
Spectrum

I
\

\

~r.\L -

The Pro~eBBional Adventure Writer

A graphic adventure writing system for the Sincla i r
Spectrum computers.

(c) 1986 Gilsoft International Ltd .
Program: T.J.Gilberts, G.Yeandle and P.Wade

Graphics: D. Peeke, K.Maddocks and A.Williams
Manuals: T.J.Gilberts

All Rights reserved no part of this publication may be copied,
loaned, hired or reproduced in any form whatsoever i "ncluding
electronic retrieval systems without the prior written consent of
the authors and Gilsoft International Ltd.

The above notice does not apply to the 'run time' routines
appended to and which form a part of a saved game which you are
free to distribute any way you wish in that form, all we would
request is that you credit the use of the Professional Ad"venture
Writer somewhere within the game.

2

Acknowledgeaent

Thanks to Howard and Pam for their
forbearance. Phil for his 'comments',
Graeme for his id e as , Dicon et al for the
graphics and all our customers for their

support and suggestions.
Contsnts

Introduction

Getting Started

Concepts

Writing an ad venture

Start typing

Playing the game

Objects

Process a Response

The Bird

The Dog

Do it yourself

Overlays

Text Compression

The Character Editor

The Graphics Editor

End of the road

User Registration

Contents

Page 5

Page 6

Page 7

Page 10

Page 13

Page 18

Page 19

Page 27

Page 42

Page 47

Page 54

Page 55

Page 56

Page 57

Page 58

Page 66

Page 67

3

4

Introduction

Welcome to the world of adventure writing ...

The Professional Adventure Writer (or P.A.W.
commonly known) provides you with the fscilities
quality graphic adventures (in machine code) of
quality than many commercially available.

Introduction

as it is more
,to produce high
equal or better

PAW will provide you with the basic framework for writing a game,
but it is still up to you to provide an imaginative storyline and
original puzzles.

The manuals supplied with PAW cover all aspects of its use, this
manual provides a tutorial covering its use in constructing an
adventure and we would recommend you work your way through this
manual and its accompanying examples before attempting a game of
your own. The other manual provides a detailed breakdown of the
entire system and can be used as a reference guide while writing
your own games.

Good luck •.•

A great deal of time and effort has been put into ensuring PAW
deals with all conceivable situations in a logical and useful
manner this has resulted in a complex program of some 20K in
size, and it is entirely possible that somewhere deep within the
code a few well hidden bugs remain, indeed a well known quote
states that; "Testing only proves the presence of bugs, not their
absence". If you should find a problem please tell us so that we
can correct it if necessary.

All due care has been exercised in the preparation of these
manuals and their accompanying programs, however the authors and
Gilsoft International Ltd assume no responsibility for errors,
omissions or suitability of their contents for any application.
Nor do we assume any liability whatsoever for damages resulting
from their use. This disclaimer does not affect your statutory
righ ts.

5

Getting Started

Getting Started

If you have purchased a Disc or Microdrive version of PAW please
see the extra instruction sheet supplied for loading details.

The cassette supplied contains the main PAW program on side 1,
this program is the same for both 48K and 128K users .

Insert cassette in the recorder and type:-

LOAD then press ENTER and PLAY on tape deck.

or on 128K use the load option from the start up menu, note that
loading PAW in 48K mode on a 128K spectrum will make it assume it
is a 48K version, it i s usually preferable to load PAW in 128K
mode.

PAW wi l l display a start up screen when loaded which shows its
current version number (a letter followed by a two digit number
e . g. A01) Also shown are two address' in decimal which will be
required if you wish to write your own BASIC or machine code
additions to PAW - details in the technical guide.

Pressing any key wil l cause the main menu to be displayed • . •

Within this tutorial any input that may be required by PAW is
shown enclosed in brackets e.g. [A 1 BAG], if the surrounding
text requires the entry to be made type ex a ctly what is within
the brackets - including ~ spaces - but not the brackets
themselves . Several special keys are shown by using their name in
capitals (upper case), e.g. ENTER,CAPS SHIFT etc do not type
these in full, j ust pre s s the required key (or combination of
keys).

Note: If you have a cassette version of PAW and later require a
Disc or Microdrive version please contact us for details of our
upgrade service.

Any communication regarding PAW should be directed to : -

Gilsoft International Ltd.

2 Park Crescent,
Barry,
South Glamorgan,
CF6 8HD.

6

Concepts

Concepts

It is probably a good idea at this stage to introduce some of the
more important concepts which PAW embodies in its design.

Ove rlays

For many years it has been common practice for very large
programs on disc based machines to be split into two or more
parts which are then loaded as required . Th is system has not
been featured greatly on tape software due to the serial nature
of tape storage. PAW uses a very simple form of overlay to allow
maximum free memory on both 128K and 48K spectrums which is
quick and easy to use . The system uses the free memory available
on each machine to store the overlays until such time as that
memory is required and/or overwritten, they are then pulled in
from cassette as required. On a 128K spectrum you will not need
to worry about overlays until the last 16K is required (i.e .
after you have written a game about 92K long!) . On a 48K the
overlays will come into play when yo u need to use graphics or
have entered about 16K of program'. The tutorial in this manual
does not need to use overlays so their use is de f erred until a
late r chapte r .

The 128K spectrum uses a system known as paging to provide its
ext r a memory, diagram 1 should help to visualize the arrangement
where the top 16K of memory can be shuffled along like a slide in
a projector to present one of five 'pages' to the computer which
can only 'see' 64K at any one time.

Diagram

48K Ove rlay 128K

-- -- ------- - 0
v
e

Free Free Free Free Free r
I
a
y

0 1 3 4 6 7

------ -- -- -- Note that pages 2 ! 5 are the memory
Database area where PAW is located and a r e thus

unavai l able. Note also th a t memory
PAW shown as 'overlay' will be used by

PAW if required (see overlay section).
System

7

Concepts

Databases

PAW stores your game in a 'database' (a collection of tables and
information which define the game you are writing). Initially the
database is very small with only the words and commands common to
eve ry game already defined. Thi"s database gradually uses the area
of memory shown as free on diagram 1. PAW can also make use of
the other pages, but, on a 48K spectrum the extra pages are not
available and you will thus not be allowed to try and use them.
This also means that if you are writing on a 128K spectrum and
you want your game to run on both a 48K and 128K spectrum you
must not use any page other than the main page (page 0) .

Parser

Back to school for this bit:-

parse v.t. to classify a word or analyse a sentence in terms of
grammar . parsing n. (Minster English dictionary)

PAW features a fairly powerful parser to convert what the player
types when playing your adventure into a series of simplified
'Logical Sentences' (LS's) to which you will have defined the
responses. The parser does this by extracting 'phrases' from the
input string one at a time and allowing the rest of PAW to
interpret their meaning. Phrases are separated by any punctuation
mark and the conjugations 'AND' or 'THEN' (Although you can
change this if required), when it runs out of phrases in the
current input string it will request another. A phrase consists
of at least s Verb (a doing word!) and optionally two Nouns
(words which name objects) possibly with associated Adjectives
(which describe objects), an adverb (which modifies the verb), a
preposition (shows the relation of one Noun with another word)
and finally a string enclosed in quotes which is used for speech
to other characters in the adventure.

fie lIellus

From the main menu (displayed after pressing a key on the title
page) you can select all of the options in PAW by typing a single
letter (in capitals) followed by ENTER, this letter is usually
the first letter of the option to allow you to easily remember
them (they are of course always displayed anyway). The main menu
is split into two parts and option E allows you to switch between
them, the menu displayed initially shows all the functi.ons
related to writing the game, if you now type [E ENTER] - ~.e.
Capital E and the ENTER key. The other menu should be displayed
which contains all the options related to saving loading and
testing your game. (also the character designer and text
compressor which are dealt with later in the manual.) If you
should get the message 'Load Ove rlay?' you have selected an
option which requires an overlay to be loaded . so type [N ENTER]
to get back to the main menu as we don't need these just yet.

8

Concepts

The Edit Line

This is very similar to the editor provided by the INPUT command
in BASIC, you can use the cursor LEFT snd RIGHT keys to move
through anything you type, and DELETE to delete the character to
the left of the cursor as usual. EDIT must be pressed twice (or
held down until it repeats) to clear anything you have typed and
cursor DOWN pressed twice (o r held down!) to abandon the current
text (this is different to clearing the text as it will leave any
text you may be editing unchanged in the database).

Free lIeaory

Option F on the msin menu will show how much memory remains free
in each page you have available (Le. only page 0 will be
displayed on a 48K spectrum.) In addition it also shows the
highest location and message used so far, the reason for this
wonderfully useful bit of information will be explained in more
detail later. Pressing any key will return you t o the main menu.

Saving, Verifying and Loading the database

Obviously you will not be able to finish typing in a game in only
one session, and indeed you should not attempt to enter isrge
quantities of information in one go as any interruption to the
power supply (or fault in the computer) can c ause the loss of a
lot of hard work! These options allow just the contents of the
database of information to be stored on tape in a 'f ile'
(collection of information or data) and recalled at any time.

Selecting option S will request a filename to save the database
under, this should be meaningful and usefully could contain a
version number, e.g. DEM001. The database will then be saved in
several parts (PAW saves two files per page, changing the last
letter of the name to A,B,C etc for each file used).

Option H (Verify) will allow a database just saved to be checked
against the one in memory - if a tape error should be reported
then the database should be resaved with option S onto a
diffe rent tape if necessary.

Finally option J will request the name of a database file to
allow a database saved previously to be reloaded into PAW,
overwriting any database already present. Should you get an
error during the loading of a database, the database area will be
'corrupt' (Le. not in the form PAW likes!) and the only safe
option to use is J until a database is successfully loaded, any
other options may cause damage to the PAW program itself
necessitating a reload.

RULE: Save your database regularly onto different tapes so that
you always have a reasonably up to date version should disaster
strike.

9

Writing an adventure

Writing an adventure

Now the fun starts .. .

Planning

Planning your game is very important if you want to create a
professional result, it is no use sitting at the machine and
typing away in fits and starts as you wait for inspiration! You
will merely entangle yourself in a maze of numbers and words with
no recourse but to start from scratch anyway.

To illustrate the recommended approach to writing an advent ure we
will consider the design and development of a simple game from
init i al idea to final testing .

Re me mber to save your database regularly!!!

Ge tt ing an I dea

This is always the hardest part of creating anything! An original
storylin e can provide a game with an interest which rescuing a
princess will pro bably not eyoke in a mo dern adventurer.

Subjects for adventures are all around in many d a y to day
actions, in exotic places around the world and out of this world!

If you decide to base a game on a book or fi l m you have enjoyed
and i ntend using it commercially make sure you have obtained
permission from the original autho r or copyright owners • .

For our sample we will use a simple pro b lem which besets a
passenger on his / her way home:-

While standing on the bus stop the passengers ' ticket blows away
in the breeze and is carried away by a small bird into an
adjacent pa r k , the c omputer will play the part of the passenge r
who you must direct to find the ticket befo r e the bus arrives.

GSIIle de s i gn

Now y ou have the idea, i .t is worth dra wing a rough sketch of the
area the game wi l l take place within as we have done in diagram 2
(well actually our artist drew it .. .).

Note that any game design ought to be within a logically enclosed
area or the player will wonder why they can't go in a direction
when nothing appears to bar the way .

An adventure consists of a number of ' discrete' tha t is separate,
'locations' or places, the player can visit . Yqu must now decide
which areas can become a location and number them individually.

10

/

Diag ram 2

/

I j
I

A !
;

I
., "o (

·:iV:¥,
j .' .",;. r

; .;

;
I ~

I ?,
I \' .:;;;

I
,

" ~.

j ~
..,

I ">!
!

; ~

j
'1,

I ~

I ~r

Writing an adventure

\'
7r ~ ..:

-"
~

~' 7 ~ r 'lc
~ ~
1

r,

~
""7 ~ .:,; ~

/, 7c
~ '" Ii
/ \ ., --S -?(~

" ~ ~ --r ~'
.:s 1.
'7.

~

Writing an adventure

Try to make the scale consistent or logical (unless the game is
illogical by intent!) as a single step to an airport earlier
described as 10 miles away doesn't help the impression of
realism, you can introduce a method of transport sueh as a taxi
etc if needed. Now location 0 is always reserved as a title
screen for a game and we want ioeation 1 for a special use later
so we number the locations from 2 upwards.

For our example we have chosen 7 locations as follows:-

2 The Bus Stop.
3 On the Grass.
4 By the Bench.
5 The Bandstand.
6 The Ornamental Pond.
7 By the Tree.
8 Up the Tree!

To clarify the layout and to work out the possible movements
diagram 3 is a block diagram showing a stylized map of the game.

Diagram 3

Up Tree Bandstand

8 5

I
"-

By Tree By Bench Bus Stop

7 4 2

I I
By Pond On Grass North

6 3 i

Now we can start to write the textual description of each
location, try not to make them a dry and uninteresting monologue
on the state of the nation, short and snappy is just as effective
in creating an atmosphere if a little imagination is brought to
bear. Remember to stick to one form of address ('r' or 'You'
usually) or the player will suffer a serious identity crisis.
Note that if you use 'You' as a form of address you will need to
change the system messages, see the technical guide for details.

12

Start Typing

Start 'l'yping

Select option L on the main menu for Locations [L ENTER] i.e.
Press L in capitals followed by ENTER. A small sub-menu will be
displayed which shows the options available to deal with entering
and amending location descriptions. All the menus in PAW are
laid out in a similar way so we will examine these options a
little more closely, see one menu you've seen them all!

Location Text

Inse rt a Text
Begin new Page
Amend a Text
Print
LPrint
Main menu

Should now be displayed on your screen.

Anything you type will appear at the bottom of the screen as
usual, the areas in inverse give you an indication of what you
must type to achieve the function shown on the right of the line.
Take for example option P, type in [p ENTER] and you should see
the description of location 0 (location 0 always exists as it
simplifies the operation of PAW) on the screen. It demonstrates
the inclusion of colours etc within text to highlight certain
words. The text that exists however, must be replaced with our
introduction for the example adventure, so we need to 'amend' it.

