
12870 :165,076,037,050,201,081,l68 
12876 :208,003,076,004,051,169,075 
12882 :102,145,170,169,058,145,l03 
12888 :168,165,170,133,168,165,033 
12894 :171,133,169,232,138,041,210 
12900 :003,133,165,165,254,240,036 
12906 :008,160,000,132,254,169,061 
12912 :081,145,180,162,000,165,077 
12918 :197,221,083,052,240,008,l51 
12924 :232,224,004,208,246,076,090 
12930 :183,050,138,010,168,024,l91 
12936 :185,075,052,101,180,133,094 
12942 :195,185,076,052,101,181,l64 
12948 :133,196,160,000,177,195,241 
12954 :201,160,240,025,201,058,015 
12960 :208,003,032,006,052,160,l09 
12966 :000,169,081,145,195,169,l57 
12972 :032,145,180,165,195,133,254 
12978 :180,165,196,133,181,165,l74 
12984 :162,197,166,208,250,173,060 
12990 :098,010,201,016,208,061,016 
12996 :173,099,010,201,039,208,l58 
13002 :054,169,081,133,168,169,208 
13008 :004,133,169,162,000,160,068 
13014 :000,177,168,201,058,208,002 
13020 :007,032,006,052,169,032,006 
13026 :145,168,200,192,037,208,l52 
13032 :238,032,250,051,232,224,235 
13038 :021,208,228,162,000,189,022 
13044 :093,054,240,006,157,051,077 
13050 :004,232,208,245,076,127,ll8 
13056 :051,076,033,050,169,102,225 
13062 :145,170,169,058,145,168,093 
13068 :165,180,133,168,165,181,236 
13074 :133,169,056,165,168,233,174 

147 



6 Machine Language Games 

13080 :041,133,170,165,169,233,167 
13086 :000,133,171,169,240,133,108 
13092 :166,169,255,133,162,165,062 
13098 :170,133,180,165,171,133,226 
13104 :181,169,000,133,165,160,088 
13110 :000,162,000,177,180,221,026 
13116 :087,052,240,005,232,224,132 
13122 :008,208,246,134,253,056,203 
13128 :169,007,229,253,170,189,065 
13134 :087,052,145,180,200,192,166 
13140 :003,208,224,024,165,180,120 
13146 :105,040,133,180,144,002,182 
13152 :230,181,230,165,165,165,208 
13158 :201,003,208,203,165,162,020 
13164 :208,252,198,166,208,179,039 
13170 :162,000,189,110,052,240,099 
13176 :006,157,055,004,232,208,014 
13182 :245,056,173,098,010,237,l77 
13188 :096,010,141,100,010,173,l50 
13194 :099,010,237,097,010,013,092 
13200 :100,010,240,017,144,015,158 
13206 :173,098,010,141,096,010,166 
13212 :173,099,010,141,097,010,174 
13218 :032,194,051,076,077,048,128 
13224 :162,000,189,095,052,240,138 
13230 :006,157,006,004,232,208,019 
13236 :245,162,000,189,104,052,l64 
13242 :240,006,157,022,004,232,079 
13248 :208,245,172,096,010,173,072 
13254 :097,010,032,145,179,032,181 
13260 :221,189,162,000,189,000,197 
13266 :001,240,006,157,027,004,133 
13272 :232,208,245,096,134,168,019 
13278 :133,169,162,000,160,000,078 
13284 :189,120,052,240,010,201,016 
13290 :255,240,012,145,168,200,230 
13296 :232,208,241,032,250,051,230 
13302 :232,208,233,096,024,165,180 
13308 :168,105,040,133,168,144,242 
13314 :002,230,169,096,138,072,197 
13320 :152,072,024,173,098,010,025 
13326 :105,002,141,098,010,144,002 
13332 :003,238,099,010,162,000,020 
13338 :181,168,072,232,224,008,l43 
13344 :208,248,172,098,010,173,173 
13350 :099,010,032,145,179,032,023 
13356 :221,189,162,000,189,000,037 
13362 :001,240,006,157,012,004,214 
13368 :232,208,245,162,008,104,247 

148 



Machine Language Games& 

13374 :149,167,202,208,250,104,118 
13380 :168,104,170,096,234,234,050 
13386 :234,001,000,216,255,255,011 
13392 :255,040,000,037,033,034,223 
13398 :036,160,032,058,102,170,132 
13404 :186,127,255,019,003,815,185 
13410 :018,005,058,032,048,800,003 
13416 :008,009,007,008,050,000,194 
13422 :135,129,141,133,160,143,183 
13428 :150,133,146,000,079,077,189 
13434 :032,032,078,080,099,080,011 
13440 :032,079,099,079,077,032,014 
13446 :079,080,078,099,099,099,156 
13452 :077,079,080,032,079,080,055 
13458 :000,101,032,077,078,032,210 
13464 :103,032,103,032,101,032,043 
13470 :101,032,077,101,103,032,092 
13476 :032,079,076,100,101,103,143 
13482 :032,101,103,000,101,032,027 
13488 :032,032,032,103,032,103,254 
13494 :032,101,032,101,032,032,000 
13500 :032,103,032,032,101,032,008 
13506 :032,101,032,099,032,103,081 
13512 :000,101,103,077,078,101,148 
13518 :103,032,103,100,101,032,165 
13524 :101,103,077,032,103,032,148 
13530 :032,076,079,099,101,103,196 
13536 :099,101,103,000,076,122,213 
13542 :032,032,076,122,077,100,157 
13548 :100,100,078,076,122,032,232 
13554 :077,122,077,100,100,100,050 
13560 :078,076,122,032,076,122,242 
13566 :000,000,160,223,032,032,189 
13572 :233,231,032,233,160,223,092 
13578 :032,160,160,160,160,231,145 
13584 :160,160,160,160,160,032,080 
13590 :002,025,000,160,160,223,080 
13596 :233,160,231,233,160,226,247 
13602 :160,223,032,032,233,160,106 
13608 :105,160,160,000,160,160,017 
13614 :160,160,160,231,160,160,053 
13620 :098,160,231,032,233,160,198 
13626 :105,032,160,160,160,160,067 
13632 :032,032,007,001,018,025,179 
13638 :000,160,160,095,105,160,238 
13644 :231,160,160,226,160,231,220 
13650 :233,160,105,032,032,160,036 
13656 :160,000,160,160,032,032,120 
13662 :160,231,160,160,032,160,229 

149 



6 Machine Language Games 

13668 :231,160,160,160,160,231,l78 
13674 :160,160,160,160,160,032,l70 
13680 :013,001,018,019,001,000,l64 
13686 :255,032,032,032,009,032,254 
13692 :032,032,032,032,013,015,024 
13698 :022,005,032,020,008,005,222 
13704 :032,034,081,034,032,021,ll4 
13710 :019,009,014,007,000,032,223 
13716 :032,032,030,032,032,032,082 
13722 :032,032,020,008,005,032,027 
13728 :012,005,020,020,005,018,240 
13734 :019,058,032,032,032,000,083 
13740 :032,032,032,093,000,010,ll5 
13746 :060,067,081,067,062,011,014 
13752 :032,032,009,032,061,032,l26 
13758 :013,015,022,005,032,021,042 
13764 :016,000,032,032,032,093,l45 
13770 :032,032,032,032,032,010,ll6 
13776 :032,061,032,013,015,022,l27 
13782 :005,032,012,005,006,020,038 
13788 :000,032,032,032,022,032,ll4 
13794 :032,032,032,032,011,032,l41 
13800 :061,032,013,015,022,005,l24 
13806 :032,018,009,007,008,020,076 
13812 :000,032,032,032,013,032,l29 
13818 :032,032,032,032,013,032,l67 
13824 :061,032,013,015,022,005,l48 
13830 :032,004,015,023,014,000,094 
13836 :255,160,032,160,032,032,l71 
13842 :032,032,003,008,015,015,l23 
13848 :019,005,032,019,016,005,l20 
13854 :005,004,032,006,001,003,081 
13860 :020,015,018,058,000,000,l47 
13866 :160,032,160,032,032,177,l23 
13872 :032,061,006,001,019,020,l87 
13878 :044,032,178,032,061,032,l77 
13884 :013,015,004,005,018,001,ll6 
13890 :020,005,044,032,179,e32,122 
13896 :061,032,019,012,015,023,234 
13902 :000,000,160,032,160,032,206 
13908 :032,032,032,032,032,032,020 
13914 :032,032,032,032,032,032,026 
13920 :016,018,005,019,019,032,205 
13926 :145,032,020,015,032,017,107 
13932 :021,009,020,046,000,255,203 
13938 :153,143,149,167,146,133,237 
13944 :160,129,137,142,142,133,195 
13950 :146,161,161,032,255,032,145 
13956 :255,255,255,255,255,255,126 

150 



Richthofen's 
Revenge 
Chris Metcalf Marc Sugiyama 

6 

"Richthofen's Revenge" is an arcade-style game that even the most experi­
enced game players will find challenging. This program requires special 
care to enter correctly; please see the section "Typing in the Program." 

The airborne forces of Richthofen, the dreaded Red Baron, have 
been mobilized. Because of your reputation as a swift pilot and 
accurate gunner, you have been chosen to defend the front line. 
Only a few planes are available, with no time to build more. 
Prepare yourself to meet the hordes of Richthofen. 

As you encounter each succeeding wave of the enemy, 
another airplane will be delivered to the front. Once all the planes 
have been destroyed, however, there will be nothing to stop the 
enemy from an all-out invasion. Your skills are all that stand 
between Richthofen's forces and your country. 

Typing in the Program 
This program is written entirely in machine language, so it should 
be entered using the Machine Language Editor (MLX) found 
earlier in this chapter. 

The steps to typing in a machine language program using 
MLX are simple, but they must be followed exactly in order to get 
a playable copy of the game. Once you have a copy of "Richtho­
fen's Revenge" saved on disk or tape, you will be able to LOAD 
and RUN it just as you would any BASIC program even though it 
is machine language. 

The steps for typing in Richthofen's Revenge are: 

1. Reset the computer by turning it off, then back on. 
2. Type this line: 

POKE 44,23:POKE 23*256,0:NEW 
3. LOAD the Machine Language Editor into memory. 

(If you have not typed in and SAVEd MLX, you will have 
to do that first.) 

151 



6 Machine Language Games 

4. RUN the MLX program. 
5. Answer the prompts 

START ADDR: 2049 
END ADDR: 5817 

6. Type in the data. 
7. MLX will prompt you for a filename. 
8. Before you load the program, reset the computer. 
That's all there is to it. It is not necessary to type in all the 

data in one session. The instructions for using MLX are at the 
beginning of this chapter. If you do decide to enter the data in 
more than one session, it will be necessary to follow the above 
steps each time you begin a session. 

Preparing for Battle 
When you first RUN the game, the screen will come up with a 
landscape, a status line, and the message RICHTHOFEN'S 
REVENGE. The information given in the status line is the high 
score, the score of the current game, and the number of backup 
planes remaining. A short tune will play to prepare you for the 
combat. 

When the message PRESS FIRE TO BEGIN appears, you may 
begin playing or move to a higher level. By moving the joystick up 
or down, you can pick any level from 1to30. Levels 31through40 
are reserved for expert players, and the levels above that are only 
for the true masters. 

Once you have selected a level, or at any point after the music 
begins, you may press the fire button and begin playing. Every 
time you enter a level, or when a new plane is called up, you 
begin at the very top of the screen. This area is off-limits to Rich­
thofen's forces due to their limited flight ceilings. However, once 
you go down into their midst, you too are sealed off from this 
high-altitude bracket for the duration of the level. 

Your Opponents 
Richthofen is employing three types of aircraft. Surveillance 
balloons patrol the areas they have been assigned to in accordance 
with random wind currents. These have been judged least impor­
tant by the Air Force (50 points each). The remainder of the enemy 
forces consists of two types of aircraft: the main attack force, 
consisting of blue-green planes which always fly west, and the 
equally important red spy craft. Both types are worth 75 points 
each. 

152 



Machine Language Games& 

Some strategies and tips have been given to you by Air Force 
command. Although your aircraft can dodge mountains and the 
like without any danger, a number of civilian residences are scat­
tered throughout the combat area. These present a very definite 
threat to navigation. You can neither fly nor fire through them. 
Furthermore, the explosions of the enemy craft are deadly to you. 

Air Force Briefing 
The Air Force has also given you a short list of pointers for 
fighting the enemy. You will find that balloons are often extremely 
difficult to hit. This problem may be at least partially remedied by 
the use of the rapid-fire aspect of your controller. Holding down 
the fire button will cause your machine gun to fire rapidly after a 
slight initial delay. At times you may find yourself flying on and 
on without encountering any enemy craft. Often the problem is 
that the few surviving enemy fighter planes are going in the same 
direction as yourself. In such cases, simply tum and wait for 
them. To determine how far you are from the end of a level, 
consult the table below. 

One final item is of some importance to you as a fighter pilot. 
The first planes sent out to you were of undeniably high quality 
and workmanship. The components were all painstakingly hand­
formed, and the result was an airplane that could achieve an 
unusually high speed-enough, in fact, to overtake even the 
enemy fighter pilots. But as the production of these airplanes 
increased, the quality declined. Thus as you continue to play, you 
will find that your planes lose efficiency, until after a number of 
levels your top speed is barely that of the enemy planes. 

Several keyboard controls have been included in the 
program. Pressing f7 causes all game action and sound to stop 
until the key is pressed again or the fire button pushed. RUN/ 
STOP has the same effect. F8 ends the program, leaving your 
country to Richthofen's mercy. F3 turns the sound of your engines 
on and off, but leaves the noise of shooting and explosions as 
always. Fl functions as a reset key, checking for a high score then 
returning you to the initial display. 

A variety of melodies has been included in the program. 
All of them may be skipped by pressing the fire button on your 
joystick. 

153 



6 Machine Language Games 

Levels of Play 

Play 
Level 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

etc. 

154 

Number 
of Enemy 

12 
16 
20 
24 
24 
24 
24 
28 
28 
28 
28 
32 
32 
32 
36 
36 
36 
40 
40 
40 
44 
44 
44 
48 
48 
48 
52 
52 
52 
56 
56 
56 
60 
60 
60 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 

Accumulated 
Score 

650 
1650 
2900 
4400 
5900 
7400 
9000 

10800 
12600 
14400 
16300 
18400 
20500 
22700 
25100 
27500 
30000 
32600 
35200 
37700 
39800 
42750 
45550 
48650 
51850 
55100 
58500 
61900 
65450 
69150 
72850 
76650 
80650 
84750 
88850 
93050 
97300 

101350 
105725 
110100 
113300 
118100 
122900 
127275 
130475 



Machine Language Games& 

Richthofen's Revenge 
2049 :013,008,100,000,158,040,064 
2055 :050,048,054,051,041,000,251 
2061 :000,000,165,001,041,254,218 
2067 :133,001,169,197,141,000,148 
2073 :221,169,000,141,023,208,019 
2079 :141,029,208,141,027,208,017 
2085 :032,006,017,169,003,141,149 
2091 :178,002,169,027,141,017,065 
2097 :208,169,172,141,000,208,179 
2103 :169,011,141,032,208,169,017 
2109 :014,141,033,208,169,000,114 
2115 :141,034,208,169,012,141,004 
2121 :035,208,162,127,169,000,006 
2127 :157,000,168,202,016,250,104 
2133 :162,032,189,033,017,157,163 
2139 :015,168,189,066,017,157,191 
2145 :079,168,202,016,241,160,195 
2151 :000,185,099,019,153,000,047 
2157 :176,200,192,144,208,245,250 
2163 :160,000,185,179,019,153,043 
2169 :000,177,200,192,168,208,042 
2175 :245,160,000,185,091,020,060 
2181 :153,000,178,200,192,208,040 
2187 :208,245,169,160,141,032,070 
2193 :164,169,000,141,000,164,015 
2199 :168,185,000,164,024,105,029 
2205 :040,153,001,164,185,032,220 
2211 :164,105,000,153,033,164,014 
2217 :200,192,025,208,234,169,173 
2223 :000,141,175,002,141,176,042 
2229 :002,141,177,002,169,255,159 
2235 :141,168,002,169,001,133,033 
2241 :033,120,169,127,141,013,028 
2247 :220,169,001,141,026,208,196 
2253 :169,000,141,018,208,173,146 
2259 :017,208,041,127,141,017,250 
2265 :208,173,020,003,141,123,117 
2271 :016,173,021,003,141,124,189 
2277 :016,169,072,141,020,003,138 
2283 :169,016,141,021,003,088,161 
2289 :169,000,141,172,002,141,098 
2295 :173,002,141,174,002,169,140 
2301 :004,141,183,002,173,168,156 
2307 :002,141,167,002,169,001,229 
2313 :141,033,208,169,160,141,093 
2319 :136,002,169,147,032,210,199 
2325 :255,169,004,141,136,002,216 
2331 :169,006,141,033,208,160,232 