Press any key to get back to the sub-menu and type in [A oj -
don't forget the space between A and O. This form of entry or
'syntax' is displayed on the line 'A locno.' Le. you must type A
followed by a space followed by the LOCation Number you wish to
amend. Pressing [ENTERJ will cause the current text for location
o to be displayed with the cursor displayed at the end for
l'0ssible editing. Now we want to clear the entire entry, so press
LEDITJ (CAPS SHIFT & 1 on a 48K spectrum) twice. You now have a
blank entry to work with, note that if you press Cursor DOWN
twice now you will abandon the changes and an 'error' report will
be displayed in the lower screen (whenever a report is displayed
in the lower screen, pressing any key will return you to the last
used menu) and the original text will remain. You can try that if
you like and then amend ([A 0 ENTER EDIT EDITJ) again.

The text we will use for the introduction screen is going to

13

start Typing

include some colour to brighten up the title, so type eleven
spaces []- which will put the title in the centre of
the line. Next press [EXTENDED MODE] (SYMBOL 11 CAPS SHIFT on a
48K spectrum). The keys from 0 to 7 will now provide the paper
(or background) colours which are available, we want the title on
a Red background so press [2]. Now type in the title which is
[The Ticket]. Next the original paper colour must be restored
(Black) so press [EXTENDED MODE] again and type [0] .

We need to put a blank line between the title and the text, ~e
can't press ENTER because this finishes the edit, so we need an
'Extended Screen Control Code' these are codes from 0 to 7 which
serve a variety of purposes within PAW. ESCC 7 provi des a
newline, t o enter an ESCC you ne e d to use a 'quirk' in the
editor, as follows; first press [EXTENDED MODE] and select colour
White (i.e. type [7]) next press [DELETE] once which deletes the
paper control but leaves the number - you guessed it 7! so the
cursor jumps to the start of the next line. Do this again to give
a blank line and type in the remainder of the introduction as
follows, don't attempt to stop words breaking over lines as PAW
does this automatically when the game is running (i.e. It formats
the text):

[While standing on the bus sto~ my bus ticket has been blown
away, can you help me find it?J

When y ou have finished press [ENTER] to finish the edit and then
anykey as requested to return to the sub-menu. You can use option
P to look at your text if you like, but note that it is not yet
formatted, this is done only while playing the game.

If you have a printer you might like to try option L which 'Line
Prints' the text, if this causes the computer to 'hang' or appear
to do nothing press [BREAK] (CAPS SHIFT 11 SPACE on a 48K
Spectrum) to get back to the menu then refer to the technical
guide for further information on printers.

Option I on the menu allows a new location to be created within
the game, it has no number following it because PAW automatically
assigns the next available location number. Now we wanted
location 1 for a special purpose which we will explain later
(good these secrets aren't they!) so just type [I ENTER], you
will now have a blank location available for use so just press
[ENTER] again (and any key) to return to the sub-menu. .

Now type [I ENTER] again to 'insert' location 2, and type in the
r,0llowing ,:text :,0 describe ~,t. Note that the spaces between

•• a road.. and .• South. To.. will occur exactly at the start
of new lines, due to the text formatting you must still type the
spaces or the formatter will think the two words are one long
word - the spaces will be 'suppressed' (removed) by the formatter
where required when the text is printed during the game.

14

Start Typing

RULE: Always type the s pace between tw o words o r betwe e n a f u ll
stop and the start of the next sent e nce , even i f thst space i s a t
the start of a new s c reen line. It will b e s uppressed b y t h e
formatter if required.

The text for location 2 is as foll ows :

[I'm standing by a bus stop, on a road which runs North t o
South. To the West a park gate set in iron railings stand s
open.]

Ri g ht got that little lo t in. Pre ss [ENTER] t o finish the edit
and return to the sub-me nu. From now on we will omit t h e 'ENTER'
assuming that you are remembering it anyway. Be sides it saves
our typing finger.

Now might be a good time t o dem o nstrate a natty little feature
which prevents you entering invalid commands on menus. Try t yping
in [I 3 ENTER] (WillI one more reminder won ' t hurt) . You sh ould
now have a flashing question mark after the 3 along with the
cursor. PAW has checked the 'syntax' (remember that ?) and
discovered that no number is needed after the Insert option. The
cursor will always be positioned as close to the problem as PAW
can get - in this case a single press of [DELETE] will suffic~ to
get rid of the offending number (don't worry about the space as
PAW ignores any superfluous ones). Now [ENTER] will provide you
with a blank entry for location 3. The text required f o r this
and the remaining locations is shown below, so using your new
found knowledge type in the description then insert and enter the
remainder of the locations. Note that the []'s have been omitted.

Location 3

The grass on which I stand is neatly trimmed. To the North
is a path and bench while to the West is an ornamental
pond.

Location 4

I am on a gravel path running East to West, by a park bench.
To the South is a grassy area while to the North I can see
a bandstand.

Location 5

I am standing on the bandstand which appears to be made of
ornate cast iron painted white . To the South is a path.

Location 6

The sun glitters on the surface of the ornamental pond,
whose waters ripple in the gentle breeze. A path runs North
towards a large tree, while to the East is a grassy area.

15

start Typing

Location 7 -

The path curves South and East here beside a large tree.

Location 8

I am sitting on a branch in a broad leaved tree, the park
is spread out before me, to the East I can see the bus stop
through the gate in the railings.

Use [pJ to check what y'ou have typed. when the screen fills ~p
with text you will see "More ... " printed in the lower part of the
screen, pressing any key except BREAK, SPACE or N at this point
will cause another screen full of text to appear and so on until
the final 'Press any key' is reached. BREAK, SPACE or N will
cause a 'BREAK' error and allow you to exit the listing.

Great now we have a collection of locations, but no way to get
from one to the other!

That leaves two options to discuss; B is to begi n a new memory
page on 128K machines - do not do that at the moment as the demo
game will fit easily onpageO. The option is dealt with in the
chapter on 128K considerations in the technical guide.

So we use the last option, Z which it should be obvious takes us
back to the main menu, so type [Z ENTERJ (oops another ENTER!).

Connections

Select option C from the main menu, type [CJ, and you will be
presented with a sub-menu again similar to that for locations.
Notice that entries can be Amended (A) , Printed (p) or Line
Printed (L) only, the reason is that PAW inserts a blank entry in
the connections table every time you insert a location. If you
use option P to look at the table, type [pJ, you will see the
blank entries for locations 0 to 8.

Looking back at our map we can see the interconnections required
between the locations, for location 2 (the bus stop) we need a
single movement WEST which will take the player to location 4.

So type [A 2J to amend t~e entry for location 2 and type [WEST 4J
which instructs PAW that when the player types the word West when
in location 2 they are to be moved to location 4!

If you now use option P to examine the entry (note that [p 2J
will print only the entries from location 2 onwards) you will
discover that it looks something like:-

16

Location 2
etc

W TO 4

Start Ty-ping

This is because PAW knows that 'w' is synonymous with 'WEST' (A
synonym is a word which means the same) and PAW will always use
the shortest synonym it knows when printing (indeed it will also
use it if you amend the entry a second time).

For location 3 (the grass) we need three connections:-

NORTH to 4, WEST to 6 and NorthWest to 7.

'NW' is the word paw understands for NorthWest so amend the entry
for location 3 by typing [A 3J and type in the following exactly
as printed (again we have omitted the [J's and will do so in
future for entries that are displayed on a line of their own):

NORT 4 WEST 6 NW 77

when you press [ENTER], PAW will place the flashing 'syntax
marker' after 'NORT' because it does not know the word, add the
[HJ to make it .!NORTH' and press [ENTERJ again, this time the
marker will be displayed after the 77 because PAW does not know
of a location 77 (in fact there are no locations higher than 8
yet in our game) this is another example of the syntax checker at
work, it will usually prevent you entering silly or illegal
information. So delete one of the sevens by pressing [DELETEJ and
press [ENTERJ to complete the edit.

The remaining connections are as follows (in abbreviated form to
save you some typing) :-

Location 4 N 5 E 2 S 3 sw 6 W 7
Location 5 S 4 SW 7
Location 6 N 7 NE 4 E 3
Location 7 U 8 NE 5 E 4 SE 3 S 6
Location 8 D 7

',D' and 'u' are short for DOWN and UP respectively to allow the
player to go up and down the tree (SW is SouthWest, NE is
NorthEast and SE is SouthEast!).

Finally amend the entry for location 0 so that a movement will
take us to location 2 where we start the game (there is a better
way than this which needs a table we haven't come across .ret so
is best left till later). Typing [A 0 ENTER NORTH 2 ENTERJ from
the sub-menu will achieve the required effect.

Check these thoroughly against the map and the list and when you
are happy that they are correct, reward yourself with a cup of
tea after saving the database for safety. Just to remind you; use
option Z to return to the main menu' and option S from there to
save the current database (you can also use option E to see the
other main menu if you want.).

17

Pl~1ng the GaIe

PlaTing the GaIe

A suitable time has now arrived to tryout the game. The option
to test the game is T on the ma.in menu, if you now select it, by
typing [T], you will be asked whether you require diagnostics,
for the moment just type [N ENTERJ (oops, anothe·r one of those
ENTERs) for no, as we don't know what diagnost~cs are, and indeed
don't need them yet.

Now you should have the title screen you typed in earlier along
with a request for input displayed. The input line is used to
enter the commands for PAW to interpret into things to do,
according to the information you have entered when writing your
game . So far we have only told it about where to take us when a
certain direction is entered, so try starting the game properly
by typing [NORTHJ (or whatever direction you used in the
connection table entry for location 0) and pressing [ENTERJ.
(DELETE on the input line will allow you to correct any
mistakes). .

The screen will clear and the description for location 2 will
appear - if it doesn't you probably have the entry in Connections
wrong, ·don't worry you can go back to the editor by typing [QUITJ
(which is a command PAW knows to start with) and replying [yJ;
you do want to quit and [NJ; you don't want to try again. Use the
connections table option to check and amend the entry as
necessary •

You can now . try moving between your locations, testing the
possible moves (make a note of any which are wrong so that you
can correct them upon returning to the editor).

You might also like to try some of the other commands which PAW
knows, e.g. R or REDESCRIBE will display the location description
again - which is useful if a lot of text has been output and the
description lost. I or INVENTORY will list the 'objects' you are
carrying, you will be carrying one object to start with but will
be ab Ie to do nothing wi th it.

You are probably dying to see the parser in action by now (why
not?) so if you work your way back to the bus stop and enter the
following line you will get a flying visit round the game!

GO WEST THEN NORTH THEN SW THEN UP AND DOWN THEN SOUTH
AND EAST THEN NORTH THEN EAST. INVENTORY

By the w~y [W.N.SW.U.D.S.E.N.E.IJ will have the same effect but
doesn't look half as impressive •••

Righ t back to the boring bi t, QUIT from the game as shown
previously so that we can deal with the n-"e x.t chapter in this
saga.

18

Objects

Objects

Objects are anything which the player can manipulate within the
game, for example; An apple which they could eat, a key which
they could use to unlock a door, or a rucksack to contain the key
and the apple!

In our simple game we will have the following objects (not all of
which have a function in the final game).

Object 0 A lit torch.
Object 1 A bag.
Object 2 A sandwich.
Object 3 An apple.
Object 4 A ticket.
Object 5 A lead.
Object 6 An anorak.
Object 7 An unlit torch.

Note that the torch is in fact two separate objects which we will
swap over when the player turns it on and off.

Option 0 from the main me nu as you migh t have guessed is used to
enter the descriptions of the objects in a very similar way to
how we entered our location descriptions, select the option by
typing [OJ. You might not be surprised either to find that an
object 0 already exists if you use option P to list them. Enter
the above descriptions - remember to use [A OJ for the first one
as it already exists - perhaps using a different Ink colour, sa
Cyan (selected by [EXTENDED MODEJ and holding down [CAPS SHIFT)
while pressing key [5J). Don't for~et to turn the colour back to
white (press [EXTENDED MODEJ then LCAPS SHIFTJ & [7J) at the end
of each text.

Back to the main menu so that we can tell PAW all about our new
objects. Option I allows us to define where each object will
initially be when the adventure starts, so select the option and
the sub-menu to deal with initial position of objects will be
displayed, similarly to connections there is no option to insert
as this is done by PAW automatically when you insert an object.
Notice that Amend has two 'parameters' the object number and it's
position and that this position has several special values (which
are non existent locations); 252 is 'not-created', i.e. does not
yet exist within the game. 253 is used to 'contain' objects worn
by the player, while objects carried by the player are contained
in location 254.

For example we want to make the lit torch a 'not-created' object
(it was 'carried' in the start database) so type [A 0 252J and
the message "Amended" will be printed to show that PAW has
completed the task.

19

Objects

The remainder of the initial positions are as follows, so amend
each in turn but don't try and type in the comments. Use option P
to ensure the positions are correct when you finish.

Object 1 2 ;the bag starts off at the bus stop
Object 2 254 ;the player is carrying the sandwich
Object 3 254 ;and the apple
Object 4 8 ;the ticket is up the tree ••
Object 5 3 ;the lead on the grass.
Object 6 253 ;the player is weari ng the anorak.
Object 7 254 ;and carry i ng the unlit torch.

Next we need to tell PAW some more about the objects, their
relative weight, if they are capable of containing other objects
and if the player can wear them! Type [Z] to return to the main
menu and select option X (xtra info??), by typing [X], this
selects the object weight menu which also allows us to set the
other two object 'attributes' (container/wearable). You may not
be surprised by now to find . that PAW has created an entry in this
table for all the objects inserted earlier. It in fact inserts an
entry which makes all objects weigh 1 unit, not be a container
and not be wearable this is known as an objects' 'default'
attributes. PAW allocates default values to everything even if
that entry is 'null' (nothing).

We need to amend only the anorak and bag attributes as the player
is able to 'wear' the anorak (in fact the player is doing this
when the game commences) and the bag will be able to 'contain'
other objects. In addition the bag and anorak are 'heavier'
relatively than the other objects and will have their default
weight changed to 3 units each.

The A to amend an entry is followed by three values; the object
number, the unit weight of that object and finally it's attribute
options which are; O-none, 1-a container for other objects, 2-the
player may wear (and remove) it and 3-a container which may be
worn (and removed), (e.g. a pair of jeans which have a pocket).