155 



6 Machine Language Games 

2337 :023,185,105,021,153,154,162 
2343 :163,136,016,247,169,081,083 
2349 :141,187,163,160,002,162,092 
2355 :000,185,175,002,032,202,135 
2361 :015,157,179,163,165,021,245 
2367 :157,180,163,232,232,136,139 
2373 :016,237,169,001,133,027,140 
2379 :238,167,002,173,167,002,056 
2385 :201,043,144,005,169,039,170 
2391 :141,167,002,160,063,169,021 
2397 :255,153,064,164,136,016,113 
2403 :250,172,167,002,185,215,066 
2409 :021,072,141,180,002,185,194 
2415 :172,021,072,024,109,180,177 
2421 :002,141,180,002,185,129,244 
2427 :021,170,024,109,180,002,117 
2433 :141,180,002,160,000,224,068 
2439 :000,240,009,169,001,153,195 
2445 :064,164,200,202,208,247,202 
2451 :104,170,240,009,169,002,073 
2457 :153,064,164,200,202,208,120 
2463 :249,104,170,240,009,169,076 
2469 :003,153,064,164,200,202,183 
2475 :208,249,160,063,032,148,007 
2481 :015,041,031,056,233,010,051 
2487 :048,246,201,002,144,242,042 
2493 :153,192,164,032,148,015,125 
2499 :153,128,164,136,016,230,254 
2505 :169,130,133,025,032,006,184 
2511 :017,173,183,002,032,202,048 
2517 :015,141,188,163,165,021,138 
2523 :141,189,163,169,049,141,047 
2529 :001,208,169,141,141,024,141 
2535 :208,169,003,141,039,208,231 
2541 :169,011,141,032,208,169,199 
2547 :000,141,028,208,169,160,181 
2553 :141,248,163,169,001,141,088 
2559 :021,208,169,000,141,182,208 
2565 :002,133,032,173,031,208,072 
2571 :165,027,208,010,165,033,107 
2577 :240,003,032,241,010,076,107 
2583 :006,011,173,178,002,141,022 
2589 :179,002,032,237,013,169,149 
2595 :000,133,027,160,018,169,030 
2601 :001,153,153,217,152,024,229 
2607 :105,128,153,154,161,162,142 
2613 :007,185,043,021,032,221,050 
2619 :010,202,016,247,136,016,174 
2625 :230,162,000,032,131,016,124 

156 



Machine Language Games& 

2631 :224,051,208,lll,162,000,059 
2637 :160,018,185,062,021,032,043 
2643 :221,010,136,016,247,173,ll8 
2649 :000,220,201,lll,240,091,l84 
2655 :142,169,002,162,100,032,l90 
2661 :245,015,174,169,002,232,l70 
2667 :224,008,144,222,173,167,021 
2673 :002,024,105,001,032,179,200 
2679 :015,032,202,015,141,243,255 
2685 :161,165,021,141,244,161,250 
2691 :173,000,220,201,lll,240,052 
2697 :048,201,126,208,017,238,207 
2703 :167,002,173,167,002,201,087 
2709 :030,144,026,169,000,141,147 
2715 :167,002,240,019,201,125,141 
2721 :208,224,206,167,002,173,117 
2727 :167,002,201,255,208,005,237 
2733 :169,029,141,167,002,162,0~5 
2739 :060,032,245,015,076,111,206 
2745 :010,160,018,169,032,153,215 
2751 :154,161,136,016,250,141,025 
2757 :243,161,141,244,161,173,040 
2763 :000,220,201,127,208,249,184 
2769 :206,167,002,173,167,002,l58 
2775 :141,168,002,076,075,009,l74 
2781 :010,010,010,141,235,010,l25 
2787 :152,010,010,010,141,238,020 
2793 :010,189,000,178,157,000,255 
2799 :180,096,169,000,141,005,062 
2805 :212,169,240,141,006,212,201 
2811 :169,001,141,001,212,169,l76 
2817 :033,141,004,212,096,173,148 
2823 :000,220,073,127,133,036,084 
2829 :169,000,133,031,165,036,035 
2835 :041,001,240,010,173,001,229 
2841 :208,201,059,144,019,206,094 
2847 :001,208,165,036,041,002,228 
2853 :240,010,173,001,208,201,l02 
2859 :214,176,003,238,001,208,ll5 
2865 :165,036,041,004,240,034,057 
2871 :169,001,133,031,169,161,207 
2877 :141,248,163,173,178,002,l98 
2883 :041,007,201,007,240,006,057 
2889 :238,178,002,076,127,011,l93 
2895 :169,000,141,179,002,198,000 
2901 :025,032,063,014,165,036,l64 
2907 :041,008,240,032,169,001,070 
2913 :133,031,169,160,141,248,211 
2919 :163,173,178,002,041,007,l55 

157 



6 Machine Language Games 

2925 :240,006,206,178,002,076,049 
2931 :127,011,169,007,141,179,237 
2937 :002,230,025,032,063,014,231 
2943 :173,178,002,141,179,002,034 
2949 :165,031,208,007,169,000,201 
2955 :141,000,212,240,005,169,138 
2961 :064,141,000,212,238,182,214 
2967 :002,169,012,056,237,167,026 
2973 :002,048,004,201,007,176,083 
2979 :002,169,007,205,182,002,218 
2985 :240,012,165,031,208,016,073 
2991 :162,001,032,245,015,076,194 
2997 :191,011,032,056,014,169,142 
3003 :000,141,182,002,173,031,204 
3009 :208,208,003,076,129,012,061 
3015 :032,006,017,169,141,141,193 
3021 :019,212,169,000,141,020,254 
3027 :212,141,014,212,169,070,005 
3033 :141,015,212,169,008,141,135 
3039 :018,212,169,129,141,018,142 
3045 :212,173,183,002,072,248,095 
3051 :056,233,001,216,141,183,041 
3057 :002,169,002,141,039,208,034 
3063 :169,000,133,029,133,028,227 
3069 :133,030,141,032,208,165,194 
3075 :029,024,105,006,133,029,073 
3081 :144,002,230,030,165,028,096 
3087 :024,101,029,133,028,008,082 
3093 :173,001,208,101,030,141,163 
3099 :001,208,176,027,040,176,143 
3105 :004,165,030,240,008,173,141 
3111 :032,208,073,002,141,032,015 
3117 :208,173,178,002,141,179,158 
3123 :002,032,056,014,076,002,233 
3129 :012,104,169,003,141,039,013 
3135 :208,169,011,141,032,208,064 
3141 :162,255,032,245,015,104,114 
3147 :240,003,076,205,009,162,002 
3153 :104,032,131,016,160,002,014 
3159 :185,172,002,217,175,002,072 
3165 :144,016,208,003,136,016,104 
3171 :243,160,002,185,172,002,095 
3177 :153,175,002,136,016,247,066 
3183 :169,000,141,024,212,162,051 
3189 :255,032,245,015,169,015,080 
3195 :141,024,212,076,241,008,057 
3201 :165,032,240,002,198,032,030 
3207 :165,036,041,016,208,007,096 
3213 :169,080,133,032,076,138,001 

158 



Machine Language Games& 

3219 :013,165,032,201,079,240,109 
3225 :008,201,000,208,243,169,214 
3231 :030,133,032,169,009,141,161 
3237 :012,212,169,000,141,013,200 
3243 :212,141,007,212,169,030,174 
3249 :141,008,212,169,129,141,209 
3255 :011,212,160,018,173,248,237 
3261 :163,056,233,160,141,170,088 
3267 :002,208,002,160,021,162,238 
3273 :007,169,000,157,080,176,022 
3279 :202,016,250,173,001,208,033 
3285 :056,233,002,141,169,002,048 
3291 :041,007,170,169,085,157,080 
3297 :080,176,173,169,002,074,131 
3303 :074,074,056,233,005,141,046 
3309 :169,002,170,032,131,015,244 
3315 :177,251,201,043,144,004,039 
3321 :201,046,144,046,201,052,171 
3327 :176,012,201,046,176,032,130 
3333 :201,007,144,004,201,010,060 
3339 :144,024,169,010,145,251,242 
3345 :169,001,145,253,192,000,009 
3351 :240,012,136,173,170,002,244 
3357 :208,212,200,200,192,040,057 
3363 :144,206,140,171,002,076,006 
3369 :089,013,140,171,002,162,106 
3375 :063,189,192,164,205,169,005 
3381 :002,240,006,202,016,245,252 
3387 :076,089,013,173,171,002,071 
3393 :024,101,025,221,128,164,216 
3399 :208,239,189,064,164,201,112 
3405 :004,176,232,142,181,002,046 
3411 :206,180,002,032,004,016,011 
3417 :162,005,032,245,015,169,205 
3423 :032,172,171,002,192,020,172 
3429 :240,013,145,251,136,174,036 
3435 :170,002,240,244,200,200,139 
3441 :076,099,013,162,001,032,240 
3447 :245,015,173,031,208,169,192 
3453 :000,141,011,212,173,178,072 
3459 :002,141,179,002,032,063,038 
3465 :014,165,197,201,004,208,158 
3471 :003,076,085,012,201,005,013 
3477 :208,020,165,033,073,001,137 
3483 :133,033,240,005,032,241,071 
3489 :010,208,061,169,008,141,246 
3495 :004,212,208,054,201,003,081 
3501 :240,004,201,063,208,050,171 
3507 :173,141,002,240,015,169,151 

159 



6 Machine Language Games 

3513 :071,141,024,003,169,254,079 
3519 :141,025,003,169,000,133,l50 
3525 :198,000,036,197,080,252,l92 
3531 :169,000,141,024,212,173,l54 
3537 :000,220,201,lll,240,014,227 
3543 :165,197,201,063,240,004,061 
3549 :201,003,208,239,036,197,081 
3555 :080,252,169,015,141,024,l40 
3561 :212,076,006,011,165,026,217 
3567 :141,169,002,165,025,141,ll4 
3573 :170,002,160,000,173,171,l53 
3579 :002,240,005,044,017,208,255 
3585 :016,251,173,179,002,141,251 
3591 :178,002,174,169,002,189,209 
3597 :099,017,170,032,131,015,221 
3603 :169,032,145,251,174,170,l92 
3609 :002,189,099,018,072,189,082 
3615 :099,017,170,032,131,015,239 
3621 :169,013,145,253,104,145,098 
3627 :251,238,169,002,238,170,087 
3633 :002,200,192,040,208,210,133 
3639 :096,169,000,141,171,002,122 
3645 :240,005,169,001,141,171,020 
3651 :002,032,237,013,162,000,001 
3657 :142,169,002,174,169,002,219 
3663 :189,064,164,201,016,144,089 
3669 :071,201,057,144,058,160,008 
3675 :015,173,180,002,208,043,200 
3681 :236,181,002,208,038,169,163 
3687 :003,141,039,208,169,012,163 
3693 :141,032,208,248,173,183,070 
3699 :002,024,105,001,141,183,059 
3705 :002,216,165,025,133,026,176 
3711 :162,052,032,131,016,169,177 
3717 :011,141,032,208,076,075,164 
3723 :009,072,104,136,208,251,151 
3729 :076,113,015,074,074,074,059 
3735 :024,105,003,254,064,164,253 
3741 :141,184,002,188,128,164,196 
3747 :140,185,002,188,192,164,010 
3753 :140,186,002,172,171,002,074 
3759 :208,105,201,003,240,055,219 
3765 :201,002,240,032,176,095,159 
3771 :032,173,015,240,003,032,170 
3777 :255,014,032,173,015,240,154 
3783 :082,032,173,015,240,006,235 
3789 :206,185,002,206,185,002,223 
3795 :238,185,002,076,026,015,241 
3801 :238,185,002,032,148,015,069 

160 



Machine Language Games& 

3807 :041,007,208,055,032,255,053 
3813 :014,206,185,002,076,026,226 
3819 :015,206,185,002,032,148,055 
3825 :015,041,007,208,036,032,068 
3831 :255,014,238,185,002,076,249 
3837 :026,015,032,173,015,240,242 
3843 :011,173,186,002,201,002,066 
3849 :240,014,206,186,002,096,241 
3855 :173,186,002,201,021,240,070 
3861 :003,238,186,002,096,189,223 
3867 :128,164,056,229,026,201,063 
3873 :040,176,017,168,189,192,047 
3879 :164,170,032,131,015,169,208 
3885 :032,145,251,136,048,002,147 
3891 :145,251,173,185,002,056,095 
3897 :229,025,201,040,176,035,251 
3903 :168,174,186,002,032,131,244 
3909 :015,174,184,002,189,089,210 
3915 :021,145,253,138,024,105,249 
3921 :042,145,251,136,048,011,202 
3927 :189,080,021,145,253,138,145 
3933 :024,105,032,145,251,174,056 
3939 :169,002,173,185,002,157,019 
3945 :128,164,173,186,002,157,147 
3951 :192,164,238,169,002,173,025 
3957 :169,002,201,064,240,003,028 
3963 :076,076,014,165,025,133,100 
3969 :026,096,189,000,164,133,225 
3975 :251,133,253,189,032,164,133 
3981 :133,252,073,120,133,254,082 
3987 :096,056,165,140,101,143,080 
3993 :101,144,133,139,138,072,112 
3999 :162,004,181,139,149,140,166 
4005 :202,016,249,104,170,165,047 
4011 :139,096,032,148,015,041,130 
4017 :001,096,162,000,134,020,078 
4023 :162,008,248,010,072,165,080 
4029 :020,101,020,133,020,104,075 
4035 :202,208,244,165,020,216,226 
4041 :096,072,041,015,024,105,042 
4047 :071,133,021,104,074,074,172 
4053 :074,074,024,105,071,133,182 
4059 :020,096,160,002,162,000,147 
4065 :185,172,002,032,202,015,065 
4071 :157,160,163,165,021,157,030 
4077 :161,163,232,232,136,016,153 
4083 :237,096,152,072,160,255,191 
4089 :072,104,136,208,2Sl,202,198 
4095 :208,248,104,168,096,188,243 

161 



6 Machine Language Games 

-- - --

4101 :064,164,185,098,021,248,017 
4107 :024,109,172,002,141,172,119 
4113 :002,173,173,002,105,000,216 
4119 :141,173,002,173,174,002,176 
4125 :105,000,141,174,002,216,155 
4131 :169,016,157,064,164,032,125 
4137 :221,015,169,138,141,019,232 
4143 :212,169,000,141,020,212,033 
4149 :141,014,212,169,060,141,022 
4155 :015,212,169,008,141,018,110 
4161 :212,169,129,141,018,212,178 
4167 :096,173,025,208,141,025,227 
4173 :208,041,001,240,043,162,004 
4179 :233,173,178,002,009,016,182 
4185 :168,173,018,208,016,004,164 
4191 :162,006,160,000,142,018,071 
4197 :208,173,017,208,041,127,107 
4203 :141,017,208,140,022,208,075 
4209 :173,013,220,041,001,240,033 
4215 :005,198,002,076,049,234,171 
4221 :104,168,104,170,104,064,071 
4227 :032,006,017,232,189,002,097 
4233 :022,141,169,002,202,160,065 
4239 :000,189,002,022,153,003,000 
4245 :212,153,010,212,153,017,138 
4251 :212,232,200,192,004,208,179 
4257 :238,169,002,141,170,002,115 
4263 :169,212,133,021,032,016,238 
4269 :017,172,170,002,185,102,053 
4275 :021,133,020,160,000,189,190 
4281 :002,022,145,020,232,200,038 
4287 :192,002,208,245,189,002,005 
4293 :022,240,062,232,142,171,042 
4299 :002,170,160,004,169,008,204 
4305 :145,020,173,169,002,145,095 
4311 :020,134,002,172,000,220,251 
4317 :192,111,208,011,032,006,013 
4323 :017,172,000,220,192,111,171 
4329 :240,249,096,166,002,208,170 
4335 :234,041,254,160,004,145,053 
4341 :020,172,170,002,136,016,249 
4347 :002,160,002,140,170,002,215 
4353 :174,171,002,208,168,160,116 
4359 :023,169,000,153,000,212,052 
4365 :136,016,250,169,008,141,221 
4371 :004,212,141,011,212,141,228 
4377 :018,212,169,015,141,024,092 
4383 :212,096,248,000,000,160,235 
4389 :031,252,144,001,000,136,089 

162 



Machine Language Games6 

4395 :002,124,135,255,249,128,168 
4401 :000,005,127,000,007,017,205 
4407 :240,133,000,015,249,000,180 
4413 :002,032,000,001,192,000,032 
4419 :000,031,063,248,005,000,158 
4425 :128,009,062,064,017,159,000 
4431 :255,225,160,000,001,224,176 
4437 :000,254,161,015,136,159,042 
4443 :240,000,004,064,000,003,146 
4449 :128,000,022,022,022,022,057 
4455 :022,022,022,022,022,022,235 
4461 :022,022,022,022,022,022,241 
4467 :022,022,022,022,022,022,247 
4473 :022,022,022,022,022,022,253 
4479 :022,022,022,022,022,022,003 
4485 :022,022,022,022,022,022,009 
4491 :022,021,021,020,019,018,004 
4497 :017,016,015,014,014,015,236 
4503 :016,017,018,019,019,020,004 
4509 :020,019,018,017,017,016,008 
4515 :016,016,017,017,017,017,007 
4521 :017,018,019,020,021,021,029 
4527 :021,020,020,020,019,019,038 
4533 :018,018,018,018,019,019,035 
4539 :020,021,021,021,021,021,056 
4545 :021,021,021,021,021,021,063 
4551 :021,021,021,020,020,019,065 
4557 :018,017,016,016,015,015,046 
4563 :015,016,016,016,016,017,051 
4569 :017,017,017,017,017,017,063 
4575 :017,016,016,016,016,017,065 
4581 :018,018,017,017,016,016,075 
4587 :015,015,014,013,013,012,061 
4593 :011,010,009,008,007,007,037 
4599 :006,006,006,006,007,008,030 
4605 :009,010,011,012,013,014,066 
4611 :015,016,017,018,019,020,108 
4617 :021,022,022,022,022,022,140 
4623 :022,022,021,021,020,020,141 
4629 :020,020,020,019,018,017,135 
4635 :016,016,015,014,014,013,115 
4641 :013,013,013,013,014,014,113 
4647 :015,015,016,016,017,018,136 
4653 :018,019,019,020,020,021,162 
4659 :021,021,021,021,021,021,177 
4665 :020,020,019,019,018,018,171 
4671 :017,017,016,016,015,015,159 
4677 :014,014,013,013,013,013,149 
4683 :013,014,014,015,015,016,162 

163 



6 Machine Language Games 

4689 :017,018,019,019,020,020,l94 
4695 :020,020,020,021,021,021,210 
4701 :020,020,020,021,021,022,217 
4707 :000,000,000,000,000,000,099 
4713 :000,000,000,000,000,000,l05 
4719 :000,000,000,000,000,000,lll 
4725 :000,000,000,000,000,000,ll7 
4731 :000,000,000,000,000,000,l23 
4737 :000,000,000,000,000,000,l29 
4743 :000,000,000,000,000,003,l38 
4749 :004,001,001,001,001,001,l50 
4755 :001,001,002,002,002,002,l57 
4761 :002,005,006,000,000,001,l67 
4767 :001,003,004,001,000,002,l70 
4773 :005,006,007,008,009,002,202 
4779 :002,002,000,000,000,003,l78 
4785 :004,000,003,004,001,000,l89 
4791 :000,002,005,006,002,000,l98 
4797 :000,000,000,000,000,000,l89 
4803 :000,000,000,000,000,000,l95 
4809 :000,003,004,001,001,001,211 
4815 :001,000,007,008,009,000,232 
4821 :000,005,006,000,000,000,224 
4827 :000,000,000,000,000,003,222 
4833 :004,000,002,002,000,000,233 
4839 :003,004,003,004,003,004,252 
4845 :001,003,004,001,001,001,248 
4851 :001,001,003,004,003,004,003 
4857 :000,002,002,002,002,002,003 
4863 :002,002,002,002,002,002,011 
4869 :002,002,002,002,002,000,015 
4875 :000,000,000,000,000,000,011 
4881 :003,004,007,008,009,003,051 
4887 :004,001,001,001,003,004,037 
4893 :001,003,004,003,004,000,044 
4899 :005,006,005,006,005,006,068 
4905 :005,006,002,005,006,005,070 
4911 :006,005,006,000,000,000,064 
4917 :000,000,000,000,003,004,060 
4923 :003,004,003,004,003,004,080 
4929 :003,004,003,004,003,004,086 
4935 :003,004,000,005,006,005,094 
4941 :006,005,006,002,002,002,l00 
4947 :005,006,000,000,000,005,099 
4953 :006,000,000,000,007,008,ll0 
4959 :009,005,006,000,085,000,200 
4965 :000,000,000,000,000,000,l01 
4971 :001,001,004,004,016,016,l49 
4977 :064,064~064,064,016,016,145 

164 



Machine Language Games& 

4983 :004,004,001,001,000,000,129 
4989 :000,000,001,004,016,064,210 
4995 :001,004,016,064,000,000,216 
5001 :000,000,064,016,004,001,222 
5007 :000,000,000,000,000,000,143 
5013 :000,000,064,016,004,001,234 
5019 :005,005,024,024,106,038,101 
5025 :038,070,000,000,067,067,147 
5031 :147,128,128,149,000,192,143 
5037 :240,240,240,128,128,149,018 
5043 :000,000,000,000,000,000,179 
5049 :000,000,003,015,015,015,233 
5055 :003,001,002,002,194,192,073 
5061 :240,058,042,010,002,000,037 
5067 :063,008,032,255,249,246,032 
5073 :063,008,000,000,001,003,028 
5079 :003,001,000,000,000,003,222 
5085 :007,015,015,007,003,000,012 
5091 :003,015,062,058,058,062,229 
5097 :015,003,000,003,006,012,016 
5103 :012,006,003,000,000,000,004 
5109 :001,002,002,001,000,000,251 
5115 :000,000,000,001,001,000,253 
5121 :000,000,000,000,000,000,001 
5127 :000,000,000,000,192,240,183 
5133 :240,240,192,064,128,128,237 
5139 :168,048,012,170,218,122,245 
5145 :168,048,194,002,010,248,183 
5151 :252,240,192,000,000,000,203 
5157 :128,192,192,128,000,000,165 
5163 :000,192,224,240,240,224,139 
5169 :192,000,192,240,188,172,009 
5175 :172,188,240,192,000,192,015 
5181 :096,048,048,096,192,000,029 
5187 :000,000,128,064,064,128,195 
5193 :000,000,000,000,000,128,201 
5199 :128,000,000,000,000,000,207 
5205 :000,000,000,000,000,000,085 
5211 :238,238,238,254,254,238,015 
5217 :238,238,254,254,056,056,169 
5223 :056,056,254,254,124,254,077 
5229 :224,238,238,238,254,124,145 
5235 :126,254,224,252,126,014,087 
5241 :254,252,124,254,238,224,187 
5247 :224,238,254,124,252,254,193 
5253 :238,254,252,238,238,238,055 
5259 :254,254,224,252,252,224,063 
5265 :254,254,124,254,238,238,227 
5271 :238,238,254,124,056,120,157 

165 



6 Machine Language Games 

5277 :248,056,056,056,254,254,057 
5283 :252,254,014,028,112,224,023 
5289 :254,254,252,254,014,124,041 
5295 :124,014,254,252,014,030,095 
5301 :126,238,254,254,014,014,057 
5307 :254,254,224,252,254,014,159 
5313 :254,124,124,252,224,252,143 
5319 :254,238,254,124,254,254,041 
5325 :014,028,056,056,056,056,215 
5331 :124,254,238,124,254,238,163 
5337 :254,124,124,254,238,254,185 
5343 :126,014,126,124,000,000,101 
5349 :114,038,254,240,000,000,107 
5355 :254,254,056,056,056,056,199 
5361 :056,056,254,254,224,252,057 
5367 :252,224,224,224,206,238,079 
5373 :254,254,254,254,238,230,201 
5379 :028,056,112,000,000,000,199 
5385 :000,000,238,238,238,238,193 
5391 :238,238,124,056,252,254,153 
5397 :238,254,252,224,224,224,157 
5403 :252,254,238,254,252,238,235 
5409 :254,252,000,000,000,000,027 
5415 :000,000,000,000,005,001,045 
5421 :004,000,018,007,019,006,099 
5427 :020,021,003,025,005,006,131 
5433 :022,006,020,002,006,023,136 
5439 :005,006,003,003,025,019,124 
5445 :001,005,006,025,018,007,131 
5451 :025,024,006,002,001,020,153 
5457 :009,015,011,001,001,009,127 
5463 :003,004,002,009,011,011,127 
5469 :001,001,009,003,004,002,113 
5475 :080,117,117,000,007,014,178 
5481 :067,068,071,069,070,032,226 
5487 :071,071,071,071,071,071,025 
5493 :032,032,064,065,066,064,184 
5499 :032,067,068,071,069,070,244 
5505 :004,008,010,012,012,012,187 
5511 :008,012,012,012,008,012,199 
5517 :012,008,012,012,008,016,209 
5523 :016,020,018,014,020,020,255 
5529 :016,014,020,020,014,020,001 
5535 :020,016,020,016,016,024,015 
5541 :022,030,017,017,000,000,251 
5547 :064,003,004,004,002,006,254 
5553 :010,008,008,006,010,004,223 
5559 :010,014,010,012,006,010,245 
5565 :012,016,010,018,016,012,017 

166 



Machine Language Games& 

5571 :014,016,020,016,024,014,043 
5577 :018,014,020,020,022,026,065 
5583 :020,016,017,017,030,000,051 
5589 :064,000,003,004,006,010,044 
5595 :006,002,008,008,010,006,003 
5601 :016,010,006,014,012,018,045 
5607 :018,012,008,010,008,014,045 
5613 :012,014,016,014,016,008,061 
5619 :024,018,022,020,020,022,ll3 
5625 :018,020,026,017,030,017,l21 
5631 :064,000,000,000,033,076,l72 
5637 :201,031,021,015,143,010,l70 
5643 :015,024,014,060,031,021,176 
5649 :015,143,010,015,024,014,238 
5655 :060,031,021,015,143,010,047 
5661 :015,024,014,030,031,021,164 
5667 :015,143,010,015,024,014,000 
5673 :030,031,021,015,143,010,035 
5679 :015,024,014,060,000,000,160 
5685 :000,000,033,076,201,209,060 
5691 :018,015,000,000,005,209,050 
5697 :018,010,031,021,010,209,l08 
5703 :018,010,195,016,010,210,018 
5709 :015,011,195,016,012,209,023 
5715 :018,021,165,031,022,165,249 
5721 :031,023,049,028,024,030,018 
5727 :025,042,041,021,043,209,220 
5733 :018,044,000,000,000,002,l65 
5739 :065,128,249,071,006,020,l34 
5745 :071,006,010,097,008,060,109 
5751 :071,006,020,097,008,010,075 
5757 :143,010,060,071,006,020,179 
5763 :097,008,010,143,010,030,l73 
5769 :071,006,020,097,008,010,093 
5775 :143,010,030,071,006,020,l67 
5781 :097,008,010,143,010,060,221 
5787 :097,008,020,143,010,010,187 
5793 :143,012,060,143,010,020,037 
5799 :097,008,010,071,006,060,163 
5805 :071,006,020,071,006,010,101 
5811 :097,008,060,000,000,000,088 
5817 :000,000,000,000,000,000,185 

167 



6 
ZuiderZee 
Marc Sugiyama 

Your mission is to save your village from flooding. This BASIC and 
machine language game will provide hours of fun . Requires the use of the 
MLX program. 

Your village in Holland is built on land reclaimed from the ocean. 
High dikes keep the cold waters of the North Sea from flooding 
your land. But word has come that a terrible storm is approach­
ing. Heavy rains and giant waves will undoubtedly break down 
sections of the dikes, flooding parts, perhaps all, of your land. 

But you are prepared. You and your fellow Dutchmen have 
been battling the sea for centuries. In the old days, bucket 
brigades and sandbaggers would have fought the storm, and 
many lives might have been lost. Times have changed. Helicop­
ters will rescue all the people whose homes are flooded, and as 
for repairing damage to the dikes and pumping out the water, that 
can all be done by one person. You. 

You Are the Dikemaster 
As dikemaster, you are responsible for repairing the dikes and 
pumping out the floodwaters. 

You have a truck with the latest landfill equipment, so that all 
you have to do is back it into place where you want to repair a 
broken dike. The truck does the rest. 

You also have four pumps. When a dike has been repaired, 
you then have to pick up one of the pumps and put it in place on 
the dike. Then you set it up to pump water from the flooded fields 
and dump it back into the ocean. But be careful. If you set the 
pump wrong, it can pump water from the ocean and pour it onto 
land, making the flood worse than ever. 

When you have successfully repaired all the dikes and 
pumped out all the water, you can't relax. You immediately get a 
promotion, and have to do the same for another village, where the 
storm is even worse. 

And if you eyer get so far behind that all your land is flooded 

168 



Machine Language Games& 

at the same time-well, you can certainly understand why your 
fellow villagers will start looking for a new dikemaster. 

How to Play 
At the beginning of the game, you will be asked to choose a 
starting level. Until you get the hang of driving the truck and 
setting up the pumps, you'd probably better start at level 1, in 
which the storm is pretty mild and new gaps don't open up so 
often. Later, though, you can try higher levels. 

The village. At the beginning of the game, the screen is filled 
with plowed fields, trees, and houses. The dikes are built, with 
the dikemaster's depot in the middle. Then the sea covers all the 
land outside the dikes. Finally, several breaks open in the dikes, 
and sections of the village lands are flooded. It's time for you to 
get to work! 

Scoring. Scoring depends on several factors: how much land 
is covered with water; what level you are playing at; and how 
long you can keep the storm from entirely flooding the village. 

Moving the truck. You drive your truck along the tops of the 
dikes by using the joystick. The dikes are slightly wider than the 
truck, so you can maneuver a little from side to side. You can't 
accidentally drive the truck off the dike. 

Repairing the dike. Drive the truck to a break in the dike. 
You will want to dump a load of dirt into the break, to block it. 
Hold down the joystick button. This puts the truck in reverse. 
When you move the joystick, the truck will back up, moving the 
opposite direction from the direction in which you moved the 
joystick. 

As long as you keep pressing the button and moving the 
joystick, the truck will keep backing up. When it reaches the edge 
of the dike, it stops and dumps a load of dirt off the edge of the 
dike. This creates a new section of dike. If you steered the truck 
correctly, the new section will repair the break in the dike. If not, 
you'll just have an extra load of dirt that doesn't connect with 
anything. 

Your truck constantly scoops up more dirt as you drive from 
place to place-you will never run out of material to repair the 
dike. 

Pumping out the water. Once a flooded area is completely 
surrounded by the dike, with no breaks, you can begin pumping. 
First, you must go and pick up a pump. At the beginning of the 
game, all four pumps are just outside the depot. Drive on top of 

169 



6 Machine Language Games 

the pumps, push the joystick button, and your truck will automat­
ically pick up a pump. Then drive to the edge of the flooded field 
you want to drain. 

You will need to place the pump on the dike between the 
flooded field and the place where you want the water to be 
dumped. Usually you will want the water to be dumped in the 
ocean, but sometimes you will dump from one flooded field to 
another, or even from a flooded field to a field with no water on it. 

You place the pump by holding down the joystick button and 
then moving the joystick in the direction where you want the 
pump to dump the water. Remember, move the joystick in the 
direction where you want the floodwater to end up. 

You will hear the sound of the pump starting up, and when 
you drive away, the pump will stay behind. 

At any time you can go to a pump and pick it up by driving 
right onto it and pushing the joystick button without moving. You'll 
always hear the sound of the truck picking up the pump. Then, 
when you release the button and drive away, the pump will go 
with you. 

How pumps work. The pumps are just machines. They 
aren't very smart. If you set a pump to pick up water from the 
ocean and dump it onto a field, the pump will do exactly that, and 
the flooding will get worse instead of better. You'll also come 
closer to losing your job. 

However, if you set the pump to draw water from a field that 
isn't flooded, or set it so that it dumps onto or picks up from the 
dike instead of a field or the ocean, nothing will happen at all. 

The joystick button. When you move the joystick without 
pressing the button, the truck drives around. 