So for our bag (object number 1) which is a container ~eighing
three units we need to type LA 1 3 1] (not forgettl.ng the
spaces). The anorak has no pockets (well ours hasn't anyway!) but
it can be worn/removed so the entry is [A 6 3 2].

Now use option P to examine the new entries which should . be:-

Object 0 weighs 1
Object 1 weighs 3 C ;C means a container
Object 2 weighs 1
Object 3 weighs 1
Object 4 weighs 1
Object 5 weighs 1
Object 6 weighs 3 WR ;WR means Wear or Remove
Object 7 weighs 1

20

Objects

You might like to test the adventure again now to ensure that all
the objects are where they should be, but note you will not be
able to do anything with them yet, we still have to tell PAW what
word describes each object. (it may be a suitable time to do
another save of the database now but ensure it is on a fresh
section of tape and use the next filename number if you are
numbering the versions.).

Vocabulary

This is a major table and to reflect this the menu is rather more
complex than any you have met so far. Note that most of the text
is merely reminding you of various options that are available and
thus isn't really as complex as it looks at first.

The vocabulary is a list of all the words which PAW is able to
recognize in any input the player types in during the game. Thus
any words which aren't in this table will have no effect at all!
Initially the vocabulary contains about 70 common English words
which will be required for most adventures.

Each entry for a word consists of up to five letters which will
either be a complete word e.g. NORTH or the first five letters of
a longer word e.g. ASCEN(D). a word value and a word type (e.g.
Noun, Verb e'1;c).

The use of only five letters to store a word reduces the amount
of memory required to store the entire vocabulary, the amount of
typing the player must do and makes PAW faster at looking up
words when required. Five letters is also more than adequate to
differentiate the majority of important words in the English
language from each othe r.

The menu allows the insertion and deletion of words, the listing
of entries for each word type and the inspection of 'synonyms'
which we met earlier when we found out that PAW knew 'w' meant
the same as 'WEST' . Try [S WEST] (Show synonyms) to see indeed
that PAW knows 'w' as veIl.

Now try [p 2] to look at all the Nouns that PAW knows to start
with (the numbers wh i ch represent each word type are given on the
right of the menu, type 2 are Nouns, type 0 are Verbs etc.).

You will find all the major compass directions, 'I' (Which even
though it is short for Inventory is a Noun.) and 'ALL' - plus
their synonyms.

We need to increase the number of Nouns by inserting a word for
each of our objects, now the first free number appears to be 15,
but Noun values less than 50 have special meanings thus;

Nouns less than 50 are Proper Nouns, for example peoples names or
places, but more specifically for PAW they are Nouns which will

21

Objects

not affect the subject of 'it', take the sentence:-

GET THE SWORD AND CLEAN IT

It (a word known as a pronouh) refers to the SWORD obviously and
PAW will (as long as SWORD is ' a Noun in the vocabulary with a
value greater than 49) know this and assuming you have dealt with
the possibility of cleaning the sword, allow you to do so. But
take the following sentence:-

GET THE SWORD AND KILL THE ORC WITH IT THEN DROP IT.

Normally PAW assumes 'it' to be the last used Noun but as long as
ORC is a Noun in the vocabulary with a word value less than 50
then PAW will remember 'it' as being the sword and carry out the
action correctly. This feature is noted on the left of the menu
along with mention of word values less than 20; these are Nouns,
wh ich if PA W cannot find a Ve rb in a 'phrase' containing one,
will convert temporarily (i.e. it does not change the vocabulary)
into a Verb. The major use of this is for things liks NORTH which
may be typed on their own implying GO NORTH which in normal
English is invalid but is common when playing adventures.

Finally words less than 14 are assumed to be movement words (any
word which is a direction) and merely determine the message which
will be printed if PAW cannot do anything with the phrase it has
found (Le. it determines if, "I can't" or "I can't go in that
direction" is displayed). Note that this tag of 'less than 14 is
a movement' applies to both Verbs and conversion Nouns.

Since all our objects are 'its' we must give them word values
greater than 49 as follows:-

TORCH
BAG
SANDW(ICH)
APPLE
BUS
TICKE(T)
LEAD
ANORA(K)

50
51
52
53
54
54
55
56

note that there are two words with value 54, this makes BUS and
TICKET synonymous so if tha player types GET BUS TICKET or GET
TICKET, PAW will know they mean the same thing.

Use the I opt ion to inse rt the se 8 words as Nouns (word type 2),
for examfle TORCH is inserted by typing [I TORCH 50 2J and so on.
Use [p 2 to check that the axtra Nouns are now in the vocabulary
when you have finished.

We also need some words to describe ths difference between our
two torches to PAW. The words which describe 'a Noun are called

22

Objects

Adjectives, you can see which adjectives PAW knows already using
[p 3J (adjectives are word type 3), we need two extra adjectives
LIT and UNLIT so insert these as word values 138 and 139
respectively using [I LIT 138 3J and [I UNLIT 139 3J. Note that
the adjective numbers start high as they are not used as often in
sentences and it is pointless to search through them all the time
when PAW mostly needs common Nouns or Verbs.

All word values from 2 to 254 are available for each type of word
and there is no limitation on the number of words with the same
word value (synonyms) so the vocabulary can become quite large if
you want.

Just to familiarize yourself with the other optionsj try
inserting a word which is already present e.g. [I GET 20 0 will
result in the message "GET is already present", deleting a word
which isn't present [D BANANAJ (we don't have an banana in our
game or the word in the vocabulary) will result in "BANANA is not
present". Note that PAW takes only upto the first five letters
wheneve r you refe r to a wo rd and igno res the res t.

We will come back to the vocabulary fairly soon, but are going to
tell PAW which words describe our objects first. We may, have
described what each object is and how much it weighs and even
where it starts in the game, but we haven't actually told PAW
which word in its vocabulary refers to which object!

Return to the main menu now so that we can continue with yet
another option.

Object Yorda

Option W is the table where the words in the vocabulary are
linked to a particular object, again you can only Amend, Print or
LPrint the entries in the table as PAW inserts a blank entry for
each object when you insert its description on the object text
option. So [pJ will reveal 8 blank entries for our objects.

The object word table allows both a Noun and an Adjective to be
associated with each object number in the game. Our objects
require the following entries:-

Object 0
Object 1
Object 2
Object 3
Object 4
Object 5
Object 6
Object 7

TORCH LIT
BAG
SANDW
APPLE
TICKE
LEAD
ANORA
TORCH UNLIT

This introduces a special word" " (underscore or underline
depending on your colonial bias) which means (in this case) no

23

Objects

word ("_" is [SYMBOL SHIFT] /I: [0]). You must alw_aYB" type it in if
there is no adjective to describe the Noun. So for example the
lit torch and the bag are amended using [A TORCH LIT] and
[A BAG _] respectively (they are in reverse order to simplify
their uee wi thin PAW). Amend these and the other objects entries
now so that we can have a play again.

Play it again ••• ?

This time we will examine the use of diagnostics so from the
main menu type [T] to select test game and [yj to request
diagnostics. The title and introduction will appear again along
with a request for input. The request for diagnostics has
apparently had no effect, but if you now press [ENTER] before you
type anything in you should find the cursor dissapear and a line
similar to:

Flag 38= O?

appsar in the bottom of the screen followed by a flashing cursor.

PAW contains 256 of what are known as 'flags', each flag can be
used to contain a number from 0 to 255 and are used to indicate
(or flag!) the state of some part of the game. e.g. You could
decide that flag 11 when set to 1 meant that the park gate was
closed and when set to 0 meant it was open, we will see examples
of the way flags can be set and used in the next sect ion.

PAW has set aside several of the flags to indicate specific
things (flags .O to 10 and 29 to 59 actually). The value displayed
on the bottom of the screen is the contents of flag 38 which PAW
knows is your current location (0 in this case). To see this go
back to the input prompt by pressing [ENTER] (ENTER 'toggles'
between diagnos tics and input if you haven't typed a~thing else)
and move to the start of the game properly using LNORTH] (or
whichever direction you used in the connections table for
location 0). Again before typing anything on the new input line
press [ENTER] to get diagnostics and the line:

Flag 38= 2 ?

should be displayed, because you are now at location 2 (the bus
stop). You can look at ths values of other flags by typing their
number before pressing ENTER, try [100 ENTER] to look at flag
100, which will display:

Flag 100= O?

A very powerful feature allows you to set the value of a flag by
putting = in front of the number, try [=10 ENTER] and the line
should be redisplayed as:

Flag 100= 10?

24

Objects

Flag 100 does nothing in our game and its value is unimportant
but if you decide to practice on your own do not change th~
values of any other flags for the moment or-You:may get s o me
funny effects if you happen on a flag which is important. Return
to the input line when you have finished (press [ENTER]) so that
we can see what else PAW can do.

We shoul d now be ab Ie to manipulate the obj e ct s in the game, at
the moment the bag will be at the bus stop with us, we will be
carrying the sandwich, apple, unlit torch and wearing the anorak.

Use the diagnostics to look at the va l ue in flag
([ENTER 1 ENTER]) this has the value 3, which is the number of
objects carried but not worn, return to the input line and type
[GET BAG], PAW will print the message "I now have the bag.",
which is known as auto-reporting (PAW automatically reports any
action it has carried out). This command has caused the curren t
position of the bag to be changed from location 2 (the bus stop)
to 'location' 254. (carried), note that no change has occurred to
the initially at table in the datebase only to a copy which was
made when the game started. If you look at the value of flag 1
again (notice how the flag you looked at last is displayed when
you reselect diagnostics) you should find it has been increased
to 4.

Now try [REMOVE ANORAK] and the report "I can't remove the
anorak, my hands are full" will be printed. This is because PAW
initially (by default in other words) allows the player to carry
only four objects at anyone time, this logi c ally must prevent
the player from taking off clothing etc (actually removing is
chan~ing an objects position from location 254 to location 25 3 !)
Try LDROP BAGJ and then [REMOVE ANORAK] again, this time you
should be able to do so. Look again at flag 1 and you should
discover it is still four - this is because removing the anorak
has increased the number of things you have in your 'hands'.

Try the following and see if you can work out why they do what
they do:

GET BAG

RE)lOVE ANORAK

WEAR ANORAK

GET APPLE

GET TICKET

Notice that all except the last report actually mentioned the
objects by name, this is because they were in plain sight and
thus the player would know they existed. But to a player who did
not know the game, the ticket has not yet been found and to

25

Objects

mention it by name would imply that it existed or that there was
only one in the whole game thus giving a clue!

If you try to put anything in the bag you will discover that PAW
drops that object instead. This is because we haven't yet told
PAW what can be put in the bag" only that it is a container, the
next chapter deals with this subject.

Finally we will find a 'bug' in our game; type [GET GATE] which
will result in "There isn't one of those here". It shouldn't say
that because the description says there is a gate here!

The problem arises because although we told PAW about the apple
the sandwich, the torch and so on, we didn't tell it about the
gate, if you use GET (or DROP,WEAR and REMOVE) with any word
which is not in the vocabulary then PAW assumes it is an object
which is 'not here'. Of course once the word is in the
vocabulary, PAW will know it isn't an object (if there is no
entry for the word in the object word table) and report "I can't
do that." which is correct.

So go back to the editor main menu ([QUIT ENTER Y ENTER N ENTER])
and select the vocabulary option [V]. The extra Nouns we require
are as follows:

GATE 57
RAILI(NGS) 58
GRASS 59
PATH 60
BENCH 61
POND 62
BANDS(TAND) 63
IRON 63
TREE 64
BRANC (H) 64
LEAF 64

Notice how all the ways the playe r can refer to the tree are
catered for, we have no intention of allowing the manipulation of
leaves or the branch, but if you did you would need to give them
separate word values - this is an important design consideration.

You might like to test the game again to ensure that GET GATE
does indeed produce the correct response.

We have now dealt with; creating locations and con"necting them
together, creating and describing objects, assigning them a word
from the vocabulary, a starting point in the game, a relative
weight, flagging if they are wearable (and removable) and if they
are a container. The next chapter goes on to create problems and
characters to make the game world a more interesting place by
allowing the player to do things!

26

Process 4 Response

Process 4 Response

We now come to the section of PAW which allows the problems and
characters in the game to be created.

The Response table

The response table is option R on the main menu and is a special
form of what PAW terms a process table. A process table can be
thought of as a simple sequential (it does each command in turn)
programming language, the commands which are carried out are
called 'CondActs' because they can be divided mainly into two
groups; Conditions and Actions.

Earlier we mentioned that the parser in PAW breaks sentences down
into phrases, which are then organized into what is known as a . LS
(logical sentence). In the case of directions like NORTH (wh~ch
are LS's on their own) it uses the connections table to discover
where (if at all) it should move the player to. Before it does
that however it carries out a check against the response table to
see if that table contains an entry which can deal with the LS,
i.e. give a response to part of/entire command the player
originally typed.

Every possible phrase the player types and therefore .every LS
that your game will respond to, will have a correspond~ng entry
in the response table, except for most movements which you set in
the connections table.

The most important part of a LS is the Verb, this shows the
purpose of the LS, next most important is the first Noun which
shows the subject of the LS; e.g. GET APPLE, GET is the purpose
and APPLE is the subject.

If you now select the response table option from the main menu by
typing [R] you w111 be presented with the sub-menu to deal with
this table.

Type [p] to look at the table. For the moment ignore the other
entries and consider the first entry only:

I INVEN

the two words indicate the Verb and Noun respectively of the LS
that this entry can deal with. Now I is a conversion noun (as we
saw in the sect ion on vocabu lary) wh ich me ans if it is the only
word the player types in a phrase, it will become the Verb for
the LS. The underline () indicates that the Noun is not
important in this entry - abi t like 'no word' in the object word
table. What this means in simple terms is that if the play~r
types I on its own PAW will match it up with the first entry ~n
the rssponse table and carry out that entry as described next.

27

Proceee 4 Reeponse

In order to carry out the entry, PAW will execute each of the
condacts (commands) in the list which follows. Now the first
entry contains only one condact;

rITBI is an action (the act part of the word condact!). It is an
action because is carries out the act of listing the objects the
playe r is carrying and wearing on the sc reen, you do not need to
worry how INVEN does this it just does.

When you typed I (or INVENTORY which is synonymous remember)
during testing the game, it was this entry in response that
caused something to happen because a logical sentence of "I "
was created by the parser, which PAW then found matched the first
entry in the response table.

INVEN once it has listed any objects you · are carrying, instructs
PAW it has 'done' something, when PAW discovers this it asks the
parser for another LS, which the parser provides by decoding the
next phrase in the players ~nput, PAW gets this LS and checks it
against the entries in response and so on. this 'loop' is shown
in diagram 4 in the form of a flowchart which you, should follow
from the box marked 'start'. The loop is slightly more complex
than the diagram might lead you to believe and a complete one is
given in the technical guide, but diagram 4 will do for now.

We advise you reread the above paragraphs and study the diagram
until you are happy with the way PAW operates on LS's before
proceeding.

Let's consider the second entry in response:

GET I INVEN

as you might have worked out this entry deals with the phrase
TAKE INVENTORY (GET is a synonym of TAKE, I is a synonym of
INVENTORY and PAW always prints the shortest synonym) this deals
with another way the player might request a list of the objects
he has with him.

We will skip the next few entries (you will have to press a key -
except for BREAK, SPACE 9r N - to get the next screen full of
text at this point) and move onto:

QUIT QUIT
TURNS
END

Now, QUIT is a Verb in the vocabulary, so, as the minimum valid
phrase is a Verb, if QUIT is typed on its own by the player then
the parser will generate a LS of "QUIT _fl , on searching through
the response table PAW will find the above entry and start to
carry out the condacts which follow;

28

Carry out
CondActs
until DONE

No

Yes

Get Input
from
player

Look for
valid
phrase

Create
Logical
Sentence

Search
Response
Table

•

No

Process 4 Response

Diagram ±

••••. Parser used here.

For entry
to match
the LS .

Search
Connection
Table

Move to
new
location

29

Process • Response

QUIT is a condition, (th~ cond part of the word condact), do not
confuse the Verb QUIT in the vocabulary with the condition QUIT,
if you we re to make STOP a syn onym of QUIT and then de le te the
word QUIT from the · vocabulary then the player would have to type
STOP to end the game, but the condition QUIT would still be
carried out i.e. the entry would then read:

STOP QUIT
TURNS
END

A condition merely decides if PAW should carry out the next
condact in the list. QUIT determines if the next condact should
be carried out by asking the player "Are you sure?". If they
reply "NO" then QUIT tells PAW it has 'done' something which
causes PAW to go and get another LS (i.e. · it stops the QUIT) this
is slightly different to the normal way a condition works as you
will see later. If the player types "YES" then QUIT does nothing
and allows PAW to look at t~e next condact in sequence which is
TURNS. .

TURIS is an action, which prints "You have taken x turn(s)."
on the screen where x is the number of phrases that PAW has
carried· out since the player started the game. Despite the fact
it has done something it does not tell PAW to stop looking at
condacts which proceeds to look at the next condact END.

EID is a special action, wh i ch prints "Would you like another
go?" on the screen. If the player types "YES" then END will cause
the game to be restarted with all objects restored to their
required position and so on. Otherwise END causes an "OK" arror
to be generated which will return you to the editor menu of PAW.
If the editor menu of PAW isn't present (i.e. a finished game)
then the computer will be reset.

Note that you should always have an END action somewhere in the
game (if you should happen to remove the QUIT entry that is) or
you may not be able to return to the editor section ve ry easily -
you would have to use the BREAK key which only works while PAW is
processing, and as you found out earlier PAW is so fast that
catching it doing something isn't that easy!

The other entries which ·are present in the database deal with a
number of other standard commands which the player of an
adventure will usually need. The condacts used in the other
entries are discussed below. You may be wondering why these
entries are in the table and not part of PAW if they are needed
in every game. Well apart from the fact it is easier to make them
a table entry, Tour game might not need them and as they are a
table entry they can be deleted.

DBSC is an action, used by the "R "entry in the table which
causes PAW to abandon scanning the response table and reDESCribe

30

Process • Response

the current location of the playe r.

SAVB and LOAD are two actions which allow the current state of
the . g~me ~o be saved and reloaded from tape, the current game
posl.tl.on l.ncludes every pie c e of information needed to restore
the game after a LOAD to exactly the same position it was before
the SAVE and includes the values of flags, position of objects
plus sundry other information. Again do not confuse the Verbs
SAVE and LOAD in vocabulary with the actions SAVE and LOAD. You
could equally as well use STORE and RECAL(L) as your vocabulary
Ve rbs bu t they would still use the SAVE and LOAD ac t ions in the
response table. Note that both SAVE and LOAD effectively do a
DESC action when they have finished which means any condacts
which follow will be ignored and that they also cause any further
phrases in a playe rs input to be igno red.

RAISAVB and RAILOAD are two actions similar to SAVE and LOAD
except that they use a 'buffer' (area of free memory) to st o r;
the game position, this means that there is no need f o r the
player to fiddle about with tapes. Only one position can be
stored and as it is stored in memory it will be lost if the
computer is turned off, this should be made clear to the player.
Note that the buffer area is lost when you return to the editor
section of PAW because you might change the design of the game in
between two tests! The number after RAMLOAD is a parameter and
tells the condact how many of the flags to restore from the
previous RAMSAVE, this allows scores etc to be maintained e ven if
the player 'cheats' by using RAMSAVE and RAMLOAD in a difficult
part of the game. They are both followed by a DESC action as
unlike SAVE and LOAD they just continue onto the next condact.

If PAW runs out of condacts in a list without being told it has
DONE something it will 'drop off' the end and realizing this will
continue to search response for another matching LS. We also said
that QUIT was a bit different to normal conditions, well for a
start it is the only condition which asks the player for
information and secondly it tells PAW something has been done if
the player replies "NO" (they don't want to abandon the game)
which causes PAW to get a new LS. A normal cond i tion if it
'failed' would merely cause PAW to continus searching the
response table for another entry matching the LS.

The other condacts which are used will be considered now in
relation to the entr i es they are part of. To simplify our
explanations we can consider the position of an object to be one
of four places;

HERE: The current location of the player (the value stored in
flag 38 if you remember).

CARRIED: 'location' 254, the imaginary location which is where
all objects the player is carrying are stored.

31

Process a Response

WORN: 'location' 253, the imaginary location which is where
all objects the player is wearing are stored.

NOTHERE: Anywhere else! This may also include 'location' 252
which is the imaginary location where any objects which
do not yet 'exist' within the game are stored.

Take the following two entries in the response table:

GET ALL

GET

DOALL

AUTOG
DONE

255

these two entries allow the player to GET an object. GETting an
object involves changing its location from HERE to CARRIED.

Ignoring the GET ALL for a moment let us look at the GET _ entry,
as we said earlier underline means 'any word' so no matter what
Noun the player types in, in the phrase containing the GET the
GET entry will match (this is called triggering the entry).
Take-the phrase GET THE APPLE; THE will be ignored because it is
not in PAW's vocabulary, so the L5 will be "GET APPLE", this will
'trigger' the GET entry resulting in PAW looking at condact;

AUTOG is an action which AUTOmatically Gets the object specified
by the Noun. This is where the object word table comes into
effect, AUTOG looks through the object word table for an entry
which matches the Noun in the L5, when it finds one (APPLE in the
example) it then knows the number of the object it refers to (the
apple is object 3), it then ensures that the current location of
that object number is HERE and if so changes it to CARRIED and
prints the message "I now have the _." where the underline is
replaced with the description of the current object. i.e. the one
AUTOG just looked up. If it does not succeed in finding an entry
then there are five possibilities;

1/

2/

3/

4/

32

The player has tried to get an object which they are already
carrying or wearing in which case "I already have the _." is
displayed.

The player has tried to get an object which is NOTHERE in
which case "There isn't one of those here." is displayed.

The player has tried to get something which is not an
object but does have a word in the vocabulary (e.g. GATE in
the demo game) this results in "I can't do that

The player has used a word which is not in the vocabulary
which causes the parser to create a L5 of "GET _" which
triggers our GET entry anyway. AUTOG assumes this to be a
Noun describing an object (which mayor may not exist) and
displays "There isn't one of those here

5/

Process a Response

The player is unable to carry any more objects or this
object would cause the weight limit to be exceeded in which
case a suitable message is displayed.

If AUTOG succeeds then PAW looks at the next condact DONE;

DOllE merely tells PAW that this entry is finished and it should
go and get another L5.

Next we will look at the GET ALL entry, you may have guessed what
this does (it attempts to GET all objects at the current
location), so we shall explain the mechanism;

5hould the player type the phrase GET ALL, the parser will create
a logical sentence of "GET ALL", wh i ch will match the e ntry and
cause PAW to look at the DOALL action;

DOALL is an action which is followed by a parameter which gives a
locat i on number to use. DOALL looks through the current location
list for each object looking for entries that are at the same
location as the parameter (which in this case is 255, a special
location which means that the current location of the player
should be used instead), when it finds one it looks in the
object word table to find the vocabulary word which describes
that object number, this is placed in the current L5 (thus
replacing the Noun ALL), a flag is set to indicate that DOALL is
active and the rest of response is scanned by PAW for an entry
which matches the newly modified L5. This will be the GET _
entry discussed earlier, which will GET that object. Once this
has been done PAW will discover that DOALL is active and go back
to the GET ALL entry (actually it goes direct to the DOALL
action) and allows DOALL to look for another object whic h
generates a new L5 and so on for all objects at the specified
location. When DOALL runs out of objects it resets the flag to
show it is not active and tells PAW to get a new L5.

This may seem a rather roundabout way to approach this task, but
if you examine the very similar DROP,WEAR and REMOVE entries you
will see that the same mechanism is used to create all four
commands. AUTOD, AUTOW and AUTOR work in a very similar way to
AUTOG while DOALL merely uses location; 254 (CARRIED) as the
parameter for DROP and WEAR (i .e. DOALL searches all the CARRIED
objects when you try to DROP or WEAR ALL!) and 253 (WORN) when
you try to REMOVE ALL.

If the above seemed a bit heavy going don't worry about it for
now as DOALt is one of the two most complex condacts in PAW and
hopefully the penny will drop as we continue. At this point you
might like to use the test adventure option and try out the 'all'
commands which may make the mechanism clearer.

Process 4 Response

lIessages

Before we continue with the response table we will insert some
entries in another table which will be needed. So return to the
main menu and select option M for messages.

Messages should be a breath of fresh air after that discussion of
the response table, the sub-menu provides options ve ry similar to
the location and object description menus, the purpose of
messages is to contain all the text which will be displayed ·to
describe what is happening in the game to the player, excluding
the messages that PAW itself displays (like "I can't do that."
etc). If you use option P you shouldn't be surprised to discover
that an entry already exists.

We are going to deal with the player wanting to examine things in
the game, e.g. EXAMINE APPLE. Now examining an object merely
requires the writer to provide a message which gives more
information about the specified object, so in the case of the
apple we could say "The apple is crisp and green.". Change the
text of message 0 to read that ([A 0 ENTER]), and then insert the
following messages to deal with some of the other things in the
game;

Message

It's a cheese and pickle sandwich.

Message 2

The ticket has "City Bus Company" printed on it.

Message 3

The bench is firmly screwed to a concrete base.

We are going to deal with only four items in the demo game but in
a large game you would usually provide detail for most things,
even if they serve no purpose it provides a touch of realism
which always makes the player feel involved.

So back to the response table (option R from the main menu) and
start work. Let's take the apple first; the phrase which the
player will type will be EXAMINE THE APPLE (or EXAMI AFPLE if
they are lazy!) producing a LS of "EXAMI APPLE". So we ' need to
insert an entry with these two words;

First type [I EXAMINE APPLE ENTER], PAW will ignore the extra
letters and print the entry at the top of a clear screen and wait
for you to type in the list of condacts for that entry. Noy we
must only allow the player to examine the apple if it is actually
HERE, CARRIED or WORN (most normal people have a distinct
disability at looking round corners or through. walls!), this is

34

t
[

Process 4 Response

collectively known. as present and can be checked for using the
condition PRESENT followed by the number of the object we are
considering (the apple is object 3). If the object is indeed
present then we can display our message (0) which describes the
object, using the action MESSAGE which is followed by the number
of the message you want to display. Finally we top it off with a
DONE action to tell PAW that we have completed the task.

So type [PRESENT 3 MESSAGE 0 DONE ENTER] which will result in the
message "Inserted." being displa~ed by PAW. Now press a key to
ge t back to the sub menu and use LP .EXAMINE] to examine our new
entry (the brackets about the parameters show they are optional,
so you can use P to see the table from the start, P followed by a
Verb to see entries from that Verb on, or P followed by a Verb
and Noun to see all entries from that Verb and N.oun on). The
entry should look like;

LOOK APPLE PRESENT 3
.MESSAGE 0
DONE

PAW has found the synonym LOOK and printed it because it is
shorter than EXAMI(NE). This is a classic example of a response
table entry because if the condition PRESENT 3 fails then PAW
will continue to look for an entry to match the .LS, in tl!is case
it will find the next entry displayed which is LOOK , this entry
will trigger and describe the current location (the DESC action),
after the PLUS action has added 128 to flag 29, which causes PAW
to redraw any picture at the location as well as display its
description this will be covered in more detail in the section on
graphics • . Assuming that the APPLE is indeed present then PAW will
continue with the condacts and display our description of the
apple (MESSAGE 0) the DONE action tells PAW to go and get another
LS because we have done something - this prevents the LOOK _
entry triggering as well.

If the entry should be incorrect you can amend it by typing
A LOOK APPLE, with process tables however there may be more than
one entry with the same word values, these will be presented in
turn for possible amending - just press ENTER to leave an entry
as it is. To delete an entry entirely from the table remove all
its condacts. i.e. Amend the entry and press EDIT twice to clear
the buffer and then press ENTER.

So at the moment if the player tries to EXAMINE anything except
the apple (or 'tries to EXAMINE APPLE when it isn't present) they
will be rewarded with a fresh description of their current
location. Let's insert the entries to deal with the sandwich,
ticket and bench - the entries are listed as you would see them
if you used P after they are typed in, along with some comments
for your reference only, you must stili enter them as you did the
EXAMINE APPLE ent ry earlie r.