Pressing down the joystick button can do one of three things: 
If you do not move the joystick, and the truck is touching a 

pump but not already carrying one, the truck will pick up that 
pump and the pump will stop functioning. 

If you move the joystick when the truck is not carrying a 
pump, the truck will go into reverse and move the opposite way 
from the direction you are moving the joystick. As soon as it 
reaches the edge of the dike, it will dump a load of dirt. 

If you move the joystick when the truck is carrying a pump, 
the truck will unload the pump and, if possible, begin dumping 
water where the joystick movement indicated. 

Getting promoted. If you ever uncover all the land of your 
village, you will be promoted and moved to the next village. The 

170 



Machine Language Games& 

game will stop, and the new village will be drawn on the screen. 
You will be at a harder level of play, which means that breaks will 
occur more often, and more land will be flooded at the beginning 
of play. However, you will also get more points at the higher 
levels. 

Strategy Tips 
At lower levels of play, it is possible to repair all the dikes and 
completely pump out all the water. At higher levels, however, the 
storm is too intense, and dikes break too often. Here the best 
strategy is to choose four relatively small enclosures, set a pump 
on each, and then spend the rest of your time repairing breaks in 
the dikes as often as possible. The pumps will function whenever 
the field they are pumping is completely enclosed by dike walls. 
Since the game ends as soon as all the fields are completely 
flooded, it's better to keep one area dry, sacrificing the others, than 
to overextend yourself. 

You can also take advantage of the fact that your truck will 
create a dike section wherever you want it. It is possible to build 
whole new dikes and create new fields. It is also possible to divide 
a large field into several smaller ones by building new dikes across 
it. This is particularly helpful at higher levels, when the dike 
breaks so often that you can't keep a large field completely 
enclosed long enough for it to be pumped dry. 

Typing in the Program 
Most of the program is written in BASIC, but certain key routines 
are written in machine language and must be entered and SAVEd 
using the Machine Language Editor (MLX) found at the beginning 
of this chapter. 

The MLX is a program that checks your DATA statements as 
you enter them and prevents you from entering the data incor­
rectly. Several other games in this chapter and programs in other 
COMPUTE! books for the Commodore 64 use the MLX program, 
so if you type it in once and SAVE it, you will use it again and 
again to enter error-free machine language programs. 

The first step is to enter and SAVE the machine language 
routines using MLX. The MLX will ask you for two numbers. 
Answer the prompts as follows: 

Starting address: 49152 
Ending address: 52040 

Then start entering the data using the instructions given with the 
MLX program. 

171 



6 Machine Language Games 

The next step is to type in and SAVE the BASIC program. The 
best way to save the two parts of this program is to save the 
machine language on a tape first and then save the BASIC part 
immediately after the machine language program. 

Loading the Program 
Once you have both parts of the program SAVEd, you are ready 
to LOAD the program. First LOAD the machine language as 
follows: 

From disk: LOAD"fn':S,1 
From tape: LOAD"':l,1 

where fn is the filename. 
Type NEW and LOAD the BASIC part as you would any 

other BASIC program. To begin play, type RUN and the game will 
begin. 

Program 1. Zuider Zee: Part 1. 
BASIC 

100 FORI=0T027:POKE54272+I,0:NEXT:POKE53264,0 
110 IFPEEK(49161)<>76THENPRINT"{DOWN}?NO MACHINE L 

ANGUAGE{2 SPACES}ERROR";:END 
120 PRINT"{CLR}{BLK}@@@@@@" 
130 SYS4916l:SYS49164:POKE53272,4:POKE648,128 
140 PRINT"{CLR}{GRN}"CHR$(8)CHR$(14):POKE53280,0:P 

OKE53281,0 
150 POKE55,0:POKE56,128:CLR 
160 GOSUB1040 
170 
180 REM MAIN LOOP 
190 SYS49167:SYS49170 
200 IFPEEK(908)THENPOKE851,l:GOSUB410:POKE851,0 
210 IFPEEK(844)=0THEN220 
215 PN=PEEK(844)-2:POKE851,l:GOSUB660:PF(PN)=PF:PO 

KE844,0:POKE851,0:GOSUB560 
220 IFPEEK(845)=0THEN260 
230 PF(PEEK(845)-2)=0:POKE845,0 
240 POKEFQ,20:POKEAD,0:POKESR,243:POKECT,17:POKECT 

, 16 
250 GOSUB560 
260 IFPEEK(908)=0ANDPEEK(851)=0THEN300 
270 FORPN=lT04:IFPF(PN)=0THEN290 
280 GOSUB670:PF(PN)=PF 
290 NEXT:POKE851,0:POKE908,0 
300 GOSUB870:SYSHM:Hl=FND(690):P=Hl/H0 
310 IFP>=lTHEN2410 

172 



Machine Language Games& 

320 IFINT(P*l00)<3THEN2610 
330 GOSUB560:SC=SC+INT(MD*P) 
340 GETA$:IFA$=""THEN190 
350 IFA$="Q"THEN2620 
360 IFA$<>"{Fl}"THEN190 
370 POKE53280,14:POKE834,0:POKE198,0:WAIT198,l:POK 

El98,0:POKE834,l:POKE53280,6 
380 GOT0190 
390 
400 REM FLOOD 
410 FS=FND(900):IS=FND(902) 
420 X=PEEK(680):Y=PEEK(681) 
430 IT=PEEK(907):FI=PEEK(906):FL=PEEK(909)-33:TL=P 

EEK(910)-33 
440 IFFL<00RTL>l40RFL>l4THENRETURN 
450 IFTL<0THENTL=0 
460 POKEX+Y*40+S,ll:IFFIANDITTHENLV=40:GOT0510 
470 IFTL=FLTHENLV=TL:GOT0510 
480 IFFIORITTHENLV=7:GOT0510 
490 POKEFQ,8:POKEAD,0:POKESR,122:POKECT,129 
500 LV=(TL*IS+FL*FS)/(IS+FS) 
510 IFLV=0THENLV=7 
520 SYSFM,X,Y,31,14:SYSFM,X,Y,LV+33,14:POKECT,128 
530 RETURN 
540 
550 REM STATUS LINE 
560 POKE214,23:PRINT:PC=-(P>.25)-(P>.50)-(P>.75)-( 

P>l)+l 
570 PRINT"{RVS}{YEL} RANK:"MID$(STR$(SK),2)" SCORE 

• fl • . , 
580 PRINTTAB(l4)RIGHT$("000000"+MID$(STR$(INT(SC/l 

0)*10),2),6); 
590 PRINT" ST:"MID$("{RED}{CYN}{YEL}{GRN}{WHT}",PC 

, 1 ) II { YEL} II i 

600 PRINT" PUMPS:";:FORI=lT04:PRINTTAB(I*2+30); 
610 IFPF( I) THENPRINTMID$ (" {RED} { CYN} { PUR} { GRN} ",I, 

l)MID$(STR$(I),2);:GOT0630 
620 PRINT"{YEL} "; 
630 NEXT:PRINT"{HOME}":RETURN 
640 
650 REM START/CHECK PUMP 
660 XP(PN)=PEEK(848):YP(PN)=PEEK(849):DP(PN)=PEEK( 

850) 
670 PF=0:X=XP(PN):Y=YP(PN):D=DP(PN) 
680 FP(PN)=X+40*Y+S-D(D):TP(PN)=X+40*Y+S+D(D) 
690 FC=PEEK(FP(PN)):IFFC=llORFC=320RFC=31THENFC=40 
700 FC=FC-33:IFFC<00RFC>l4THENRETURN 
710 TC=PEEK(TP(PN)):IFTC=llORTC=320RTC=31THENTC=40 
720 TC=TC-33:IFTC<0THENTC=0 

173 



6 Machine Language Games 

730 IFTC>l4THENRETURN 
740 NX=X-XD(D):NY=Y-YD(D):SYSFM,NX,NY,11,14 
750 SYSFM,NX,NY,FC+33,14 
760 MF(PN)=0:IFPEEK(905)=0THENMF(PN)=l/FND(690)*(8 

-SK/2) 
770 NX=X+XD(D):NY=Y+YD(D):SYSFM,NX,NY,11,14 
780 IFPEEK(FP(PN))=llTHENSYSFM,NX,NY,TC+33,14:MF(P 

N)=0:MT(PN)=0:GOT0810 
790 SYSFM,NX,NY,TC+33,14 
800 MT(PN)=0:IFPEEK(905)=0THENMT(PN)=l/FND(690)*(8 

-SK/2) 
81~ IFPF(PN)THEN840 
820 FL(PN)=0:TL(PN)=0 
830 POKEFQ,30:POKEAD,0:POKESR,243:POKECT,17:POKECT 

I 16 
840 PF=l:RETURN 
850 
860 REM OPERATE PUMPS 
870 FORI=lT04:IFPF(I)=0THEN1010 
880 Cl=0:CF=0:FL(I)=FL(I)+MF(I):TL(I)=TL(I)+MT(I) 
890 IFFL(I)<lTHEN920 
900 CF=l:FL(I)=FL(I)-l:FC=PEEK(FP(I))-34:IFFC<0THE 

NFC=-33:PF(I)=0 
910 IFFC>l4THENPF(I)=0:FC=l4 
920 IFTL(I)<lTHEN950 
930 Cl=l:TL(I)=TL(I)-l:TC=PEEK(TP(I))-32:IFTC>l4TH 

ENTC=l4:PF(I)=0 
940 IFTC<0THENPF(I)=0:TC=0 
950 IFMF(I)=00RCF=0THEN980 
960 XN=XP(I)-XD(DP(I)):YN=YP(I)-YD(DP(I)) 
970 POKE851,l:SYSFM,XN,YN,ll,12:SYSFM,XN,YN,FC+33, 

14+(FC=-33):POKE851,0 
980 IFMT(I)=00RC1=0THEN1010 
990 XN=XP(I)+XD(DP(I)) :YN=YP(I)+YD(DP(I)) 
1000 POKE851,l:SYSFM,XN,YN,ll,12:SYSFM,XN,YN,TC+33 

,14:POKE851,0 
1010 NEXT:RETURN 
1020 
1030 REM INITIALIZE 
1040 PRINT"{CLR}"; 
1050 JY=56320:IFPEEK(l024)=0THENGOSUB2090 
1060 I=RND(-RND(0)) 
1070 DIM X0(7),Xl(7),Y0(7),Yl(7),XP(4),YP(4),DP(4) 
1080 DIM PF(4),FL(4),TL(4),FP(4),TP(4),MT(4),MF(4) 
1090 S=32768:C=22528:FM=49152:BX=49155:HM=49158 
1100 FQ=54280:AD=54284:SR=54285:CT=54283 
1110 DEFFNR(X)=INT(RND(l)*X) 
1120 DEFFND(X)=PEEK(X)+256*PEEK(X+l) 
1130 REM SPRITE DATA 

174 



Machine Language Games& 

1140 IFPEEK(l024)THENFORI=lT0605:READA:NEXT:GOT012 
20 

1150 POKE1024,l:FORI=0T025:SQ=34816+I*64:J=0 
1160 READA:IFA<0THENSQ=SQ-A:J=J-A:GOT01180 
1170 POKESQ,A:SQ=SQ+l:J=J+l 
1180 IFJ<63THEN1160 
1190 NEXT 
1200 PRINTSPC(5)" PRESS THE TRIGGER TO CONTINUE 

{UP}":GOSUB27S0 
1210 GOSUB1990 
1220 POKE53272,8 
1230 REM CHAR DATA 
1240 PRINT"{CLR}{GRN}":FORI=lT012:READB:FORJ=0T07: 

READA 
1250 POKE40960+B*8+J,A:NEXT:NEXT 
1260 FORI=0T03:READXD(I),YD(I):NEXT:FORI=0T03:READ 

D( I) :NEXT 
1270 POKE53280,6:POKE53281,0:SK=PEEK(l026):GOSUB13 

60 
1280 POKE53269,251 
1290 A=0:FORI=53254T053260STEP2:POKEI,162+A:POKEI+ 

l,132:A=A+2:NEXT 
1300 A=2:FORI=53290T053293:POKEI,A:A=A+l:NEXT:FORI 

=33786T033790:POKEI,46:NEXT 
1310 TT=0:MD=3+SK*2:MR=26+52*(SK-l) 
1320 SC=FND(l027)*10 
1330 POKE904,MD:POKE912,MR:POKE834,l:RETURN 
1340 
1350 REM MAKE ISLAND 
1360 POKE214,23:PRINT:PRINT"{RVS}{YEL}{39 SPACES} 

{HOME}"; 
1370 POKE33767,160:POKE56295,7 
1380 GOSUB560 
1390 SYSFM,RND(l}*40,RND(l)*25,0,13 
1400 SYSBX,18,9,21,12,64,14:SYSFM,l9,10,l,9:POKES, 

0:POKES+C,13 
1410 POKE419+S,l:POKE420+S,2:POKE459+S,64:POKE459+ 

S+C,13 
1420 POKE460+S,3:POKE460+S+C,13 
1430 REM DAMS 
1440 FORI=0T07 
1450 X0=FNR(l0)*3:Xl=X0+(FNR(l0)+1)*3:IFX0=00RX1>3 

8THEN1450 
1460 Y0=FNR(7)*3:Yl=Y0+(FNR(7)+1)*3:IFY0=00RY1>23T 

HEN1460 
1470 SYSBX,X0,Y0,Xl,Yl,64,14:X0(I)=X0:Y0(I)=Y0:Xl( 

I)=Xl:Yl(I)=Yl:NEXT 
1480 SYSFM,0,0,5,13 
1490 REM TREES/HOUSES 

175 



6 Machine Language Games 

1500 FORI=lT030 
1510 X=FNR(37)+l:Y=FNR(22)+l:T=X+Y*40+S 
1520 IFPEEK(T)=00RPEEK(T)=5THENPOKET,3 
1530 NEXT 
1540 FORI=0T09 
1550 X=FNR(37)+l:Y=FNR(22)+l:T=X+Y*40+S 
1560 IFPEEK(T)THEN1550 
1570 POKET,4:POKET+C,ll:POKE52320+I,X:POKE52352+I, 

Y:NEXT 
1580 REM WATER/AMOUNT LAND 
1590 SYSFM,0,0,40,14:SYSHM:H0=FND(690) :ID=INT(H0*S 

K/10) 
1600 REM FIRST BREAKS 
1610 R=0:K=0:F2=0:NT=4 
1620 FORI=0T07:GOSUB1760:IFR=5THENI=8 
1630 NEXT:K=K+l:IFR<5ANDK<5THEN1620 
1640 REM EXTRA BREAKS 
1650 F2=l:SYSFM,0,0,32,14:SYSHM:Hl=FND(690):IFH0-I 

D>HlTHEN1720 
1660 SYSFM,0,0,40,14 
1670 I=(I+l)AND7:GOSUB1760:IFFTHEN1670 
1680 IFF1=0THENPOKET,64:GOT01670 
1690 SYSFM,0,0,32,14:SYSHM:H2=FND(690) 
1700 IFH1-H2<3THENPOKET,64:GOT01660 
1710 IFH0-ID<H2+1THENHl=H2:GOT01660 
1720 SYSFM,0,0,40,14 
1730 RETURN 
1740 
1750 REM MAKE BREAK 
1760 Fl=0:F=l:J=0:DI=(RND(l)>.5) 
1770 IFDITHEN1800 
1780 Y0=Y0(I):X=X0(I):IFRND(l)>.5THENX=Xl(I) 
1 790 GOT01810 
1800 X0=X0(I):Y=Y0(I):IFRND(l)>.5THENY=Yl(I) 
1810 J=J+l:IFJ>NTTHENRETURN 
1820 IFDITHEN1890 
1830 Yl=(Y+FNR(Yl(I)-Y-2)+l):T=Yl*40+X+S 
1840 IF(Yl>9ANDY1<13)AND(X=l80RX=2l)THEN1810 
1850 IFPEEK(T+l)=640RPEEK(T-1)=64THEN1810 
1860 IFPEEK(T+40)<>640RPEEK(T-40)<>640RPEEK(T)<>64 

THEN1810 
1870 IFF2ANDPEEK(T+l)=40ANDPEEK(T-1)=40THEN1810 
1880 GOT01930 
1890 Xl=X+FNR(Xl(I)-X-2)+l:T=Xl+Y*40+S:IF(Xl>l7AND 

Xl<22)AND(Y=90RY=l2)THEN1810 
1900 IFPEEK(T+40)=640RPEEK(T-40)=64THEN1810 
1910 IFPEEK(T+l)<>640RPEEK(T-1)<>640RPEEK(T)<>64TH 