35

Process 4 Response

LOOK SANDW PRESENT 2 jThe sandwich is here
MESSAGE 1 jDescribe it
DONE

LOOK TICKE PRESENT 4 jThe ticket is here
MESSAGE 2
DONE

LOOK BENCH AT 4 jThe bench isn't an object
MESSAGE 3 JSO check location
DONE

AT is a c ondition which is followed by a location number which
will succeed (i.e. allow PAW to continue onto the next condact)
if the player is at the same location, this was used because the
bench was not an object, but as i t is part of the description for
location 4 it will always be there!

Use test adventure to check that you can examine these four items
correctly and that the locat-ion is described at any other time.

The Process Tables

We shall now turn our attention to the most powerful writing
option on the main menUj the Process table.

It was stated earlier that the response table was a special form
of proc e ss table, and indeed it is, if you select option P from
the main men" you will be present e d with a similar sub - menu to
that for response except it has two extra options. Note that the
title says "Proce ss 2" , th i s is because the re is mo re than one
process table in PAW, indeed there can be upto 254 process tables
as we shall see.

There are two process tables in the database to start with,
just like response PAW scans through them, but, unlike response,
i t scans them not after obtaining a LS, butj

Process 1 is scanned immediately after PAW has described a
location. This allows information to be printed only
once when the player first arrives at a location or
when he requests a redescribe.

Process 2 just before requesting a new LS from the parser. This
is used to provide PAWs 'turn' at the game.

The main difference being that it does not attempt to match the
LS against each entry looking for a match, it does every single
one!

So far while playing our demo game we have had to end the game by
typing QUIT. Now the original storyline (if you 'can remember that

Process 4 Response

far back!) was to help the passenger find the ticket before the
bus arrived. Now we obviously could have an entry in response
vhich if the player said GET TICKET (and it was present) could
t rigge r the end of the game e. g.

GET TICKE PRESENT
TURNS
END

4 jThe ticket is here

jThat's all folks!

but wouldn't it be much better to finish the game when the player
gets back to the bus stop?

We shall do so, but, first we need a message to describe the
arrival of the bus, so return to the main menu and select
messages (option M) and insert the following messagej

Message 4

The bus arrives. I hand the ticket to the driver who
smiles and ~ays "Sorry I'm late, hope you haven't been
standing too long?".

Back we go to the Process menu. Now although the words have no
meaning to PAW they can usefully be used as a comment on what the
entry does, the entry that determines the end of . the game will be
called" BUS" (we must start with as PAW only allows the Noun
BUS in the Noun position). So type-[I _ BUS ENTER] to insert the
entry {PAW has actually inserted a null entry now and if you
press [CURSOR DOWN CURSOR DOWN] to abandon the entry, you will
have to [A BUS ENTER] to complete the entry). The conditions
for the end-of the game are that the player is at the bus stop
(location 2) and is carrying the ticket (object 4). The first

- condition of course will be AT 2, the other can be checked with
. CARRIED 4 (pretty unusual names these conditions have ••.) so the
final entry will bej

AT 2 CARRIED 4 MESSAGE 4 TURNS END

pressing [ENTER] will complete the insert/amend. Use [p] to
ensure the entry looks as followsj

BUS AT
CARRIED
MESSAGE
TURNS
END

2
4
4

this entry will nov be scanned just before PAW gets a new LS and
as soon as both conditions are met the game viII end independent
of the commands the player uses to get to the bus stop with the
ticket! .

Select process 1 by typing [S 1 ENTER] and use [p] to examine the

Process 4 Response

entries that are present, they are;

* NEWLINE
ZERO 0
ABSENT 0
LISTOBJ

* PRESENT 0
LISTOBJ

The asterisk '*' is an 'any_word' word like' , with a subtle
difference; Whenever PAW inserts entries in-a process table
(including response) it inserts them in order of word value of
the Verb and then the Noun (i,e. all entries dealing with one
type of Verb will follow each other in ascending order of Noun
value). PAW considers underline" " to be a word of value 255 (it
will always be the last entry) and asterisk "*" to be a word of
value 1 (it will always be the first entry). The position of
entries in process tables can be important for example the two
e ntries shown must always be done soon after a location
description has been printed so we use an asterisk to ensure they
will be close to the start of the table (the use of underline as
the Noun allows entries to be inserted before them as we will do
in a moment).

Back to why these two entries are present (always getting
sidetracked, so much to tell!). Because PAW does every entry in
Process 1 and 2 (you might spot that it would do anyway even if
not forced to as the * _ entries would match any LS the player
typed!) the fi'rst action NEWLINE will always be executed;

IIEVLIIIIE prints spaces to the end of the current line as opposed
to just starting a newline as CHR$(13) does on a Spectrum. This
allows areas of Paper colour to continue to the end of the line
without having to type the spaces. It's main purpose here is to
ensure that any text displayed will be on a new line because PAW
does not start one at the end of displaying a location
description, the technical guide shows how to use this to good
effect to modify the location description to reflect changes in
the locat ion.

From now on the two entries must be considered as a pair, their
ultimate purpose is to list the objects at the current location,
first a bit of background information;

PAW uses flag zero to determine if there is light for the player
to see by (this feature is not used at the moment in our demo
game), if there is no light the flag will have a value other than
zero and PAW .will say "It's too dark to see anything." instead of
the description for the location. In this case the objects that
are present must not be listed.

Object 0 is assumed by PAW to be an object which provides light

Process 4 Response

which is why object 0 in our demo is lit torch. If this is
present while the game is 'dark' (flag 0 is non zero) then it
will override the darkness and so the objects must be described.

The two entries provide an example of using PAW to create an OR
situation Le List the objects if it is light OR if object zero
is present;

ZERO is the first condition we have met which tests the stste of
a flag. ZERO 0 will succeed if flsg zero contains 0 which means
there is Ugh t.

ABSBII~ ensures that Object 0 is not present ' (opposite of PRESENT
condition - sll conditions have an opposite, e.g. AT has an
opposite of NOTAT and so on.), the next * entry lists the
objects if object 0 (the source of light) is present so we do not
want this entry to succeed as well (Le. This deals with the
situation of it being light and object 0 being present which
would otherwise list the objects tWice!).

LIS~OBJ lists any objects that are present at the players current
location, if none are present it does nothing - it would look a
bit silly saying "I can also see nothing."!

Think about the above as it represents a fairly useful feature of
PAW which you may well need to adapt for use in your own games.

Right, now we shall reveal the better way of getting from the
introduction screen to the start of the game at the bus stop:

* * AT
ANYKEY
GOTO
DESC

o

2

Inse rt this into Process 1 (e nsure you s till have it se lected)
using [I * * ENTER] and [AT 0 ANYKEY GOTO 2 DESC]. This uses two
new condacts ANYKEY and GOTO which are both actions;

AlIYl:ET prints "Press any key to continue." in the bottom section
of the screen and waits for you to press a key, it then allows
PAW to continue onto the next condact.

GO~O i s followed by a location number and moves the player to
that location, it effectively sets flag 38 (players current
loca t ion) to the value give n, it doe s noth ing else so it is
followed by a DESCribe to get PAW to display the new description.

This entry thus causes the title screen to be displayed (when PAW
displays the first location description), a wait for a key and
then the game itself is started at the correct location.

You might like to go to the connections table and remove the

Process 4 Response

entry for NORTH in location 0 as this is not needed now.

Use test game to see the above two entries in action. The
following input while at location 2 (the bus stop) will 'solve'
the game in one go:

GO WEST, WEST AND UP. GET THE TICKET. GO DOWN,EAST AND EAST.

You should then get the finishing message and an option to play
aga i n. If not check the entries in Process tables 1 and 2
thoroughly.

.Let's have a break and go back to deal with the ability of the
bag to contain objects. Thought we had forgotten about that,
didn ' t you? Well we nearly did. Th i s will require some entries in
the response table and we ere going to allow the player to LOOK
IN BAG, so we need a new message "In the bag is:", select the
messages option and insert this (it should be message 5) then
select the response table. We are going to provide the player
with the option of saying PUT ALL IN BAG as well as PUT object IN
BAG. We can use exactly the same system as GET/DROP ALL discussed
ear lie r. PUT is a synonym of DROP (wh ich takes c are of DROP
TICKET IN BAG and such similar phrases), so the LS we must check
for will be PUT (Le. player is trying to put or drop
something), now if the player includes IN BAG as part of the
phrase we want PAW to put the object in the BAG. This means we
must override the PUT entry already present, and if the extra
words are included in the LS put the specified object in the bag.
To insert this entry before the one already present requires the
use of an extra option. Normally PAW would insert another entry
with the same word values after any already present, it is
possible to force this by specifying a number after the insert,
try [I PUT 0 ENTER], this instructs PAW to place the entry
before entrynumber 1 (which is the existing PUT entry). Now
the condacts we need are:

PREP IN NOUN2 BAG PRESENT 1 AUTOP 1 DONE

This shows how we check for an extended LS (i.e. ensuring certain
parts of the phrase were what we need).

PREP is a condition which is followed by a preposition from the
vocabulary. Prepositions are words used before a Noun to show its
relation to another word in the phrase, in this case the
condition will succeed if the player has used IN as part of the
phrase.

1I0UI2 is a condition which is followed by a Noun from the
vocabulary. This will succeed if the player has used BAG in the
phrase. Combined with the previous entry it effectively stops PAW
looking at the condacts unless the LS was PUT IN BAG where the
underline is any object.

40

Process 4 Response

AU~OP is followed by a location number. Now we set aside location
1 for a special purpose early on in the tutorial, this is it, it
is used as the inside of the bag! So AUTOP just like AUTOD scans
the object word table for a Noun which matches the current first
Noun in the LS, when it has found one it places it at the
location given, reporting "I have put the in the bag."!

The DROP ALL entry which exists will also work to deal with PUT
ALL IN BAG, because it does not ensure that IN BAG is part of the
LS and will trigger on both occasions, and in both cases 254 is
the location the objects will be coming from.

Now for a GET object OUT OF BAG type command we need an entry
similar to the above to override the GET entry which is present
so insert the following using [I GET _ 0 ENTER]:

PREP OUT NOUN2 BAG PRESENT 1 AUTOT 1 DONE

AU~O~ is followed by a location number which shows where the
object to TAKEOUT will come from.

The implementation of an ALL version of the command needs an
entry of its own, at the moment GET ALL causes a DOALL 255 which
is the current position of the player to be carried out, in order
to get all from the bag we need to generate all ·the objects t~at
are inside it (location 1), so insert a GET ALL entry to overnde
the existing one thus; [I GET ALL 0 ENTER]:

PREP OUT NOUN2 BAG DOALL 1

Before you test the game we will insert the entry that allows the
player to LOOK IN THE BAG the entry needed is as follows (note it
will be positioned in a suitable place anyway so there is no need

. to specify a number after it when inserting).

LOOK BAG PREP IN
MESSAGE 5
LISTAT 1
DONE

LIS~A~ is followed by a location number and lists any objec~s
present at that location, note that if no objects are present 1t
will print "nothing." so the above would result in:

In the bag is:
nothing.

which is correct, unlike LISTOBJ which because of its main use
does not print anything at all in that situation.

So use test adventure to ensure that ·you can indeed PUT ALL IN
BAG and GET object OUT OF BAG etc.

41

The Bird

The Bird

The tutorial game is a little bit simple to solve so we shall add
Bome o omplexity in the form of -puzzles by creating two characters
to wander round our little world. These are termed 'Pseudo
Intelligences' (PSIs for short) beoause they cannot obviously
think, but must appear -to do so to the player. A PSI oonsists
mainly of a oollection of messages, flags and prooess table
entries, but even a few simpl~ entries oan create a surprisingly
realistic effeot. Creating a complex PSI of say a human can take
a fair bit of thought, but follows the same principles as we will
take with our two PSIs; a bird and a dog.

The bird will complicate the scenario as follows; The bird will
have the tioket at the start of the game (normally you would
assign an unused location to contain the birds objects, but we
will use location 252 - object does not exist in game - as we
have only one PSI that can have an object). This means you must
pe rsuade the bird to drop the ticket, trying to GET it will
result in an "I can't do that" message and the bird flying away.
The bird also flies between the Bandstand and the Tree Branch at
regular intervals. The way to get the bird to drop the ticket
will be to drop the sandwich at the same location. So lets get
that little lot working first.

To save flicking back and forth between tables change Object 4 to
be not-created using [I] Initially at now. This makes the ticket
a does not exist object which we are using to indicate it is in
the birds beak. Insert the Nouns DOG and BIRD in the vocabulary
with word values 21 and 22 respeotively - ensure DOG is 21 and
BIRD is 22 as their word values will be used to posit i on the
entries in process correotly. Then insert the following messages
which will be needed. Make them use green ink (EXTENDED MODE,
CAPS SHIFT a 4) - not forgetting to reset ink white (EXTENDED
MODE, CAPS SHIFT a 7) at the end of eaoh one.

Message 6

The bird drops the tioket to peck at the sandwich.

Message 7

The bird snatches the ticket.

Message 8

The bird ignores me.

Message 9

A small bird is here.

42

The Bird

Message 10

The bird has a ticket in its beak.

Message 11

A small bird settles on the ground.

Message 12

A small bird lands on the branch.

Message 13

The bird sees the dog and flutters away quickly.

Message 14

The bird flies away.

We will insert the messages to deal with the dog later. So select
the Process tables option and get ready for an ear bending on yet
another feature of PAW.

In a large game which contains several PSI-s and a lot of
background action, Process tables 1 and 2 soon become so full of
entries it is nigh on impossible to work out what they do. Enter
stage left the other process tables to the rescue, these can be
'called' from Prooess 1,2 or Response and used as an extension of
the table they are called from. Calling a process causes PAW to
save where it is at the moment and shift the action to the
indicated table. i.e. if called from Response PAW will try and
match the 18 against eaoh entry and if called from Process 1 or 2

-PAW will do each entry. Note that when something is DONE in the
called process, then PAW will still shift back to the original
table, so some very powerful things can be achieved with
thoughtful use of these sub-prooess'. Users who program in other
languages will reoognize this as a 'subroutine'.

While PAW is in a sub-prooess it is quite possible for it to be
asked to oall yet another sub-prooess - a sub-sub-process? and so
on down to a sub- sub- sub- sub- sub-sub- sub- sub- sub- sub-process!
That is 10 levels of subroutine oalls may be carried out, this is
oalled 'nesting' a oall, attempts to go further will result in an
error "Limit Reaohed" although you will be provided with
diagnostio information as well if you are testing the game from
the PAW's ed~tor section - see teohnical guide for details.

We are not going to use anything like that here, only a sedate
sub-prooess. This will contain all the entries to deal with the
birds aotivities.

43

The Bird

Use [B] to begin a new process table, PAW will allocate the next
available number as in other menu options. You should be starting
process 3. As there will only be a few entries in the table we
will use the same word pair (" BIRD") although when writing your
own games you may find using other words useful to remind you of
each entries function.

Flag 11 will be a 'working' flag to contain a value for use in a
comparison.

Flag 12 will contain the current location number of the bird.

Flag 5 is a special flag which if it has a value other than zero
PAW will reduce by one whenever it scans process 2 - this is
called an auto decrement flag. In this case it is used to count
the number of 'time frames' that have passed in the game, a time
frame is a single time round the big loop shown in diagram 4, and
at the moment this is done before every phrase the player types.
The bird will change location every three phrases on behalf of
the player which will create the appearance of action in the game
independent of the players input.

Now insert the following entries, without the comments as before,
each entry is preceded by an explanation of its purpose and any
new condacts it uses:

First determine if the bird is going to flyaway this time
through the table, this is indicated by flag five being zero (as
it counts down from 3), if the ticket is at the same location as
the bird it will be destroyed (i.e. put at location 252 so the
bird 'has' it) and if the player is at the same location as the
bird they will be told that the bird has snatched the ticket.
Note that the bird will continue its cycle of movement even if
the player does not see it, a tree certainly does fall even if
there is no one to see it in PAW!

BIRD COPYOF 4 11 ;Copy location of object 4
(ticket)' to flag 11.

SAME 11 12 ;and see if it is at the
same location as the bird.

ZERO 5 ;Bird going to fly?
DESTROY 4 ;Bird 'GETS' the ticket
SAME 12 38 ;Bird at same location as

;player?
MESSAGE 7 ;Tell player about it.

Note there is no DONE action as we want PAW to do each entry in
turn, the above entry shows how conditions and actions can be
mixed together to create new conditions.

COPYOP is an action followed by an object number and a flag, it
copies the current location of the speci{i.ed object to the
specified flag. We use it in this situation to see if the ticket

44

The Bird

is at the same location as the bird by following it with;

SAKE is a condition which compares the contents of the two flags
and succeeds if they are the same.

DESTROY is an action which places the specified object at
location 252, the not-created location.

Now deal with the two possible movements of the bird. If the bird
is at the bandstand and flag five has reached zero then move the
bird, set flag 5 to 3 again and tell the player the bird is gone
if they were at the same location. Vice Versa if the bird is on
the branch.

BIRD EQ 12 8 ;Bird on branch?
ZERO 5 ;Time to fly?
LET 12 5 jMove bird to bandstand
LET 5 3 ;Three phrases 'till move
AT 8 ;Player here as well?
MESSAGE 14 ;tell them bird has flown

BIRD EQ 12 5 ;Bird on bandstand
ZERO 5 ;Time to fly?
LET 12 8 ;Move to branch
LET 5 3 ;Three phrases 'till move
AT 5 ; Playe r he re as well?
MESSAGE 14 ;tell them •.•

EQ is a condition which is followed by a flag number and a value
and will succeed if the flag contains the value, in this case it
is checking if the bird is at a specific location.

Lgf is an action which is followed by a flag and a value. It sets
. the flag to the value.

Now we have dealt with the birds departure, next we must deal
with its arrival, and if it arrives in a location which contains
the player tell them about it.

BIRD EQ 5 3 ;Bird just flown?
SAME 12 38 ;Now at players location?

AT 5 ;On bandstand?
MESSAGE 11 ;landed on ground

BIRD EQ 5 3 ;Bird just flown?
SAME 12 38 ;Now at players location?
AT 8 ;On branch?
MESSAGE 12 ;landed on branch

Now if the bird has the ticket in its beak we must tell the
player.

45

The Bird

BIRD EQ 5 3
SAME 12 38
ISAT 4 252
MESSAGE 10

;Ticket not-created?
;Has a ticket in beak ..

ISAT is a condition followed by an object and a location number
and succeeds if the object is at the specified location.

Finally if the sandwich is at the same location as the bird the
bird will drop the ticket to peck at the sandwich. This entry
does not rely on flag 5 so it 'will be checked for every time PAW
checks process 2, so even if the player drops the sandwich after
the bird has arrived the correct sequence will still be carried
out.

BIRD COPYOF 2 11 ;Sandwich
SAME 11 12 oat same location as bird?
ISAT 4 252 ;Ticket in beak?
COPYFO 12 4 ;Put ticket down
SAME 12 38 ;Player here as well?
MESSAGE 6 ;tell them •..

COPYPO is an action which copies the contents of the specified
flag to the current location of the specified object. There are
also COPYFF and COPYOO actions which you can probably guess the
purpose of.

That completes the control routine for the bird, but we need an
entry in Process 2 to call this table every time frame, so select
Process table . 2 and insert an entry:

BIRD PROCESS 3

which will cause PAW to execute our bird control table every pass
round its main loop.

We must ensure the bird starts at the correct location and that
the player knows the bird is there when the location is described
(or they will see messages about a bird arriving and flying off,
with the description containing no mention of it). So select
Process 1 which is called after a location is described and amend
the existing * * entry we made earlier to contain a LET 12 8,
which will ensure the bird is on the branch at the start of the
game. The modified entry should read thus:

* * AT 0
ANYKEY
LET 12 8 ;Bird is on branch (locno. 8)
GOTO 2
DESC

Insert the following entry in the same Process . table which tells
the player the bird is present and if it has the ticket.

46

The Dog

BIRD SAME 12 38
MESSAGE 9
ISAT 4 252
MESSAGE 10

Finally select the Response table option and insert the entry:

GET TICKE SAME 12
ISAT 4
CLEAR 5
NOTDONE

38
252

;Bird at same location?
;with ticket in beak?
;Force it to flyaway
; "r can't do that"

This will trigger before the GET entry and prevent the "There
isn't one of those here" message ~eing produced if the bird is
present with the ticket.

CLEAR is an action which is followed by a flag number and sets
the flag to have the value O. This will cause the bird to fly
away (which it might have been going to anyway) simulating its
fright at having a great hand descend on it to get its prized new
possession.

II'OTDOII'E is an action similar to the DONE action but it fools PAW
into thinking that nothing was done and thus causes it to print
the "I can't do that" message.

Now the moment of truth, upon testing the game you should be able
to watch the bird fly in and out of the bandstand and the branch,
play with the game for a while to see the fact that the bird does
indeed continue its roving existence. Then try dropping the
sandwich at the same location. Note that if you do not pick up
the ticket before the bird flies away it will snatch the ticket
back.

The Dog

The dog will be added to complicate the game a bit more. The dog
will simply follow the player everywhere (being a very obedient
dog) and frighten the bird off. Now a dog would not be able to
climb the tree so we must prevent the player from tempting the
bird with the sandwich on the branch. To do so we will arrange
for any object dropped while on the branch to fall to the ground.
The player will be able to get rid of the dog by putting the lead
on it and then tying the lead to the bench. In addition the
player will be able to 'speak' to the dog which will provide
another wa~ of getting rid of the dog by asking it to SIT or
STAY.

Before we examine the entries in Process and Response needed to
control the dog insert the following vords (into vocabulary) and
messages (into the messages table) which will be needed.

47

The Dog

Verbs

TIE 34
UNTIE 35
SIT 36
STAY 36
COME 37

Message 15

Noun

HERE 37

The falls to the ground ' at the foot of the tree.

Do not change the colour of this message and ensure you inc lude
the underline as it serves a special purpose we will discuss
later. Most of the remainder of the messages deal with the dog
and should be entered in magenta (EXTENDED MODE, CAPS SHIFT & 3)
not forgetting to reset white at the end of them. do not do this
for messages 21,22,23 and 25. This colour coding allows the
player to see exactly what each message is referring to.

Message 16

The dog's bright eyes stare at me with mindless love.

Message 17

A dog is here.

Message 18

The dog follows me wagging his tail.

Message 19

A lead trails behind the dog.

Message 20

The dog is tied to the bench by a lead.

Message 21

Trustingly the dog lets me put the lead around its neck.

Message 22

I've tied the lead to the bench.

Message 23

Who should I say it to?

48

'fhe Dog

Message 24

The dog is sitting quietly.

Message 25

I've untied the dog from the bench.

There is no real need to make the control routine for the dog a
separate process table as it is only one entry, but we shall do
so in case you wish to expand the game later.

Flag 13 will contain the current location of the dog.

Flag 14 will contain: 0 - the dog is free to roam, 1 - the dog
has the lead around its neck, 2 - the dog is tied to the bench,
255 - the dog is sitting quietly.

From the Process table menu; Begin a new process table (this
should be table 4) and insert the single entry:

DOG NOTSAME 13 38 ;Dog not where playe r is?
LT 14 2 ;Still able to move?
NOTAT 8 ;Player isn't up the tree?
COPYFF 38 13 ;Move dog to players locno.
MESSAGE 18 ;tell them its followed •.•

You should be able to work out what .O~SAKB, .O~A~ and COPYPP do
but the technical guide will help you out if you have problems.

L~ is a condition which succeeds if the flag specified contains a
value Less Tban the specified value.

, Insert into process table 2;

DOG PROCESS 4

which if you use P to look at the table should come before the
entry for the bird (if not you entered the two vocabulary words
the wrong way round). This ensures the dog will be moved to the
players new location before the bird is checked.

Similarly to the bird entries are required in process table 1 to
inform the player of the dogs presence:

DOG SAME 13 38 ;Dog at same location
MESSAGE 17 ; tell player
EQ 14 ;with lead?
MESSAGE 19 ;yes so tell player

DOG SAME 13 38
EQ 14 2 ;Dog tied to bench?
MESSAGE 20

49

The Dog

DOG SAME 13 38
GT 14 2
MESSAGE 24

;255 is greater than 2 so
;tell player dog is sitting

while you are in process 1 modify the * * entry to contain a
LET 13 2 (before the GOTO) to make the dog start at the bus stop.

Now in order for the bird to be frightened away by the dog we
need an extra entry in process table 3. Now the entry must go
before the entry which decides to drop the ticket and after the
entries which make the bird fly. This will ensure that---u;ebird
will flyaway with the ticket if it has it and leave it if it
does not. So we need to insert before the sixth entry, use
[I _ BIRD 6] to achieve this and type in the condacts for the
entry from its listing below.

BIRD SAME 12
LET 12
LET 5
AT 5
MESSAGE 13

13 ;Bird and dog at same location
8 ;Only ever on bandstand so
3 ;move to branch, three phrases

;Player on bandstand?
;tell them bird is gone ••

The number after insert/amend has a maximum value of 255 so do
not ins·ert more than 256 entries of the same word values (that
would be pretty unmanagable anyway) if you want to retain the
ability to insert anywhere as well as on the end of the list.

The last change to the process tables is to insert a sub-process
which we will be calling from Response to deal with speech to the
dog. The mech·anism works very simply. If the player includes a
phrase in double quotes ('''') in the input sentence, then the
parser will save where it was and carryon with decoding the
phrase. There is an action called PARSE which instructs PAW to
use the parser to decode the string the player typed in, this
then becomes the LS. It is only sensible to do this in a sub
process as PAW will try to match the new LS aga·inst the rest of
the table. Begin a new Process table (table 5 should be next) and
insert the following entries:

* * PARSE ;Convert string to LS
MESSAGE 16 ;Not valid phrase so
DONE ; dog does not understand!

SIT ZERO 14 ;Dog not partially tied up?
SET 14 ;now sitting quietly
MESSAGE 24 ;tell player (always at same
DONE ;place as dog) Then DONE

COME EQ 14 255 Dog must be sitting
CLEAR 14 Now normal
MESSAGE 18 Dog follows
DONE

50

'rile Dog

HERE EQ 14 255
CLEAR 14
MESSAGE 18
DONE

MESSAGE 16 ; Any thing else.

We get around the limited vocabulary that the dog understands by
making him wag his tail for most things!

PARSE will allow PAW to continue looking at condacts if it fails
to find a valid phrase, be careful here as the current LS may be
a bit jumbled up (Le. the parser managed to get some sense out
of the phrase) so you should normally only print a message like
"They didn't seem to understand" or some such similar and DONE to
return to your calling action. If it does form a valid LS PAW
will start to search the following entries for a match as with
Response. PARSE should only be used in a sub-process called from
Response it has no meaning in any other table.

Notice how the COME and HERE entries deal with a variety of
phrases that the player might try to call the dog again having
made i t sit.

The entry catches all the valid LS which may ·have been in the
string-and the dog has no specific response to.

Select the Response table now to allow us to insert the extra
entries to control speech and the dropping of objects in the
tree.

First off the mark is the entry which causes all objects dropped
in the tree to fall to the ground, now this must go between the

·entry which deals with putting objects in the bag and the normal
DROP entry (actually printed as PUT!). [I PUT _ 1] will achieve
this,-the entry is:

PUT AT 8
WHATO
LT 51 255
EQ 54 254
MESSAGE 15
PUTO 7
DONE

;Player on branch
;1 say old boy!
; Valid object?
;Object carried?
;its now bottom of tree.
;put it there

This is an example of creating an automatic action of your own,
like AUTOG and so on.

VHArO is an action which looks up the first Noun in the current
LS in the object word table, converting it into an object number.
This number is then placed in flag 51. Flag 51 always contains
the number of the last object referenced by PAW and whenever it
is set the associated flags 54 to 57 are also set. Flag 54

51

The Dog

contains the current location of the object.

PUTO is an action which changes the location of the currently
referenced object to be the one specified.