EN1810 
1920 IFF2ANDPEEK(T+40)=40ANDPEEK(T-40)=40THEN1810 

176 



1930 
1940 

1950 
1960 
1970 
1980 
1990 

2000 

2010 
2020 
2030 
2040 
2050 

2060 
2070 
2080 
2090 
2100 

2110 

2120 
2130 
2140 

2150 
2160 
2170 

2180 
2190 
2200 

Machine Language Games& 

PL=0:F=0 
IFPEEK(T+40)=400RPEEK(T-40)=400RPEEK(T+l)=400 
RPEEK(T-1)=40THENPL=40:Fl=l 
IFF2THENPL=6 
POKET+C,13-(PL=40):POKET,PL:R=R+l:RETURN . 
REM SKILL/TITLE 
SK=l:PRINT"(CLR}"SPC(l4)CHR$(142)"(GRN} 
(2 DOWN}ZUIDER(2 SPACES}ZEE":PRINTSPC(l4)" 
(3 DOWN}RANK NUMBER" 
PRINTSPC(l2)"(DOWN}(RVS} 1 (OFF} 2(2 SPACES} 3 
(2 SPACES}4(2 SPACES}5 " 
J=PEEK(JY):IFJ=l27THEN2010 
PRINTSPC(9+SK*3)"{UP}"SK"{LEFT} II 

IF(JAND4)=0THENSK=SK-l:IFSK<lTHENSK=5 
IF(JAND8)=0THENSK=SK+l:IFSK>5THENSK=l 
PRINTSPC( 9+SK*3) II (UP} (RVS} "SK" (LEFT} II: IF(JAN 
Dl6) THEN2010 
PRINT"(CLR}":POKE1026,SK:RETURN 

REM DO INSTRUCTION SCREEN FOR POWER UP 
PRINT" ( CLR} { 4 DOWN}" SPC ( 14) "ZUIDER ZEE" 
PRINT"(DOWN} YOUR VILLAGE IN HOLLANDIS BUILT 

ON" - -

PRINT" LAND RECLAIMED FROM THE SEA.(2 SPACES} 
HIGH" 
PRINT" DIKES HAVE KEPT THE WATER FROM FLOOD-" 
PRINT" ING YOUR LAND, BUT NOW A TERRIBLE" 
PRINT" STORM IS APPROACHING.(2 SPACES}HEAVY R 
AINS AND" -
PRINT" GIANT WAVES WILL UNDOUBTEDLY BREAK" 
PRINT" DOWN SECTIONS OF THE DIKES, FLOODING" 
PRINT" YOUR LAND.(2 SPACES}AS DIKEMASTER YOU 
(SPACE} ARE" -
PRINT" RESPONSIBLE FOR REPAIRING THE DIKES" 
PRINT" AND PUMPING OUT THE FLOODWATERS." 
PRINTSPC(5)"(2 DOWN}PRESS THE TRIGGER TO CONT 
INUE:":GOSUB2750 -

2210 . 
2220 PRINT"(CLR}(DOWN} USE THE JOYSTICK TO DRIVE T 

HE TRUCK" -
2230 PRINT" ALONG THE TOPS OF THE DIKES.(2 SPACES} 

YOU" 
2240 PRINT" MAY NOT DRIVE OVER DIKES THAT ARE" 
2250 PRINT" DECAYING.(2 SPACES}~MEMBER THAT YOU C 

AN" 
2260 PRINT" REPAIR THE DIKES BY DUMPING DIRT ON" 
2270 PRINT" THEM.(2 SPACES}THE DIKES BEGIN TO DECA 

Y BEFORE" 

177 



6 Machine Language Games 

2280 PRINT" THERE ARE VISIBLE SIGNS OF DAMAGE." 
2290 PRINT"{DOWN} PRESSING THE TRIGGER CAN HAVE ON 

E OF" 
2300 PRINT" THREE EFFECTS:":PRINT"{DOWN} 1) PICK U 

P THE PUMP UNDER THE TRUCK." 
2310 PRINT" 2) DROP THE PUMP UNDER THE TRUCK." 
2320 PRINT" 3) PUT THE TRUCK IN REVERSE AND DUMP A 

2330 PRINT"{4 SPACES}LOAD OF DIRT AT THE EDGE OF A 
DIKE." 

2340 PRINT"{DOWN} THERE ARE TWO KEYBOARD CONTROLS: 

2350 PRINT" {DOWN} 1) 'E:_l' PAUSES THE GAME; PRESS IN 
G ANY'' 

2360 PRINT"{4 SPACES}KEY WILL RESUME YOUR GAME." 
2370 PRINT" 2) 'Q' QUITS THE GAME." 
2380 PRINTSPC(6)~{DOWN}THE STORM IS APPROACHING! 

{UP}":RETURN -
2390 
2400 REM NEXT LEVEL 
2410 POKE834,0:PRINT"{HOME}{RVS}{BLU}{4 SPACES}YOU 

HAVE UNFLOODED THE ISLAND11":POKE54283,0 
2420 POKEFQ,20:POKEAD,0:POKESR,240 
2430 B=0:FORI=0T09:B=B-(PEEK(52384+I)=0):NEXT:B=IN 

T(P*l000*SK)+B*500 
2435 FORSC=SCTOSC+BSTEP75:GOSUB560:POKECT,33:POKEC 

T,32:NEXT 
2440 FORI=lT0750:NEXT 
2450 PRINT"{CLR}{GRN}":POKE53272,6:POKE53280,0:POK 

E53281,0:POKE53269,0 
2460 PRINT II SCORE: II MID$ ( STR$ ( INT (SC/ 10) * 10) I 2) 
2470 PRINT"T2 DOWN} YOU HAVE SUCCEDED IN RECOVERIN 

G THE" -
2480 PRINT" ENTIRE ISLAND.{2 SPACES}YOU ARE BEING 

{SPACE} PROMOTED" -
2490 PRINT" BECAUSE OF THIS GREAT ACCOMPLISHMENT!" 
2500 PRINT"{DOWN} ANOTHER, STRONGER STORM IS APPRO 

ACHING" -
2510 PRINT" AND YOU HAVE BEEN GIVEN AN ISLAND THAT 

2520 
2530 
2540 
2550 

2560 
2570 
2580 
2590 

178 

PRINT" HAS SUFFERED GREATER DAMAGE THAN YOUR" 
PRINT" FIRST ASSIGNMENT." 
PRINTSPC(l5)"{DOWN}GOOD LUCK1" 
PRINTSPC(7)"{4 DOWNTPRESS THE TRIGGER TO BEGI 
N" 
POKE1027,(SC/10)AND255:POKE1028,SC/2560 
GOSUB2750:SK=SK+l:IFSK>5THENSK=5 
POKE1026,SK:RUN 



2600 
2610 

2620 
2630 
2640 

2650 

2660 

2670 
2680 
2690 

2700 
2710 

2715 

2716 

2717 
2718 

2719 
2720 
2721 

2730 
2740 
2750 
2760 
2770 
2780 
2790 
2800 
2810 
2820 
2830 
2840 
2850 
2860 
2870 

288"'1 

Machine Language Games& 

REM ISLAND FLOODED 
POKE834,0:PRINT"{HOME}{RVS}{BLU}{4 SPACES}THE 

ENTIRE ISLAND HAS FLOODEDll":POKE54283,0 
POKEFQ,15:POKEAD,17:POKESR,250:POKECT,33 
FORI=lT0250:NEXT:POKECT,32:FORI=lT0750:NEXT 
POKE834,0:PRINT"(CLR}(GRN}":POKE53272,6:POKE5 
3280,0:POKE53281,0:POKE53269,0 
PRINT" {DOWN}YOUR SCORE WAS: "MID$ ( STR$ ( INT( SC/ 
10)*10),2) -
PRINT"{2 DOWN}YOU HAVE FAILED TO SAVE THE ISL 
AND" 
PRINT"AND HAVE BEEN RELIEVED OF YOUR" 
PRINT"POSITION AS DIKEMASTER." 
PRINT"{DOWN}fERHAPS ALL YOU NEED IS MORE PRAC 
TICE~" 
PRINT"WOULD YOU LIKE TO TRY AGAIN?" 
PRINTSPC(4)"{2 DOWN}PRESS THE TRIGGER TO BEGI 
N AGAIN" 
PRINT" {DOWN}{ 2 SPACES} I O' TO QUIT AND I I I FOR 

INSTRUCTIONS" -
GETA$:IFA$="Q"THENPOKE648,4:POKE1024,0:SYS102 
4 
IFA$<>"I"THEN2719 
GOSUB2090:PRINTSPC(6)"PRESS TRIGGER TO CONTIN 
UE":GOSUB2750:GOT02640-
IFPEEK(JY)AND16THEN2716 
IF(PEEK(JY)AND16)=0THEN2720 
POKE1027,0:POKE1028,0:SC=0:GOSUB2750:GOSUB199 
0:RUN 

REM TRIGGER? 
IFPEEK(JY)AND16THEN2750 
IF(PEEK(JY)AND16)=0THEN2760 
RETURN 

REM SPRITE IMAGES 
REM TRUCK{2 SPACES}(U/D/L/R) 
DATA -25,60,-2,126,-2,126,-2,126,-2,126,-25 
DATA -25,126,-2,126,-2,126,-2,126,-2,60,-25 
DATA -25,63,-2,255,-2,255,-2,255,-2,63,-25 
DATA -25,252,-2,255,-2,255,-2,255,-2,252,-25 
. 
REM COPTER (U/D//L/UL/DL//R/UR/DR) 
DATA -10,60,-2,102,-2,102,-2,126,-2,126,-2,60 
,-2,60,-2,60,-2 
DATA 24,-2,24,-2,24,-2,24,-2,24,-2,8,-2,56,-1 
0 

2890 DATA -10,56,-2,8,-2,24,-2,24,-2,24,-2,24,-2,2 
4 

179 



6 Machine Language Games 

2900 DATA -2,60,-2,60,-2,60,-2,126,-2,126,-2,102,-
2,102,-2,60,-10, -63 

2910 DATA -24,7,128,0,15,240,0,9,255,224,9,255,160 
,15,240,32,7,128,0,-21 

2920 DATA -9,3,128,0,7,192,0,12,96,0,12,112,0,7,24 
0,0,3,248,-2,124,-2 

2930 DATA 60,-2,14,-2,7,-2,3,128,0,1,192,-2,96,-2, 
192,-12 

2940 DATA -14,192,-2,96,0,1,192,0,3,128,0,7,-2,14, 
-2,60,-2,124,0 

2950 DATA 3,248,0,7,240,0,12,112,0,12,96,0,7,192,0 
,3,128,-10, -63 

2960 DATA -22,1,224,4,15,240,5,255,144,7,255,144,0 
,15,240,0,1,224,-24 

2970 DATA -10,3,128,0,7,192,0,12,96,0,28,96,0,31,1 
92,0,63,128,0,62,-2,60,-2 

2980 DATA 112,-2,224,0,1,192,0,3,128,0,6,-2,3,-14 
2990 DATA -9,3,-2,6,-2,3,128,0,l,192,-2,224,-2,112 

,-2,60,-2,62,-2,63,128 
3000 DATA 0,31,192,0,28,96,0,12,96,0,7,192,0,3,128 

,-12 
3010 
3020 REM PUMPS (U/D/L/R) 
3030 DATA -22,24,-2,60,-2,126,-2,255,-2,219,-2,24, 

-2,24,-2,24,-19 
3040 DATA -22,24,-2,24,-2,24,-2,219,-2,255,-2,126, 

-2,60,-2,24,-19 
3050 DATA -22,24,-2,56,-2,112,-2,255,-2,255,-2,112 

,-2,56,-2,24,-19 
3060 DATA -22,24,-2,28,-2,14,-2,255,-2,255,-2,14,-

2,28,-2,24,-19 
3070 
3080 REM COPTER ROTOR (FRAMES 0-7) 
3090 DATA 0,24,-2,24,-2,24,-2,24,-2,24,-2,24,-2,24 

,-2,24,-2,24,-2,24,-2,24 
3100 DATA -2,24,-2,24,-2,24,-2,24,-2,24,-2,24,-2,2 

4,-2,24,-2,24,-2,24,0 
3110 DATA -3,3,-2,3,-2,1,128,0,1,128,-2,192,-2,192 

,-2,96,-2,96,-2,48,-2,56 
3120 DATA -2,28,-2,6,-2,6,-2,3,-2,3,-2,1,128,0,1,1 

28,-2,192,-2,192,-3 
3130 DATA -9,24,-2,12,-2,6,-2,3,-2,1,128,-2,192,-2 

,112,-2,24,-2,14,-2,3,-2,1 
3140 DATA 128,-2,192,-2,96,-2,48,-2,24,-9 
Jl50 DATA -18,96,-2,60,-2,7,-2,1,192,-2,126,-2,3,1 

28,-2,224,-2,60,-2,6,-18 
3160 DATA -30,255,255,255,-30 
3170 DATA -20,6,-2,60,-2,224,0,3,128,0,126,0,1,192 

,0,7,-2,60,-2,96,-20 

180 



Machine Language Games6 

3180 DATA -ll,24,-2,48,-2,96,-2,192,0,1,128,0,3,-2 
,14,-2,24,-2,112,-2,192,0,l 

3190 DATA 128,0,3,-2,6,-2,12,-2,24,-11 
3200 DATA -5,192,-2,192,0,1,128,0,1,128,0,3,-2,3,-

2,6,-2,6,-2,12,-2 
3210 DATA 24,-2,48,-2,96,-2,96,-2,192,-2,192,0,1,1 

28,0,1,128,0,3,-2,3,-5 
3220 
3230 REM CHARACTER DATA 
3240 DATA 0,255,204,0,51,255,204,0,51 
3250 DATA 1,255,250,238,235,238,250,255,85 
3260 DATA 2,253,189,237,173,237,189,253,85 
3270 DATA 3,0,60,255,255,255,255,60,0 
3280 DATA 4,85,255,255,168,255,255,69,69 
3290 DATA 5,255,204,0,51,255,204,0,51 
3300 DATA 6,0,0,0,0,0,0,0,0 
3310 DATA 10,0,90,90,60,60,60,0,0 
3320 DATA 11,255,255,255,255,255,255,255,255 
3330 DATA 12,85,0,60,60,60,60,0,85 
3340 DATA 31,255,255,255,255,255,255,255,255 
3350 DATA 64,0,0,0,0,0,0,0,0 
3360 
3370 REM DIRECTIONAL DATA 
3380 DATA 0,-1,0,1,-1,0,1,0 
3390 DATA -40,40,-1,l 

Program 2. Zuider Zee: Part 2. 
Machine Language Data to Use with MLX 

49152 :076,021,192,076,175,192,220 
49158 :076,060,193,076,139,193,231 
49164 :076,023,202,076,205,193,019 
49170 :076,226,194,032,116,193,087 
49176 :141,000,205,032,116,193,199 
49182 :141,000,206,032,116,193,206 
49188 :133,002,032,116,193,133,133 
49194 :010,169,000,141,137,003,246 
49200 :141,179,002,133,013,169,173 
49206 :001,141,143,003,141,178,149 
49212 :002,133,009,162,003,024,137 
49218 :189,243,202,164,013,121,230 
49224 :000,206,141,183,002,201,037 
49230 :024,176,072,024,189,247,042 
49236 :202,121,000,205,141,182,167 
49242 :002,201,040,176,058,172,227 
49248 :183,002,185,000,207,133,038 
49254 :158,185,064,207,133,159,240 
49260 :172,182,002,177,158,201,232 
49266 :064,176,041,197,002,240,066 

181 



6 Machine Language Games 

49272 :037,165,002,032,043,193,080 
49278 :238,178,002,208,003,238,225 
49284 :179,002,164,009,173,182,073 
49290 :002,153,000,205,173,183,086 
49296 :002,153,000,206,230,009,232 
49302 :076,158,192,169,001,141,119 
49308 :137,003,202,016,160,230,136 
49314 :013,166,009,228,013,208,031 
49320 :150,169,000,141,143,003,006 
49326 :096,160,000,132,018,032,100 
49332 :116,193,164,018,153,180,236 
49338 :002,200,192,004,208,241,009 
49344 :032,116,193,133,002,032,188 
49350 :116,193,133,010,174,183,239 
49356 :002,189,000,207,133,253,220 
49362 :189,064,207,133,254,174,207 
49368 :181,002,189,000,207,133,160 
49374 :158,189,064,207,133,159,108 
49380 :172,180,002,165,002,032,013 
49386 :025,193,200,204,182,002,016 
49392 :208,245,174,181,002,238,008 
49398 :183,002,189,000,207,133,192 
49404 :158,189,064,207,133,159,138 
49410 :165,002,172,180,002,032,043 
49416 :043,193,165,002,172,182,253 
49422 :002,032,043,193,232,236,240 
49428 :183,002,208,224,096,072,037 
49434 :145,253,165,254,072,073,220 
49440 :088,133,254,165,010,145,059 
49446 :253,104,133,254,104,145,007 
49452 :158,165,159,072,073,088,247 
49458 :133,159,165,010,145,158,052 
49464 :104,133,159,096,169,000,205 
49470 :141,178,002,141,179,002,193 
49476 :133,158,169,128,133,159,180 
49482 :169,004,133,018,160,000,046 
49488 :162,000,177,158,201,011,021 
49494 :240,012,201,031,176,008,242 
49500 :238,178,002,208,003,238,191 
49506 :179,002,230,158,208,002,109 
49512 :230,159,232,224,240,208,117 
49518 :227,198,018,208,223,096,056 
49524 :032,253,174,032,158,173,170 
49530 :165,013,240,003,104,104,239 
49536 :096,032,247,183,165,021,104 
49542 :208,246,165,020,096,160,005 
49548 :000,132,158,132,253,169,216 
49554 :208,133,159,169,160,133,084 
49560 :254,120,165,001,041,251,216 

182 



Machine Language Games& 

49566 :133,001,177,158,145,253,001 
49572 :200,208,249,230,159,230,160 
49578 :254,165,159,201,216,208,093 
49584 :239,165,001,009,004,133,215 
49590 :001,088,173,000,221,041,194 
49596 :252,009,001,141,000,221,044 
49602 :169,008,141,024,208,169,145 
49608 :024,141,022,208,096,173,096 
49614 :173,002,205,136,003,176,133 
49620 :081,169,000,141,175,002,012 
49626 :169,020,141,145,003,173,101 
49632 :027,212,041,031,201,022,246 
49638 :176,247,170,232,142,169,086 
49644 :002,173,027,212,041,063,242 
49650 :201,038,176,247,170,232,026 
49656 :142,168,002,172,169,002,135 
49662 :185,000,207,024,109,168,179 
49668 :002,133,158,185,064,207,241 
49674 :105,000,133,159,160,000,055 
49680 :177,158,201,064,208,016,072 
49686 :169,000,141,174,002,032,028 
49692 :052,194,173,174,002,240,095 
49698 :003,032,121,194,206,145,223 
49704 :003,240,008,174,173,002,128 
49710 :236,136,003,144,172,096,065 
49716 :162,003,142,171,002,174,194 
49722 :171,002,173,168,002,024,086 
49728 :125,247,202,072,173,169,028 
49734 :002,024,125,243,202,168,066 
49740 :104,024,121,000,207,133,153 
49746 :253,185,064,207,105,000,128 
49752 :133,254,160,000,177,253,041 
49758 :201,033,144,017,201,048,226 
49764 :176,013,169,001,141,174,006 
49770 :002,173,175,002,240,008,194 
49776 :032,100,195,206,171,002,050 
49782 :016,193,096,173,173,002,003 
49788 :205,136,003,176,096,160,132 
49794 :000,200,192,016,240,089,099 
49800 :185,000,204,208,246,152,107 
49806 :072,169,001,153,000,204,229 
49812 :173,168,002,153,032,204,112 
49818 :173,169,002,153,064,204,151 
49824 :169,006,133,010,172,169,051 
49830 :002,185,000,207,024,109,181 
49836 :168,002,133,158,185,064,114 
49842 :207,105,000,133,159,104,118 
49848 :024,105,064,072,160,000,097 
49854 :032,043,193,238,173,002,103 

183 



6 Machine Language Games 

49860 :104,132,159,010,038,159,030 
49866 :200,192,003,208,248,133,162 
49872 :158,165,159,024,105,160,211 
49878 :133,159,169,000,160,007,074 
49884 :145,158,136,016,251,096,254 
49890 :173,173,002,240,119,169,078 
49896 :000,141,140,003,173,136,057 
49902 :003,074,141,145,003,169,005 
49908 :001,141,175,002,173,027,251 
49914 :212,041,015,201,015,240,206 
49920 :247,170,232,142,177,002,202 
49926 :189,000,204,240,083,188,142 
49932 :064,204,140,169,002,189,012 
49938 :032,204,141,168,002,024,077 
49944 :121,000,207,133,158,185,060 
49950 :064,207,105,000,133,159,186 
49956 :160,000,177,158,201,064,028 
49962 :240,019,169,000,141,174,017 
49968 :002,032,052,194,173,174,163 
49974 :002,240,006,173,140,003,106 
49980 :240,032,096,174,177,002,013 
49986 :169,000,157,000,204,188,016 
49992 :064,204,185,000,207,133,097 
49998 :158,185,064,207,133,159,216 
50004 :169,064,188,032,204,145,118 
50010 :158,206,173,002,206,145,212 
50016 :003,208,149,096,173,027,240 
50022 :212,205,144,003,144,001,043 
50028 :096,120,165,001,041,254,017 
50034 :133,001,173,177,002,024,112 
50040 :105,064,160,000,132,254,067 
50046 :010,038,254,200,192,003,055 
50052 :208,248,133,253,165,254,113 
50058 :024,105,160,133,254,174,220 
50064 :171,002,224,002,208,018,001 
50070 :160,255,200,192,008,240,181 
50076 :088,177,253,208,247,169,018 
50082 :255,145,253,076,245,195,051 
50088 :224,003,208,016,160,008,019 
50094 :136,048,068,177,253,208,040 
50100 :249,169,255,145,253,076,047 
50106 :245,195,160,007,224,001,250 
50112 :208,025,177,253,162,000,249 
50118 :232,224,008,240,010,010,154 
50124 :176,248,189,064,203,017,077 
50130 :253,145,253,136,016,234,223 
50136 :076,245,195,224,000,208,140 
50142 :022,177,253,162,000,232,044 
50148 :224,008,240,010,074,176,192 

184 



Machine Language Games& 

50154 :248,189,056,203,017,253,176 
50160 :145,253,136,016,234,160,160 
50166 :007,177,253,201,255 - 240,099 
50172 :008,165,001,009,001,133,057 
50178 :001,088,096,136,016,239,066 
50184 :165,001,009,001,133,001,062 
50190 :088,169,000,141,079,003,238 
50196 :174,177,002,169,000,157,187 
50202 :000,204,206,173,002,169,012 
50208 :003,133,018,166,018,173,031 
50214 :168,002,024,125,247,202,038 
50220 :141,132,003,072,173,169,222 
50226 :002,024,125,243,202,141,019 
50232 :133,003,168,104,024,121,097 
50238 :000,207,133,158,185,064,041 
50244 :207,105,000,133,159,173,077 
50250 :168,002,056,253,247,202,234 
50256 :141,134,003,072,173,169,004 
50262 :002,056,253,243,202,141,215 
50268 :135,003,168,104,024,121,135 
50274 :000,207,133,253,185,064,172 
50280 :207,105,000,133,254,160,195 
50286 :000,177,158,141,141,003,218 
50292 :201,033,144,013,201,048,244 
50298 :176,009,177,253,141,142,252 
50304 :003,201,048,144,058,198,012 
50310 :018,016,154,174,171,002,157 
50316 :173,169,002,024,125,243,108 
50322 :202,168,185,000,207,133,017 
50328 :253,185,064,207,133,254,224 
50334 :173,168,002,024,125,247,129 
50340 :202,168,177,253,072,172,184 
50346 :169,002,185,000,207,133,098 
50352 :253,185,064,207,133,254,248 
50358 :172,168,002,104,145,253,002 
50364 :076,029,197,172,169,002,065 
50370 :185,000,207,133,253,185,133 
50376 :064,207,133,254,172,168,174 
50382 :002,169,160,145,253,169,080 
50388 :011,133,002,169,006,133,154 
50394 :010,173,132,003,141,000,165 
50400 :205,173,133,003,141,000,111 
50406 :206,032,043,192,173,178,030 
50412 :002,141,132,003,173,179,098 
50418 :002,141,133,003,173,137,063 
50424 :003,141,138,003,173,134,072 
50430 :003,141,000,205,173,135,143 
50436 :003,141,000,206,032,043,173 
50442 :192,173,178,002,141,134,062 

185 



6 Machine Language Games 

50448 :003,173,179,002,141,135,137 
50454 :003,173,137,003,141,139,106 
50460 :003,169,001,141,140,003,229 
50466 :141,079,003,096,162,009,012 
50472 :189,160,204,208,036,188,001 
50478 :128,204,185,000,207,133,135 
50484 :251,185,064,207,133,252,l20 
50490 :188,096,204,177,251,201,l51 
50496 :004,240,014,169,010,145,134 
50502 :251,165,252,073,088,133,008 
50508 :252,169,001,145,251,202,072 
50514 :016,212,096,120,173,066,253 
50520 :003,208,003,076,049,234,149 
50526 :032,038,197,206,071,003,129 
50532 :208,023,169,010,141,071,210 
50538 :003,238,072,003,173,072,155 
50544 :003,041,003,141,072,003,119 
50550 :168,185,052,203,141,080,l79 
50556 :160,173,143,003,208,041,084 
50562 :162,009,188,128,204,185,238 
50568 :000,207,133,251,185,064,208 
50574 :207,133,252,188,096,204,198 
50580 :177,251,208,016,189,160,125 
50586 :204,008,169,004,040,240,051 
50592 :002,169,012,188,096,204,063 
50598 :145,251,202,016,217,169,142 
50604 :000,141,067,003,173,000,044 
50610 :220,201,127,208,008,169,087 
50616 :000,141,078,003,076,092,062 
50622 :199,141,068,003,041,016,l46 
50628 :208,007,169,001,141,067,021 
50634 :003,208,005,169,000,141,216 
50640 :078,003,162,000,169,001,109 
50646 :044,068,003,240,009,010,076 
50652 :232,224,004,208,245,076,185 
50658 :228,198,138,009,032,141,204 
50664 :255,131,142,167,002,142,047 
50670 :170,002,173,067,003,240,125 
50676 :008,173,167,002,073,001,156 
506$2 :141,167,002,032,149,199,172 
50688 :160,003,173,014,208,056,102 
50694 :249,036,203,141,064,003,190 
50700 :144,008,173,016,208,041,090 
50706 :128,208,001,024,173,064,104 
50712 :003,106,074,074,141,064,230 
50718 :003,173,015,208,056,249,222 
50724 :040,203,074,074,074,141,130 
50730 :065,003,032,199,199,208,236 
50736 :006,136,016,206,076,092,068 

186 



Machine Language Games& 

50742 :199,169,001,077,167,002,157 
50748 :141,167,002,032,149,199,238 
50754 :173,014,208,056,233,012,250 
50760 :072,144,009,173,016,208,182 
50766 :041,128,024,240,001,056,056 
50772 :104,106,074,074,141,064,135 
50778 :003,072,173,015,208,056,105 
50784 :233,040,074,074,074,141,220 
50790 :065,003,168,185,000,207,218 
50796 :133,251,185,064,207,133,057 
50802 :252,104,168,169,064,145,248 
50808 :251,173,067,003,240,099,185 
50814 :173,079,003,240,094,173,120 
50820 :143,003,208,089,173,083,063 
50826 :003,208,084,174,170,002,011 
50832 :173,065,003,056,253,251,177 
50838 :202,201,002,144,070,201,202 
50844 :023,176,066,168,173,064,058 
50850 :003,056,253,255,202,201,108 
50856 :001,144,054,201,039,176,015 
50862 :050,024,121,000,207,133,197 
50868 :251,185,064,207,105,000,224 
50874 :133,252,160,000,177,251,135 
50880 :240,025,201,011,240,016,157 
50886 :201,081,176,023,201,031,143 
50892 :144,019,201,065,176,009,050 
50898 :201,048,176,011,169,001,048 
50904 :141,083,003,169,064,160,068 
50910 :000,145,251,076,092,199,217 
50916 :173,067,003,240,115,173,231 
50922 :078,003,208,110,173,069,107 
50928 :003,240,059,172,076,003,025 
50934 :208,100,141,076,003,173,179 
50940 :014,208,056,233,012,072,079 
50946 :144,004,173,016,208,010,045 
50952 :104,106,074,074,141,080,075 
50958 :003,173,015,208,056,233,190 
50964 :040,074,074,074,141,081,248 
50970 :003,173,170,002,141,082,085 
50976 :003,169,000,141,069,003,161 
50982 :169,001,141,078,003,076,250 
50988 :092,199,173,077,003,208,028 
50994 :041,173,030,208,044,017,051 
51000 :208,016,251,173,030,208,174 
51006 :010,144,027,074,074,074,209 
51012 :074,160,003,074,176,007,050 
51018 :200,192,007,208,248,240,145 
51024 :011,140,069,003,140,077,008 
51030 :003,169,001,141,078,003,225 

187 



6 Machine Language Games 

51036 :173,069,003,240,049,170,028 
51042 :188,044,203,173,016,208,l62 
51048 :010,144,006,152,013,016,l89 
51054 :208,208,006,152,073,255,244 
51060 :045,016,208,141,016,208,238 
51066 :173,255,131,024,105,014,056 
51072 :157,248,131,138,010,170,214 
51078 :173,014,208,157,000,208,126 
51084 :173,015,208,157,001,208,134 
51090 :076,225,199,174,167,002,221 
51096 :208,003,206,015,208,224,248 
51102 :001,208,003,238,015,208,063 
51108 :224,002,208,013,206,014,063 
51114 :208,016,008,173,016,208,031 
51120 :041,127,141,016,208,224,165 
51126 :003,208,013,238,014,208,098 
51132 :208,008,173,016,208,009,042 
51138 :128,141,016,208,096,174,189 
51144 :065,003,189,000,207,024,l76 
51150 :109,064,003,133,251,189,l87 
51156 :064,207,105,000,133,252,205 
51162 :162,000,161,251,201,064,033 
51168 :096,173,052,003,240,003,023 
51174 :076,028,201,173,061,003,004 
51180 :024,105,001,041,007,141,043 
51186 :061,003,024,105,050,141,ll4 
51192 :249,131,206,075,003,208,096 
51198 :024,173,073,003,073,001,089 
51204 :141,073,003,240,004,169,l22 
51210 :128,208,002,169,129,141,019 
51216 :004,212,169,002,141,075,107 
51222 :003,169,000,141,053,003,l35 
51228 :173,016,208,024,041,001,235 
51234 :240,001,056,173,000,208,200 
51240 :106,205,054,003,240,047,l83 
51246 :176,024,169,008,013,053,233 
51252 :003,141,053,003,238,000,234 
51258 :208,208,032,169,001,013,l77 
51264 :016,208,141,016,208,076,217 
51270 :093,200,169,004,013,053,090 
51276 :003,141,053,003,206,000,226 
51282 :208,016,008,169,254,045,014 
51288 :016,208,141,016,208,173,082 
51294 :001,208,074,205,055,003,l28 
51300 :240,027,176,014,169,002,216 
51306 :013,053,003,141,053,003,ll6 
51312 :238,001,208,076,129,200,l96 
51318 :169,001,013,053,003,141,242 
51324 :053,003,206,001,208,173,000 