Message 15 contained an underline. Whenever PAW meets an
underline in text (be it message or location) it replaces it with
the current object hence the message is changed to suit the
object currently being dealt with.

Next a relatively simple entry to deal with PUT LEAD ON DOG:

PUT LEAD PREP
NOUN2
CARRIED
SAME
LET
DESTROY
MESSAGE
DONE

ON
DOG

5
13 38
14 1

5
21

;Ensure not a DROP LEAD

;Player has the lead
;is at same location as dog
;Dog now has lead on
;so player hasn't
;tell them so.

The entries which follow deal with a new concept again, the
modification of the current LS. We want the game to understand
both TIE DOG TO BENCH and TIE LEAD TO BENCH as the the same
thing, now LEAD and DOG are separate word values, so the TIE DOG
entry which will come first in the table (as its word value is
lower that LEAD) converts the Noun into LEAD (55) and allows PAW
to carry out the TIE LEAD entry! A similar system i ·s used for
UNTIE. Insert the entries:

TIE DOG LET 34 55 ;F1ag 34 is Noun for LS

TIE LEAD PREP TO
NOUN2 BENCH
AT 4 ;Where bench is.
SAME 13 38 ;dog is here
EQ 14 1 ;with lead on
PLUS 14 1 ;now tied to bench
MESSAGE 22 ;tell player about it
DONE

TIE NOTDONE ;Ensure an I can't

UNTIE DOG LET 34 55 ;Flag 34 is Noun for LS

UNTIE LEAD AT 4 ;Where bench is
EQ 14 2 ;dog tied to it
CLEAR 14 ;Now free
MESSAGE 25 ;Tell player
CREATE 5 ;Recreate lead
GET 5 ;Try and get it.
DONE

52

The Dog

UNTIE NOTDONE ;Ensure an I can't

The NOTDONE makes sure PAW reports "I can't do that" if you try
and TIE or UNTIE anything other than the lead/dog.

CREATE is an action which is followed by an object number. It
causes that object to be at the position where the player is.

GET is an action which is followed by an object number. It
attempts to get the specified object.

We use these actions instead of just placing the object at 254 so
that any wsight and/or number of objects carried problems are
reported.

Finally the the entries to allow speech to the dog, we have also
included the entry necessary to allow you to speak to the bird -
it just ignores you!

SAY DOG SAME 13 38 ;It's here
PROCESS 5 ;Someone else to do the work
DONE

SAY BIRD SAME 12 38
MESSAGE 8
DONE

SAY MESSAGE 23 ;Who?
DONE

Notice that we do not ensure the preposition TO is specified -
this allows the playsr to shorten their input if required. As a
general guide don't check for an extended LS unless it is
required to differentiate two similar phrases.

As a final test the following inputs should now work in the
indicated situations, they show some of the power which the
parse.r can provide your games with.

When on the path by the park bench with the lead and dog try;
PUT LEAD ON DOG AND TIE IT TO THE BENCH

then to untie it;
UNTIE DOG

When up the tree with the bag try;
PUT ALL IN B~G AND DROP IT. GO DOWN AND LOOK IN BAG

To make the dog sit down;
SAY TO DOG "SIT"

and ge t back up;
ASK DOG TO "COME HERE"

Do it yourself

Do it y ourself

Before we move onto a discussion of the graphics here are a few
points that you might like to tidy up in the demonstration game
as practice on using the system (after the graphics if you like).

1/ EXAMINE should respond to all objects even if it is with a
general reply such as "I see nothing special about the
Hint : so as not to lose the use of LOOK on its own you could use
a condition LT 34 255 before triggering (Le. ensure a N~un
was actually specified).

2/ The bird should really flyaway if you GET SANDWICH while
th e bird is present. Le. it will be pecking at the sandwich and
any normal bird would fly ...

3/ UNTIE and TIE should have a message something along the
lines of "Tie what to -what?", NOTDONE was an easy copout!

4/ How might you deal with the player typing PUT object IN BAG
when the bag is not present? at the moment the game will drop the
object instead, why?

5/ Nothing was ever done with the torch, the following entries
will allow it to be turned on and off (you will also need TURN as
a ve rb in the vocabulary):

TURN TORCH PREP ON
CARRIED 7

. SWAP 7 o
OK

TURN TORCH PREP OFF
CARRIED 0
SWAP 0 7
OK

Lookup the extra condacts in the technical guide and read the
chapter on light and dark - perhaps a cellar could be created
below the bandstand? The movement would have to be checked in the
Response table with an entry such as: (assuming 9 is the new
location) .

DOWN AT
SET
GOTO
DESC

5
o
9

;Player on bandstand?
;Flag O=255=Dark!
;New location

Not forgetting an entry for UP which clears the flag!

6/ What happens if the player types CLIMB TREE or CLIMB UP TREE
and what is the best way to check for this? Hint,: there is only
one thing you can climb in that location.

54

Overls ;rs

Overlays

The 128K user will still not need to use overlays yet, but may
find it useful to read this chapter anyway.

The idea of ove rlays was explained in concepts, in order to
proceed with the graphics and text compression system the 48K
user will have to load an overlay .

PAW will do most of the work for you, if you just select the main
menu option you require you will be asked to confirm you want to
load an overlay, any key othe r than Y wil l return you to the main
menu . If you do proceed PAW will print the name of the overlay it
is searching for on the screen .

The five overlay files are at the end of the main program (which
is where your tape will be after loading PAW). If you have a tape
counter it is worth setting it to zero at this point and then
noting down the readings for each overlay, fast forward can then
b e used to go to just before the required file. The five files
are in the order shown below, also described are the main menu
options contained within each (note that the selection of an
option present in the current overlay is automatic):

PAWOVR
PAWOVR
PAWOVR

PAWOVR
PAWOVR

1
4
5

2
3

Interpreter, Test Game, Save/Verify Adventure.
Process/Response, Vocabulary, Connections, Words.
Messages, Locations, Objects, Initially At,
Object Weight and Background colours.
Compressor.
Character Editor/Graphics Editor.

Note that Save, Verify and Load database along with Free memory
are always available as they are part of the main menu .

Once the f ile has loaded you wi l l be presented with the s u b-menu
as normal. If an error occurs you will be r eturned to the main
menu, just reselect the option and try again. (Note that any
overlay loaded previously will be erased by a tape error, so
un l ess you stil l have sufficient memory to hold the main overlays
you wil l be able to do nothing but load a new overlay - or
save/load database which is always available).

If you do not h a ve a tape counter or wish to make things even
s impler you might like to transfer each of the fi l es to a
separate tape, they are just normal CODE files .

55

Text Compression

Text Co.pression

Option K on the main menu (48K users will have to load the
overlay at this point) will ask you if you want to compress the
database, any key other than Y will return you to the main menu.
Otherwise the text compressor will reduce the amount of memory
needed for the text in your game by grouping common letters into
a single 'token', this can take anything from one minute to an
hour depending on the size of your game . On the demo this should
take about a minute and save about 900 bytes!

The only difference you will notice is when editing existing text
where the cursor will jump two, three, four or even five
characters at a time - including deleting. Just retype all the
letters separately if you make a correction which requires them
to be deleted, they will be compressed the next time you use the
compressor. Note that the compressor uses the normal spectrum
tokens, which will produce letter groupings and not the keywords
after you use the compressor, so do not use the tokens if you
intend compressing the database.

56

The Character Editor

The Character Editor

Just quickly we will take a look at the character editor. Select
option Q from the main menu - 48K users will need to load an
overlay. This sub-menu allows you to change the way the
characters which are displayed on the screen look. You can have
upto five different character sets in memory, and change between
them at will using ESCC 0-5 or a CHARSET action in Process or
Responee. The sets are numbered 0 to 5, set 0 is the normal set
which can not be changed, except for character values 0 to 15
which are the shade patterns and 144 to 165 which are the normal
spectrum UDGs. If you use [p] to look at the table you will find
only these characters displayed. Note that you have to Insert a
blank set before you can change or load it which conserves memory
in the database if you are not changing the character set.

At the moment we are just going to use the editor to change one
of the shade patterns. These are just normal characters which the
graphics system can use to colour in an area of screen with.

[A 0 15 ENTER] will allow you to edit character 15 of set O. This
is an unimportant shade pattern which we will be altering to
represent the iron work on the bandstand.

Each character in PAW is defined on an 8 by 8 pixel grid, the top
left box on the screen will be showing an enlarged version of the
pattern as it is at the moment, the top centre and right boxes
show how it will look when used as a shade (both normal and in
inverse) while the bottom gives a summary of the commands
available and current character under edit. Use the cursor keys
(CAPS SHIFT 5 to 8 on 48K) to
move the red flashing cursor

. around the grid and the SPACE
key to 'toggle ' the pixel it
is over on/off (that is, if
the pixel is on - black - it
will be turned off, and if off
_ yeilow/white - it will be
turned on. Try it and you will
soon see what we mean!).

The pattern we require is
shown in Diagram 5 . When you Diagram 5
have finished use [R] to
redraw the two shade boxes to see what the new pattern looks
like. And fi~ally press ENTER to end the edit.

Side two of the supplied cassette contains 22 different character
sets which can be loaded into character sets 1 to 5, after you
have inserted them of course. After insertion of a set the option
to select that set as the default will bs offered on the
Background colours option of the main menu.

57

Graphics

The Graphics Editor

The graphics system on PAW uses a method of drawing called Line
and Fill which is ve ry efficient on memory usage for the type of
pictures included in adventure games. Instead of storing an
image of the screen that you have drawn like many commercial art
packages, it stores a list of the commands you used to draw it.
Even the most complex of pictures will only consume 2K of memory
as compared to 6K for a standard screen, and indeed you should
find that effective designs c'an be drawn using as little as 100
bytes!

The list of commands stored is called a drawstring, and there is
a drawstring for every location you insert using the locations
option on the main menu. If you are illustrating only a few of
your locations the other drawstrings will be empty.

Every picture (and therefore every location) has a Paper and Ink
colour defined for it. Select option D from the main menu and you
will be presented with a sub-menu to deal with amending these
values, use [p] to see that an entry exists for our 9 locations
in the demo game. They are all marked as a subroutine which tells
PAW two things:

1/ Do not draw this picture when you describe a location.

2/ This is a sub-picture which can be used in other pictures.

The sub-picture facility is similar to the sub-process idea
discussed previously and an example of its use is given later.

For our example of using the graphics we shall be drawing a
picture of the bandstand as seen from location 4 (on the path).
So we want to make PAW draw the picture when we visit the
location. You do this by assigning the picture a Paper and Ink
value, we will use a black background and Yellow ink so type
[A 4 0 6 ENTER], if you now use [p] the entry for location 4
should be:

Location 4 Paper: 0 Ink: 6

You could change it back if you wanted by leaving the paper and
ink values out of the amend (e . g . A 4). Leave it as it is for the
moment and select option G from the main menu . 48K owners should
have found that they did not need to use overlays again - this is
because Characters, Default colours and Graphics are all in the
same overlay, the use of the amend option in a moment will wipe
out the overlays which PAW holds in memory and if you wish to use
any other options except Save/Load or Free memory you will need
to load the overlay containing the option.

So on with the graphics; several options are provided on the menu

58

Graphics

to allow you to amend, print (on the screen), copy (to a
printe r), calculate the size of and dump a sc reen image of ,each
picture in the game. We will be creating a picture for 10cat10n 4
so type [A 4 ENTER]. The screen will clear and two lines of
information will appear in the lower screen, this shows from
left to right; On the top line the current drawing ink colour,
the current background paper colour, the status of the flash and
brightness options and on the lower line the current x,y
coordinate of the drawing position and the location number under
edit. Sundry other information is also displayed at times which
will be explained as necessary.

If you look carefully you should also s~e a si~gl~ flas~ing, pixel
in the bottom left, this is known as the p01nt and 1nd1cates
the start position for any drawing. If you press key E you should
see a line start to appear, the one end of the line is always at
point and the other end of the line can be moved using the keys
around S as follows:

+ I
Q W E

..- A D~

z x C

,I t '" Alternatively if you have a joystick you can plug it into port 2
(Plus 2 and Interface 1). Kempston- inte~face use~s should press
[SYMBOL SHIFT] and [J] to activate the dnver for 1t - a, letter J
will appear on the bottom line to indicate it is act1ve: The
joystick will now move the end of line around. ~oveme~t w111 be
by single pixels, this can be accelerated to e1ght p~xels at a
time by holding down the CAPS SHI,FT key a~ the ,sam,: t1me as , o~e
of the eight keys (or while push1ng the Joyst1ck 1n a spec1f1c
direction) .

The line is 'rubber banding' (a term which arrives from the, f~ct
it acts like a taut rubber band) and will allow you to pos1t10n
lines accurately before you draw them.

Our sample game is going to have 'split screen' graphics ,so we
want to leave several lines spare on the screen below the, p1ct~re
for text. Press [SYMBOL SHIFT] and [Y] to activate a gnd wh1ch
shows the character boundaries and move the line to X~O,Y=47. We
are going to move 'point' to the end of the line so that any
drawing starts at that pixel, press [SYMBOL SHIFT] and [p] for
PLOT to achieve this, the current point will now be w?ere the end
of the line was. Next move the line to X=255,Y=47 uS1ng [A] once
hich demonstrates the 'wraparound' action of the line (i.e.

:oving off one side of the screen brings it back on the ?th,:r
' d) This time we want to actually draw the line (th1s 1S

~~l~ed fixing the line) so press [SYMBOL SHIFT] and [L] for LINE

59

Graphics

- or use FIRE on the joystick which acts like SYMBOL SHIFT and L.

If you make a mistake you can delete the previous command by
pressing DELETE (CAPS SHIFT and 0 on 48K) - all the way back to
the start of the picture if you like!

All graphics commands which insert in the drawstring (like PLOT
and LINE) require SYMBOL SHIFT to be held down so we shall
shorten it to SS. and any co-ordinates given will be in the form
X.Y e.g. 255.47 instead of X=255.Y=47 .