188 



Machine Language Games& 

51330 :053,003,208,060,169,001,112 
51336 :141,052,003,174,056,003,053 
51342 :224,010,176,045,189,160,178 
51348 :204,208,040,169,001,157,159 
51354 :160,204,188,128,204,185,199 
51360 :000,207,133,251,185,064,232 
51366 :207,133,252,188,096,204,222 
51372 :169,011,145,251,165,252,141 
51378 :073,088,133,252,169,014,139 
51384 :145,251,169,030,141,070,222 
51390 :003,076,049,234,024,105,169 
51396 :035,141,248,131,174,053,210 
51402 :003,173,001,208,024,125,224 
51408 :025,203,141,003,208,173,193 
51414 :000,208,024,125,003,203,009 
51420 :141,002,208,173,016,208,200 
51426 :041,001,125,014,203,041,139 
51432 :001,010,141,068,003,173,116 
51438 :016,208,041,253,013,068,069 
51444 :003,141,016,208,173,016,033 
51450 :208,041,001,208,018,173,131 
51456 :000,208,201,005,176,011,089 
51462 :173,021,208,041,252,141,074 
51468 :021,208,076,025,201,173,204 
51474 :021,208,009,003,141,021,165 
51480 :208,076,049,234,169,128,120 
51486 :141,004,212,206,070,003,154 
51492 :240,000,169,255,141,057,130 
51498 :003,141,058,003,141,056,188 
51504 :003,173,016,208,024,041,001 
51510 :001,240,001,056,173,000,013 
51516 :208,106,074,074,141,059,210 
51522 :003,173,001,208,074,074,087 
51528 :074,141,060,003,162,009,009 
51534 :189,160,204,208,108,188,111 
51540 :128,204,140,055,003,185,031 
51546 :000,207,133,251,185,064,162 
51552 :207,133,252,188,096,204,152 
51558 :140,054,003,177,251,201,160 
51564 :004,240,080,173,059,003,155 
51570 :056,237,054,003,016,005,229 
51576 :073,255,024,105,001,032,098 
51582 :252,201,165,252,072,165,209 
51588 :251,072,173,060,003,056,235 
51594 :237,055,003,016,005,073,015 
51600 :255,024,105,001,032,252,045 
51606 :201,104,024,101,251,133,196 
51612 :251,104,101,252,133,252,225 
51618 :205,058,003,144,011,208,023 

189 



6 Machine Language Games 

51624 :022,165,251,205,057,003,l03 
51630 :144,002,208,013,165,251,l89 
51636 :141,057,003,165,252,141,l71 
51642 :058,003,142,056,003,202,l38 
51648 :016,140,174,056,003,224,037 
51654 :255,240,025,189,096,204,l83 
51660 :010,010,024,105,008,141,246 
51666 :054,003,189,128,204,010,030 
51672 :010,024,105,022,141,055,061 
51678 :003,076,236,201,169,001,140 
51684 :141,054,003,169,072,141,040 
51690 :055,003,169,000,141,052,l42 
51696 :003,141,073,003,169,002,ll9 
51702 :141,075,003,076,049,234,056 
51708 :134,251,162,000,133,252,160 
51714 :168,240,011,169,000,024,102 
51720 :101,252,144,001,232,136,l06 
51726 :208,247,134,252,166,251,248 
51732 :133,251,096,169,143,141,l85 
51738 :024,212,169,255,141,014,073 
51744 :212,141,015,212,169,240,253 
51750 :141,020,212,169,129,141,082 
51756 :018,212,169,050,141,000,122 
51762 :212,169,017,141,005,212,038 
51768 :169,241,141,006,212,169,226 
51774 :000,141,173,002,141,076,083 
51780 :003,141,077,003,141,061,238 
51786 :003,141,035,208,169,006,124 
51792 :141,032,208,169,001,141,004 
51798 :046,208,141,039,208,141,l01 
51804 :040,208,141,071,003,141,l84 
51810 :079,003,169,166,141,014,158 
51816 :208,169,132,141,015,208,209 
51822 :169,000,141,000,208,169,029 
51828 :144,141,001,208,169,032,043 
51834 :141,255,131,169,005,141,196 
51840 :034,208,141,001,212,169,125 
51846 :128,141,064,207,162,000,068 
51852 :142,000,207,189,000,207,117 
51858 :024,105,040,157,001,207,168 
51864 :157,026,207,189,064,207,234 
51870 :105,000,157,065,207,157,081 
51876 :090,207,232,224,024,208,125 
51882 :228,169,000,160,000,153,112 
51888 :000,204,174,000,004,208,254 
51894 :021,153,000,136,153,000,133 
51900 :137,153,000,138,153,000,001 
51906 :139,153,000,140,153,000,011 
51912 :141,153,000,142,200,208,020 



Machine Language Games& 

51918 :224,169,255,160,127,153,014 
51924 :000,161,136,016,250,120,l27 
51930 :169,085,141,020,003,169,037 
51936 :197,141,021,003,169,000,243 
51942 :141,066,003,141,069,003,l41 
51948 :169,001,141,052,003,088,l78 
51954 :096,000,000,255,001,001,083 
51960 :255,000,000,255,001,000,247 
51966 :000,000,000,255,001,000,254 
51972 :000,000,000,253,254,253,252 
51978 :000,002,001,002,000,000,015 
51984 :000,000,255,255,255,000,013 
51990 :000,000,000,000,254,002,022 
51996 :000,001,254,002,000,000,029 
52002 :254,002,010,014,012,012,082 
52008 :040,040,039,041,001,002,203 
52014 :004,008,016,032,064,128,042 
52020 :102,060,102,195,001,003,003 
52026 :007,015,031,063,127,255,044 
52032 :128,192,224,240,248,252,068 
52038 :254,255,080,255,084,251,225 

191 









A 
A Beginner's 
Guide to Typing In 
Programs 

What Is a Program? 
A computer cannot perform any task by itself. Like a car without 
gas, a computer has potential, but without a program, it isn't going 
anywhere. Most of the programs in this book are written in a 
computer language called BASIC. BASIC is easy to learn and is 
built into all Commodore 64s. 

BASIC Programs 
Computers can be picky. Unlike the English language, which is 
full of ambiguities, BASIC usually has only one right way of 
stating something. Every letter, character, or number is significant. 
A common mistake is substituting a letter such as 0 for the 
numeral 0, a lowercase 1 for the numeral 1, or an uppercase B for 
the numeral 8. Also, you must enter all punctuation such as 
colons and commas just as they appear in the book. Spacing can 
be important. To be safe, type in the listings exactly as they appear. 

Braces and Special Characters 
The exception to this typing rule is when you see the braces, such 
as {DOWN}. Anything within a set of braces is a special character 
or characters that cannot easily be listed on a printer. When you 
come across such a special statement, refer to "How To Type In 
Programs:' 

About DATA Statements 
Some programs contain a section or sections of DATA statements. 
These lines provide information needed by the program. Some 
DATA statements contain actual programs (called machine 
language); others contain graphics codes. These lines are espe­
cially sensitive to errors. 

195 



A Appendix 

If a single number in any one DATA statement is mistyped, 
your machine could lock up, or crash. The keyboard and STOP 
key may seem dead, and the screen may go blank. Don't panic­
no damage is done. To regain control, you have to turn off your 
computer, then turn it back on. This will erase whatever program 
was in memory, so always SAVE a copy of your -program before you 
RUN it. If your computer crashes, you can LOAD the program 
and look for your mistake. 

Sometimes a mistyped DATA statement will cause an error 
message when the program is RUN. The error message may refer 
to the program line that READs the data. The error is still in the 
DATA statements, though. 

Get to Know Your Machine 
You should familiarize yourself with your computer before 
attempting to type in a program. Learn the statements you use to 
store and retrieve programs from tape or disk. You'll want to save 
a copy of your program, so that you won't have to type it in every 
time you want to use it. Learn to use your machine's editing func­
tions. How do you change a line if you made a mistake? You can 
always retype the line, but you at least need to know how to back­
space. Do you know how to enter inverse video, lowercase·, and 
control characters? It's all explained in your computer's manuals. 

A Quick Review 
1) Type in the program a line at a time, in order. Press RETURN at 
the end of each line. Use backspace or the back arrow to correct 
mistakes. 
2) Check the line you've typed against the line in the book. You 
can check the entire program again if you get an error when you 
RUN the program. 
3) Make sure you've entered statements in braces as the appro­
priate control key (see "How To Type In Programs" elsewhere in 
the book). 

1% 







How to Type In 
Programs 

B 

Many of the programs which are listed in this book contain 
special control characters (cursor control, color keys, reverse 
video, etc.). To make it easy to know exactly what to type when 
entering one of these programs into your computer, we have 
established the following listing conventions. 

Generally, any Commodore 64 program listings will contain 
words in braces which spell out any special characters: {DOWN} 
would mean to press the cursor down key. {5 SPACES} would 
mean to press the space bar five times. 

To indicate that a key should be shifted (hold down the SHIFT 
key while pressing the other key), the key would be underlined in 
our listings. For example, ~would mean to type the S key while 
holding the shift key. This would appear on your screen as a heart 
symbol. If you find an underlined key enclosed in braces (e.g., {10 
N}), you should type the key as many times as indicated (in our 
example, you would enter ten shifted N's). 

If a key is enclosed in special brackets, g 3 , you should 
hold down the Commodore key while pressing the key inside the 
special brackets. (The Commodore key is the key in the lower-left 
corner of the keyboard.) Again, if the key is preceded by a 
number, you should press the key as many times as necessary. 

Rarely, you'll see a solitary letter of the alphabet enclosed in 
braces. These characters can be entered on the Commodore 64 by 
holding down the CTRL key while typing the letter in the braces. 
For example, {A} would indicate that you should press CTRL-A. 

About the quote mode: you know that you can move the cursor 
around the screen with the CRSR keys. Sometimes a programmer 
will want to move the cursor under program control. That's why 
you see all the {LEFT}'s, {HOME}'s, and {BLU}'s in our programs. 
The only way the computer can tell the difference between direct 
and programmed cursor control is the quote mode. 

199 



BAppendix 

Once you press the quote (the double quote, SHIFf-2), you 
are in the quote mode. If you type something and then try to 
change it by moving the cursor left, you'll only get a bunch of 
reverse-video lines. These are the symbols for cursor left. The only 
editing key that isn't programmable is the DEL key; you can still 
use DEL to back up and edit the line. Once you type another 
quote, you are out of quote mode. 

You also go into quote mode when you INSerT spaces into a 
line. In any case, the easiest way to get out of quote mode is to 
just press RETURN. You'll then be out of quote mode and you can 
cursor up to the mistyped line and fix it. 

Use the following table when entering cursor and color 
control keys: 

When You 
Read: 

(CLEAR) 

(HOME) 

(UP) 

(DOWN) 

(LEFT) 

(RIGHT) 

(RVS) 

[OFF) 

(BLK) 

[WHT) 

[RED) 

(CYN) 

(PUR) 

200 

Pre s: See: 

I SHIFT I CLRIHOME I ~ 
CLRIHOME I II 

I SHIFT I • CRSR • I c 
• CRSR• 1 m 

I SHIFT I ~CRSR•I 11 
!4=cRsR""-J g 

I CTRL I~ lln 
JcmJ~ II 
I CTRL I CJ • 
I CTRL I CJ [3 
~~ g 
I CTRLI~ ~ 
I CTRLI~ • 

When You 
Read: 

[GRN) 

[BLU) 

[YEL) 

[Fl I 

[F2) 

[F3) 

(F4) 

{FS) 

(F6) 

(F7) 

{FB) 

" 
i 

Press: 

~8 
~0 
~0 
I ft I 
I f2 I 
I 0 I 

14 I 
IS I 
16 I 
f7 I 

I 18 I 
1--1 
I SHIFT I [JJ 

See: 

B 
G m --ill --II! 
II 
II 
II • ~ • 







c 
Maze 
Generator 
Charles Bond Translated to machine language by Gary E. Marsa and for the 64 

by Gregg Peele. 

This program can be the basis for many excellent games. 

Here's a remarkably short algorithm which produces random 
mazes on your TV screen. 

To understand how it works, refer to the flowchart and 
Program 1. The following explanation should clarify the details. 

The Background Field 
The algorithm operates on a background field which must be 
generated on the screen prior to line number 210 in Program 1. 
The field must consist of an odd number of horizontal rows, each 
containing an odd number of cells: a rectangular array. It's conven­
ient to think of the field as a two-dimensional array with the 
upper-left comer having coordinates X = 0 and Y = 0, where X is 
the horizontal direction and Y is vertical. No coordinates are used 
to identify absolute locations by the program, but the concept is 
useful in configuring the field. 

Given that the upper-left cell of the field has coordinates 0,0, 
then the terminal coordinates both horizontally and vertically 
must be even numbers. In addition, the background field must be 
surrounded on all sides by memory cells whose contents are 
different from the number used to identify the field. That is, if the 
field consists of reversed (or inverse video) spaces, then the 
number corresponding to that character must not be visually adja­
cent to the field. 

This could happen inadvertently if the screen RAM and 
system ROM have contiguous addresses. A sufficient precaution 
is to avoid covering the entire screen with field. Leave at least one 
space at the beginning or end of each line and, in general, leave 
the uppermost and lowermost lines on the screen blank. 

203 



I 

CAppendix 

The Maze Generator 
The creation of the maze begins by placing a special marker in a 
suitable starting square. The program here always begins at the 
square just inside the upper-left cell of the previously drawn field. 
(Note that with our coordinate scheme this would be cell 1,1.) 
Any cell with odd-numbered coordinates would work, however, 
as long as it is internal to the field. 

Next, a random direction is chosen by invoking the random 
number generator in your machine and producing an integer from 
0 to 3. This integer, with the aid of a short table, determines a 
direction and a corresponding cell just two steps away from the 
current cell. This new cell is examined (PEEKed) to see if it is part 
of the field. If it is, the direction integer is put there as a marker, 
and the barrier between it and the current cell is erased. 

In addition, the pointer to the current cell is moved to point 
to the new one. This process is repeated until the new cell fails the 
test; that is, it is not a field cell. When this happens, the direction 
vector is rotated 90 degrees and the test is repeated. Thus, the 
path carved out of the field will continue until a dead end is 
reached. 

A dead end, incidentally, could occur in as few as five steps. 
When it does occur, we can make use of the markers which were 
dropped along the way Hansel and Gretel style. These can be 
checked to determine which direction we came from, so that we 
can back up and look for untrodden paths. So long as none can be 
found, the program will back up, one step at a time, erasing the 
markers as it goes. When a new direction can be taken, the 
pointer is set off in that direction, and the process continues as 
before. 

Ultimately, the pointer will return to the start, a condition 
which is detected by the recovery of the special starting (now 
"ending") marker. This cell is then blanked and the program is 
done, leaving the pointer as it was at the start. 

The Program 
The direction table set up in lines 100 and 110 converts an integer 
to an address offset. In this case (40-column screen), we wish to 
step two cells to the right, up, left, or down. 

Line 120 contains the variable SC, which is the memory 
address of the start of screen RAM. Lines 130-160 establish the 
background field on the screen. 

The rest of the program draws the maze, as previously 

204 

------- -- ---- --



AppendixC 

explained. Line 310 is simply a convenient stopping point which 
prevents the screen from scrolling. 

It may not be immediately obvious that this algorithm 
always produces a maze with only one nontrivial path between 
any two points, or that the maze will always be completely filled, 
but this can be proved. While the proofs will not be provided 
here, math buffs may find it interesting that for a maze of any size 
there will be exactly: 

(H-l)(V-1)-1 empty cells in the completed maze, 
2 

where H is the number of cells in each field row and Vis the 
number of rows. 

An interesting feature of this algorithm is that it works 
equally well in certain types of nonrectangular fields . U-shaped 
fields or fields with holes in them are quite suitable-as long as 
certain restrictions are observed. Just make sure that the coordi­
nates of the upper-left and lower-right cells of any cut-out area are 
pairs of odd numbers. Also, if there is a single row of field cells 
between any cut-out areas and the outside of the original field, it 
may be removed. 

Machine Language Mazes 
Program 2 is a machine language translation of Program 1. It is in 
the form of a BASIC loader. It can be inserted into any BASIC 
program just as Program 1. 

Program 3 is the assembly listing of the machine language 
routine found in Program 2. 

The Mouse 
The subroutine on lines 1000to1020 of Program 1 produces an 
artificial mouse which roams the maze endlessly. The mouse 
adheres to a '1eft-hand rule" when a choice of directions is pos­
sible. That is, when it is confronted with a branch-point, it will 
move off to the left, if possible. Otherwise, it will go forward. 
When no choice is available, it will turn around. These lines are 
unnecessary for the creation of the maze and may be deleted. 
Programs 2 and 3 do not contain the mouse. 

Program 1. BASIC Maze Generator 
urn DIMA( 3) 
110 A(0)=2:A(l)=-80:A(2)=-2:A(3)=80 
120 WL=l60:HL=32:SC=l024:A=SC+Bl 

205 



CAppendix 

130 PRINT" {CLR} II 

140 FORI=lT023 
150 PRINT" {RVS }{WHT ){ 39 SPACES}" 
160 NEXT! 
210 POKEA, 4 
220 J=INT(RND(l)*4):X=J 
230 B=A+A(J):IFPEEK(B)=WLTHENPOKEB,J:POKEA+A(J)/2, 

HL:A=B:GOT0220 
240 J=(J+l)*-(J<3):IFJ<>XTHEN230 
250 J=PEEK(A):POKEA,HL:IFJ<4THENA=A-A(J):GOT0220 
310 GETC$:IFC$=""THEN310 
1000 POKEA,8l:J=2 
1010 B=A+A(J)/2:IFPEEK(B)=HLTHENPOKEB,8l:POKEA,HL: 

A=B:J=(J+2)+4*(J>l) 
1020 J=(J-1)-4*(J=0):GOT01010 

Program 2. Machine Language Maze Generator 
10 I=49152:IF PEEK(I+2)=216THENSYS49160:END 
20 READ A:IF A=256 THENSYS49160:END 
30 POKE I,A:I=I+l:GOTO 20 
49152 DATA 1,0,216,255,255,255,40 
49160 DATA 0,169,81,133,251,169,40 
49168 DATA 133,253,169,4,133,252,133 
49176 DATA 254,169,147,32,210,255,162 
49184 DATA 0,160,0,169,160,145,253 
49192 DATA 200,192,39,208,249,24,165 
49200 DATA 253,105,40,133,253,144,2 
49208 DATA 230,254,232,224,23,208,229 
49216 DATA 160,0,169,4,145,251,169 
49224 DATA 255,141,15,212,169,128,141 
49232 DATA 18,212,173,27,212,41,3 
49240 DATA 133,173,170,10,168,24,185 
49248 DATA 0,192,101,251,133,170,185 
49256 DATA 1,192,101,252,133,171,24 
49264 DATA 185,0,192,101,170,133,253 
49272 DATA 185,1,192,101,171,133,254 
49280 DATA 160,0,177,253,201,160,208 
49288 DATA 18,138,145,253,169,32,145 
49296 DATA 170,165,253,133,251,165,254 
49304 DATA 133,252,76,62,192,232,138 
49312 DATA 41,3,197,173,208,189,177 
49320 DATA 251,170,169,32,145,251,224 
49328 DATA 4,240,26,138,10,168,162 
49336 DATA 2,56,165,251,249,0,192 
49344 DATA 133,251,165,252,249,1,192 
49352 DATA 133,252,202,208,238,76,62 
49360 DATA 192,169,1,160,0,153,0 
49368 DATA 216,153,0,217,153,0,218 
49376 DATA 153,0,219,200,208,241,96,256 

206 



AppendixC 

Program 3. Source Listing 
C000 01 00 
C002 DS 
C003 FF 
C004 FF 
C00S FF 
C006 2S 
C007 00 
C00S A9 Sl LOA #$Sl 
C00A SS F8 STA $F8 
C00C A9 2S LDA #$2S 
C00E SS FD STA $FD 
C010 A9 04 LOA #$04 
C012 SS FC STA $FC 
C014 SS FE STA $FE 
C016 A9 93 LOA #$93 
C01S 20 02 FF JSR $FFD2 
C018 A2 00 LOX #$00 
C01D A0 00 LOY #$00 
C01F A9 A0 LDA #$A0 
C021 91 FD STA ($FD),Y 
C023 CS INY 
C024 C0 27 CPY #$27 
C026 00 F9 8NE $C021 
C02S lS CLC 
C029 AS FD LOA $FD 
C028 69 2S ADC #$2S 
C02D SS FD STA $FD 
C02F 90 02 8CC $C033 
C031 E6 FE INC $FE 
C033 ES INX 
C034 E0 17 CPX #$17 
C036 00 ES 8NE $C01D 
C03S A0 00 LDY #$00 
C03A A9 04 LDA #$04 
C03C 91 F8 STA ($F8),Y 
C03E A9 FF LDA #$FF 
C040 SD 0F 04 STA $D40F 
C043 A9 S0 LOA #$S0 
C04S SD 12 04 STA $0412 
C04S AD 18 04 LDA $0418 
C048 29 03 AND #$03 
C04D as AD STA $AD 
C04F AA TAX 
C0S0 0A ASL 
C0Sl AS TAY 
C0S2 lS CLC 
C0S3 89 00 C0 LDA $C000,Y 
C0S6 6S F8 ADC $F8 

207 



CAppendix 

C0S8 as AA STA $AA 
C0SA B9 01 C0 LOA $C001,Y 
C0SD 6S FC ADC $FC 
C0SF as AB STA $AB 
C061 18 CLC 
C062 B9 00 C0 LOA $C000,Y 
C06S 6S AA ADC $AA 
C067 as FD STA $FD 
C069 B9 01 C0 LOA $C001,Y 
C06C 6S AB ADC $AB 
C06E as FE STA $FE 
C070 A0 00 LOY #$00 
C072 Bl FD LOA ( $FD) I y 
C074 C9 A0 CMP #$A0 
C076 00 12 BNE $C08A 
C078 BA TXA 
C079 91 FD STA ( $FD) I y 
C07B A9 20 LOA #$20 
C07D 91 AA STA ($AA),Y 
C07F AS FD LOA $FD 
C081 as FB STA $FB 
C083 AS FE LOA $FE 
C08S as FC STA $FC 
C087 4C 3E C0 JMP $C03E 
C08A ES INX 
C08B BA TXA 
C08C 29 03 AND #$03 
C08E CS AD CMP $AD 
C090 00 BO BNE $C04F 
C092 Bl FB LOA ($FB),Y 
C094 AA TAX 
C09S A9 20 LOA #$20 
C097 91 FB STA ( $FB) I y 
C099 E0 04 CPX #$04 
C09B F0 lA BEQ $C0B7 
C09D BA TXA 
C09E 0A ASL 
C09F A8 TAY 
C0A0 A2 02 LOX #$02 
C0A2 38 SEC 
C0A3 AS FB LOA $FB 
C0AS F9 00 C0 SBC $C000,Y 
C0A8 as FB STA $FB 
C0AA AS FC LOA $FC 
C0AC F9 01 C0 SBC $C001, Y 
C0AF as FC STA $FC 
C0Bl CA DEX 
C0B2 00 EE BNE $C0A2 
C0B4 4C 3E C0 JMP $C03E 

208 



C0B7 A9 01 LDA #$01 
C0B9 A0 00 LDY #$00 
C0BB 99 00 08 STA $0800,Y 
C0BE 99 00 09 STA $0900,Y 
C0Cl 99 00 DA STA $DA00,Y 
C0C4 99 00 DB STA $DB00,Y 
C0C7 ea INY 
C0C8 00 Fl BNE $C0BB 
C0CA 60 RTS 

Maze Generator Flowchart 

ESTABLISH 
STARTING 
CELL 

YES 

BACK UP 

AppendixC 

LEAVE MARKER, 
ERASE BARRI~R . 
BUMP PO INTER 

209 









Do You Want to 
Write Your Own 
Games? 
Orson Scott Card 

D 

I remember when videogames first reached my town back in the 
early seventies. A friend and I dropped a few quarters into a Pong 
machine and had a great time. But all in all, we preferred playing 
Ping-Pong on a real table. 

But then, in a theater lobby, we met Breakout, and it changed 
my life. I became a dedicated videogamer from that time forward. 

Because there on a TV screen-not even a color screen, then, 
just black-and-white with colored plastic strips-the videogame 
was offering an experience that I couldn't get anywhere else. The 
speed and the concept both were something entirely new. 

Everybody knows where it went from there. Tum Breakout's 
paddle into a spaceship, give the bricks a different shape, and let 
them march down the screen at you, and you have Space Invaders. 
Tum Breakout's paddle into a race car and let it drive over dots 
instead of bricks, and you have the earliest gobble games. The 
shoot-outs and gobble games, the climbing games and the simula­
tions-they have all become more sophisticated. 

Now, on your own TV at home, you can have the little 
airplanes of "Richthofen's Revenge" flying around. And you 
typed the game into your computer yourself. 

Getting Behind the Games 
If you're like me, however, playing was never really enough. 
Right from the beginning, I wondered how it was done. I knew 
nothing about computers then-like many people, I thought 
computers were for people who were good in math or interested 
in engineering, and I was definitely neither. But for the first time I 
wanted to have whatever abilities it took to program computers. 
Because I wanted to make my own games. 

213 



DAppendix 

I wanted to create a game where I could handle old-time 
sailing ships through currents and winds to explore different 
islands and conduct sea battles. 

I wanted a game where I could build cities and design traffic 
flow patterns, create the image of a city's life. 

I wanted to have the power of a computer to create whatever 
world I wanted, and whatever game I wanted to play within that 
world. 

But I knew it would never happen. I wasn't good in math or 
interested in engineering, and to people like me computers would 
never be anything but big black boxes. 

Unlocking the Little Black Box 
The big black boxes have changed, haven't they? You can treat 
your 64 as a black box, if you want-plug in a game on a ROM 
cartridge and away you go. But for most games, you still need to 
type things like LOAD and RUN. And for the games in this book, 
you need to type in entire programs. 

And if it hasn't occurred to you before, it certainly should be 
plain now. You have the equipment to program all those games 
you have always wished you could play. Your Commodore 64 can 
do almost everything the videogames in the arcade can do. 

Best of all, though, it can do things that have never been 
done before. It can display worlds that you create, and carry out 
actions that you designed. 

And as for the myth that programmers have to be good in 
math or engineering-you don't believe that anyrnore, do you? 
My wife still has to balance the checkbook for me and I can't tell a 
circuit diagram from a plate of vermicelli, but I have written 
games that actually work, using BASIC and machine language 
both. And like those old-time ads ("My Friends Laughed When I 
Sat Down At The Piano"), I assure you that if I can do it, anybody 
can. 

How to Learn How to Program Games 
Unfortunately, you won't find a night school class in videogame 
programming. Colleges and high schools tend to teach program­
ming with a business or mathematical slant. They rarely teach 
much about the graphics and sound techniques at the heart of 
game programming. 

So the best way to learn programming is to find a friend 
who's an expert videogame programmer and get him to teach 

214 



AppendixD 

you, step by step, how to solve the problems you run into trying 
to program your first game. Because you can only learn to 
program by programming, and having an expert (and patient) 
friend gets you through the rough places. 

The second best way is books. 
There are books that teach you BASIC programming for the 

Commodore 64, reference books that give you valuable informa­
tion about memory locations and special techniques, books that 
teach machine language programming for the 6510 that runs your 
64, and even a book called Creating Arcade Games on the Commodore 
64, which sounds like exactly the book you want. 

(Before I give you my full list of recommended reading, I'd 
better explain something. This list will include mostly books 
published by COMPUTE! Books, which is the publisher of 
COMPUTE!'s First Book of Commodore 64 Games . However, this is 
not merely shameless self-promotion. Wherever I knew of a valu­
able teaching or reference book by another publisher, I have listed 
it. But the Commodore 64 is such a new computer that at the time 
of this writing, most publishers don't have their Commodore 64 
books out yet. In fact, many of the books on my list haven't been 
published yet, either. But because I'm an editor at COMPUTE! 
Books, I know all about our books that are at the printer or in 
production or still corning, a chapter at a time, from authors in 
California, Michigan, Utah, Virginia, Pennsylvania, and New 
Jersey. Therefore, I can include those books on the list and 
promise you that they'll help you learn programming. But I can't 
tell you about forthcoming books by other publishers because, 
unfortunately, in the world of publishing we don't always tell 
each other what we have planned. By the time you read this, there 
may be a hundred other books that can help you; this list will only 
tell you about the ones I know.) 

In the following list, an asterisk (*) marks the books that are 
useful only if you are planning to use machine language. 

BASIC Programming. If you're new at programming, here 
are some books that can help supplement the manuals published 
by Commodore. 

Camp, David. Creating Arcade Games on the Commodore 64. 
Greensboro, North Carolina: COMPUTE! Books. 

Chamberlain, Craig. All About the Commodore 64. 2 vols. 
COMPUTE! Books. 

Heilborn, John and Ron Talbott. Your Commodore 64: A Guide 
to the Commodore 64 Computer. Berkeley, California: Osborne/ 
McGraw-Hill. 

215 



DAppendix 

COMPUTE!'s First Book of Commodore 64. 
Commodore 64 Programmer's Reference Guide. West Chester, 

Pennsylvania: Commodore Business Machines, Inc. 
Graphics and Sound Techniques. Once you've mastered the 

basics of BASIC, you can get into the fascinating techniques of 
moving shapes and colors on the TV screen and creating sounds 
from the TV speaker. This is an area where the Commodore 64 is 
different from every other computer, even its little brother, the 
VIC-20. 

Heilborn, John. COMPUTE!'s Reference Guide to Commodore 64 
Graphics. 

Heilborn, John. COMPUTE!'s Reference Guide to Commodore 64 
Sound. 

COMPUTE!'s First Book of Commodore 64 Sound and Graphics. 
Reference Books. These are books that give you detailed 

information about features and key memory locations of the 
Commodore 64. Many of these features are only usable in 
machine language, but others are valuable to BASIC programmers 
as well. 

*Heeb, Dan. The Commodore 64 Tool Kit: Kernal Routines. 
COMPUTE! Books. 

*Heeb, Dan. The BASIC Tool Kit: Commodore 64 and VIC-20. 
COMPUTE! Books. 

Leemon, Sheldon. Mapping the Commodore 64. COMPUTE! 
Books. 

Leaming Machine Language. These are books that help you 
learn how to put real speed and complex but smooth animation 
into your videogames. 

Fernandez, Judi N., Donna N. Tabler, and Ruth Ashley. 6502 
Assembly Language Programming. New York: John Wiley and Sons. 

Leventhal, Lance A., and Winthrop Saville. 6502 Assembly 
Language Subroutines. Osborne/McGraw-Hill. 

Mansfield, Richard. Machine Language for Beginners. 
COMPUTE! Books. 

Zaks, Rodnay. Programming the 6502. Berkeley, California: 
Sybex. 

216 



Index 

arcade games 7-16, 83, lOS-34, lSl, 213-16 
array 23, S2-S3 
BASIC 3-4, 7-16, 21-22, 83, 137-38, 168-81, 

19S, 20S, 215 
bibliography 215-16 
character set 4-S, 9S, 106-7 
color S, 106-8 
control characters, special 199 
creating games 213 
DATA statement S4-SS, 90, 137, 171, 19S-96 
deadend204 
difficult level 68-69 
DIM statement 29, S2-54 
file maker Sl-S2, S6 
fire button 69-70, lOS, 119, 1S3 
FOR/NEXTS3 
game writing 7 

adventure 11 
action 16, 119 
animation S8, 106, 129-30 
arcade 7-16 
creation 7 
imitation 7 
simulation 11-14 

graphics 200, 216 
initialization 8 
IF/THEN 16-17, 21-23 
IRQ vector 106 
investing 12-14 
joystick 20-25, 44, 68-69, lOS-6, 119, 153, 

169-70 
keys 39-40, 199 

language 3-4 
machine language 3-4, 90, 106, 137-42, 

206, 216 
BASIC 3-4, 20S 

LOAD, unLOAD 138-40, 172, 196 
loop 8-9, 44, S3 
Machine Language Editor 137-91 
masking S1-S2, S6 
maze 29-48, 144, 203 
maze generator 203-9 

flowchart 209 
MLX137-91 
PEEK 17, 20-24, 107, 129-30, 204 
pixels, 107 
POKE 17, 20-2S, 107, 129-30, 140 
programming games 214 
RAM 17, S9, 144, 203-4 
ROM S9, 106, 140, 203 
shapes, 130 
SHIFT 139-40 
SID chip 6, 108 
simulation 7-8, 11-14 
skill level 113, 154 
speed level 16, 23, 44, 144, 171 
SPRITE S8-60, 108 
sound 6, 108, 153, 216 
source listing 2W 
string array 23 
strategy games 144, 153 
subroutines, variations 8-9, 2S, 97-98, 20S 

217 



If you've enjoyed the articles in this book, you'll find 
the same style and quality in every monthly issue of 
COMPUTE!'s Gazette for Commodore. 

For Fastest Service 
Call Our Toll-Free US Order Line 

800-334-0868 
In NC call 919-275-9809 

COMPUTE!'s Gazette 
P.O. Box 5406 
Greensboro. NC 27403 

My computer is: 
D VIC-20 D Commodore 64 D Other _______ _ 
D $20 One Year US Subscription 
D $36 Two Year US Subscription 
D $54 Three Year US Subscription 

Subscription rates outside the US: 

D $25Canada 
D $45 Air Mail Delivery 
D $25 International Surface Mail 

Name 

Address 

City State Zip 

Country 

Payment must be in US Funds drawn on a US Bank, International Money 
Order, or charge card. 

D Payment Enclosed 
D MasterCard 
Acct. No. 

34-5 

OVISA 
D American Express 

Expires 