Borders around pictures seem to be the fashion at the moment so
ou:s shall have one! Move the end of line to 248.55 and PLOT the
po~nt. now draw a box by moving to 248.168 and fixing the line
then onto 7.168 and fixing the line and so on for points 7.55 and
back to 248.55. Note that these lines just skirted the outside of
each character 'cell'. Because of the spectrums limitation of
onl~ ~w~ colour~ in each cell you must be careful in your
pos~t~on~ng of l~nes (some hints are given in the technical
guide). or you will find them changing colour later when you draw
near them. Finally to make our border a little more interesting
we shall use the shade option mentioned earlier. Move the end of
line to 248.53 and press [SS] & [SJ for SHADE; the lower screen
w~ll change to a request for a pattern number, type in
[12 ENTERJ. you will be asked for a second pattern. this pattern
~ould be overlaid on the first. but we want to use pattern 12 on
~ts own so type [12 ENTERJ again. The border area should be
magically shaded with fine diagonal lines. Note that point has
not moved and the line will grow from same same place as before
the shade.

The shade command is as you will have noticed very fast. it is
also very good at shading unusually shaped areas of screen
including worming its way through single pixel 'holes' in yOU;
picture. Of course you can delete an errant shade. The shade
area is defined by at least a single pixel line or the edges of
the screen as in the border detailed above. It will not always
shade the entire empty area. but careful positioning will allow
most of it to be shaded in one go. any unshaded areas can be
completed by using the shade command again with a start point
within the empty area. Shade is provided with sixteen possible
default patterns which you can change using the character editor
as detailed earlier. Note that if you change a pattern all uses
of that psttern in pictures will be changed as well. so it is
best to choose useful general patterns for the majority and
define only a few special patterns where absolutely necessary.
Patterns can of course be mixed together by specifying different
pattern numbers when prompted to provide a wide variety of useful
designs.

Now we shall lay down the main sky and grass areas. We are merely
going , to set down a paper colour so move th~ line to 8.56 and
press [SSJ & [A} for ABSOLUTE MOVE. this does not affect the

60

Graphics

pixel unlike PLOT. Press [SS} & [y} to get rid of the grid or you
will not be able to see the colours. The grass will be green so
press [SS} & [C} for PAPER. green is colour 4 so type [4 ENTER}.
note that the current paper co lour changes to be 4. Now move the
line to 246.87 and press [SS} & [B} for BLOCK which will colour
in the rectangle of character cells which the line forms the
diagonal of. with the current Ink and Paper colours. The sky will
be blue so ABSOLUTE MOVE the line to 247.88 ([SS) & [A}). select
blue paper ([SS) & [C). [1 ENTER}).,. then BLOCK ths rectangle to
8.167 (move ' to 8.167 and press [SSJ & [B}).

Now we shall draw the base of the bandstand in red brick. In
order that we avoid the colour boundary problems the base will be
exactly three character cells high and sixteen wide. Se lect red
paper ([SS) & [CJ. [2 ENTER}). and black ink using [SS} & [X} for
INK. 0 is black so type [0 ENTER}. Now PLOT the point at 191.72
(i.e . move the line to 191 .72 and press [SS) & [p}). Then fix
lines between each of the following points;

64.72 64.95 111.95 111.75 144.75 144.95 191.95 191.72

One of the shading patterns which you may have noticed earlier is
a brick type pattern. move the line to 189.73 and SHADE using
pattern 14 (i.e. [SS) & [S). [14 ENTER 14 ENTER}) to create an
effective brick base.

by now. To create the
144.78 and press [SS}

Your picture should look like diagram six
steps u~ to the bandstand move the line to
and [RJ for RELATIVE MOVE .
which moves point like PLOT ~~~~~~~~~~~~~~~~~
and ABSOLUTE MOVE bu t to a Blue
pixel a fixed distance from
the current point instead of
an absoluts x.y position. It
is used to keep groups of
commands which draw a single
object in the picture
together. ths, reason will be
demonstrated in a moment. Fix
a line to 112.78 and then use
RELATIVE MOVE to move to
111.81. fix a line to 143.81
and so on for each of these
coordinate. groups:

REL MOVE to 144.84
REL MOVE to 111.87
REL MOVE to -144.90
REL MOVE to 111.93

LINE to 112.84
LINE to 143.87
LINE to 112.90
LINE to 143.93

&reen

Diagram 6

We will now examine the editing facilities that are , available to
correct mistakes in addition to DELETE. As an example we will
move the entire brick base of the bandstand two character cells

61

Graphica

further to the right. To DELETE all the way and redraw seems a
bit too much like hard work!

As you draw your picture PAW adds each command to the drawstring
where it adds them is called t .he drawstring pointer and at th~

moment the drawstring pointer is at the end
END of the drawstring. It is quite feasible for

PAW to backtrack along the commands you
have entered so far to any point along the

NEXT drawstring. Press [CURSOR RIGHTJ once,
don't worry the picture is still there, but
PAW only draws the picture as far as the
drawstring pOinter, which is now at the

SPARE START of the drawstring, Diagram 7 might
help you to visualize the way the
drawstring works in memory. You can step

POINTER forward one command in the drawstring by
pressing [CURSOR DOWNJ for NEXT command,
and back one command using [CURSOR UpJ for

START PREVIOUS command - note that this does not
delete the command it merely moves the
drawstring pointer back one command.

Diagram 7
Use NEXT (CURSOR DOWN) until the PLOT (at

191,72) command which starts the brick base is carried out. Use
DELETE to remove it from the drawstring and PLOT 207,72 which PAW
will insert in the drawstring at the pointer. If you use NEXT now
the base line should be drawn, rather than use NEXT all the time
to get to the end of the drawstring a useful trick especially
where 10U are near the start on a long drawstring is to press
[ENTERJ which will finish the edit and return you to the sub
menu. Then type [A 4 ENTERJ to amend the picture again, presto
your drawstring pointer is at the end again. Notice how the
entire base moved as a unit because we used RELATIVE MOVE when we
originally drew it.

To draw the front balustrade of the bandstand select ink white
([SSJ & [X], [7 ENTERJ) and paper 8 ([SSJ & [C], [8 ENTERJ) _
which is a special 'colour' meaning do not affect the paper
colour. Then:

PLOT 206,96 LINE 206,1 09 LINE 162,109 LINE 162,96

move the line to 163~97 and SHADE using the pattern you designed
earlier 15, ([SSJ & LS], [15 ENTER 15 ENTERJ).

PLOT 125,96 LINE 125,109 LINE 81,109 LINE 81,96

move the line to 82,97 and SHADE in patte rn 15 again.

Now the upright poles for the pagoda:

PLOT 103,96 LINE 103,136 LINE 106,136 LINE 106,96

62

Graphics

move the line to 104,121 and press [SSJ and [FJ for FILL, this
fills the defined area completely in set pixels in a similar way
to shade.

REL MOVE 184,96 LINE 184,136 LINE 181,136 LINE 181,96

move the line to 183,122 and FILL, ([SSJ & [FJ).

The top of the pagoda:

REL MOVE 207,143 LINE 206,140 LINE 202,136 LINE 86,136
LINE 83,139 LINE 80,143 LINE 207,143

move the line to 205,141 and SHADE in pa t te rn 1 5 .

REL MOVE 144 , 166 LINE 220,139
REL MOVE 65,139 LINE 144,166

move the line to .144,164 and FILL.

To create a rounding effect on the pagoda select OVER by pressing
[SSJ and [OJ, a letter 0 will appear on the top status line to
indicate that over is active. Normally every PLOT and . LINE
command sets the pixels it affects, but those inserted while over
is active will set pixels that are reset and reset pixels that
are set, much like the toggle action of SPACE on the character
editor. Note that ths state of Over (and Inverse introduced
later) is encoded as part of the command, to get the effect you
have to insert the command while it is active, you cannot change
a PLOT or LINE inserted previously without deleting it first.
Over is cancelled by START, PREVIOUS or DELETE.

LINE 115,140 REL MOVE 144,166 LINE 171,140

and [SSJ and [OJ to turn over off ·again, you should now have two
lines drawn partly in reset and partly in set pixels.

The last upright on the pagoda:

REL MOVE 142,136 LINE 142,96 LINE 145,96 LINE 145,135

move line to 143,133 and FILL.

The back balustrade of the bandstand is drawn slightly smaller:

REL MOVE 125,107
REL MOVE 162_,96

LINE 161 ,107
LINE 126,96

move line to 128,98 and SHADE in pattern 15, and to 150,98 to
SHADE in pattern 15 again. To improve the look we shall make the
centre upright stand out a bit by removing a line of pixels
either side of it. Press [SSJ and [IJ for INVERSE and a letter I
should appear on the bottom line to show Inverse is active.

63

Graphics

Inverse causes any PLOT and LINE commands to reset pixels instead
of setting them. So:

REL MOVE 141.95
REL MOVE 146.108

LINE 141.107
LINE 146.96

then Inverse off ([SS] & [I]) .

Now to construct the rail i ngs around the perimeter of the park we
shall use a useful technique of undrawin~ the surround of a shade
pattern. Draw in black ink ([SS] & [X]. LO ENTER]):

PLOT 8.104
PLOT 247.88

LINE 79.104
LINE 208.88

LINE 79.88
LINE 208.104

LINE 8.88
LINE 247.104

SHADE pattern 7 at 246.102 and 11.102. Undraw the to~ of the
railings to create spikes by turning Inverse on ([SS] & LI]) and:

PLOT 247.104 LINE 208.104 PLOT 79.104 LINE 8.104

then Inverse off. To finish the effect draw:

PLOT 8.101 LINE 79.101 PLOT 208.101 LINE 247.101

The main picture is finished but we are going to add some tufts
of grass using the subroutine feature mentioned earlier. this
will save memory and the time taken to draw four tufts of grass.
Press [ENTER] to finish the edit and return to the sub-menu. Now
location 0 is the title screen for the demo so we shall use its
drawstring to. contain our tuft of grass. Using [A 0 ENTER] amend
the picture for location O. Note that the location number is
followed by a letter S to indicate that this is a subroutine.

Draw the tuft of grass by temporarily plotting 72.72 and fixing
lines between the following points:

68.85
87.94

77.73
92.70

74.89
94.86

81.73
95.70

79.94
99.79

87.72
98.69

now return to the START of the drawstring ([CURSOR RIGHT]) and
use NEXT ([CURSOR DOWN]) to step past the PLOT. then use DELETE
to remove it. This strange action means that the start of the
first line is at 0.0 and allows us to position the picture
accurately. If you try and amend the picture again you will get
an "Out of range" error because PAW cannot draw a line 'off'
screen. Your drawstring pointer will be positioned just before
the first LINE command so insert the PLOT again while you edit
the drawstring. deleting it again at the end.

Amend picture four again ([A 4 ·ENTER] from the sub-menu) and PLOT
point 217.69. Now press [SS] and [G] for GOSUB. ;you will be
prompted for a location number to use. type [O , ENTERJ to use our
newly define4 tuft of grass. Next you will be prompted for a

64

Graphics

scale. this defines how big the picture will be in eighths o f its
original size. type [4 ENTER] to draw it at half its original
size. Do the same for the following:

PLOT 21.58 GOSUB 0 scale 5
PLOT 60.74 GOSUB 0 scale 3
PLOT 103.61 GOSUB 0 scale 4

And to demonstrate errors:

PLOT 1 28.170 GOSUB 0 scale 0

Scale 0 actually means full size. not zero eighths! The error
which was generated has left the drawstring p o inter before th e
command which caused the error. in this case the GOSUB. Ther e
would appear to be no way to delete this without plotting further
down and so on. In fact [GRAPH] ([CAPS SHIFT] & [9] on a 48K)
will DELETE the NEXT command. You might as well [DELETE] the PLOT
as well.

Note that at the end of an edit it is possible for you to still
have commands above the drawstring pointer that you do not want.
You can ensure these are removed by holding down DELETE NEXT
([GRAPH]) for a while.

Return to the main menu and select Process table 1 (48K owners
will need to load an overlay). Amend the * * entry to contain
MODE 3 3 LINE 16 before the GOTO 2 . The MODE action selects the
way the screen operates. Mode 3 is a fixed graphic area (any text
displayed will not remove it) - the second 3 tells PAW not to
change the border colour and to print "More •• " when a screen~ull
of text has been displayed. LINE 16 tells PAW where the fl.rst
line of text is to be displayed.

Finally use test adventure (again 48K owners will need to load an
overlay) to see your picture in action. It will be displayed the
first time you visit the path. but not on subsequent visits. This
is known as normal mode for graphics. It is also possible to
select On and Off which always draw and never draw the graphics
respectively. These options can be selected using PICS NORM. PICS
ON and PICS OFF - those entries we didn't explain in Response!

You must make the decision as to whether to allow the player to
switch between options during the game or to force a single
method at the start.

65

End of the road

End of the road

We hope that the above tutorial has provided an insight into some
of the many powerful facilities of the Professional Adventure
Writer. Now it is time for you to expand your knowledge of the
system by using it! The Technical Guide will provide an exact
specification of everything that PAW contains and in conjunction
with the essays in it on various subjects, will form essential -
if a little heavy - reading when writing your own games.

Finally you will find a small game in database form on the
cassette after the overlays called "TEWK", which should be loaded
using option J on the main menu (after saving your database of
course!). Looking through this should provide you with some more
i deas on giving your game an individual look.

What should I do next?
HAVE PUll!
OK

Tim Gilberts - January 1987.

66

~
I
J .

User Registration

User Registration

We regret that due to the problems of software piracy
that any queries regarding the use of PAW must be
accompanied by a valid user registration number. You
can obtain your registration number simply by
completing this form and returning it to:

PAW User Registration
2 Park Crescent,
Barry,
South Glamorgan,
South Wales
CF6 8HD

This will also ensure you are informed of any additions
or improvements to the system.

We also hope to be able to provide various support
services for PAW users including additional information
on its use and perhaps even a true user group
newsletter etc.

Please write clearly in block letters:

Name:

Address:

Machine:

Date of purchase:

For office use only - do not fill in:

Date:

Reg No:

67

© 1986 Gilsoft International Ltd.
Published by Gilsoft International Ltd.,

2 Park Crescent, Barry, South Glamogan CF6 8HD
Telephone Barry (0446) 732765

All rights reserved, unauthorised copying, hiring or lending strictly prohibited

