
Pro essionaf

Tecfmica(guWe

Spectrum

A Technical guide to:

The Professional Adventure Writer

A graphic adventure writing system for the Sinclair
Spectrum computers.

(c) 1986 Gilsoft International Ltd.
Program: T.J.Gilberts, G.Yeandle and P.Wade

Graphics: D. Peeke, K.Maddocks and A.Williams
Manuals: T.J.Gilberts

All Rights reserved. No part of this publication may be copied,
loaned, hired or reproduced in any form whatsoever including
electronic retrieval systems without the prior written consent of
the authors and Gilsoft International Ltd.

The above notice does not apply to the 'run time' routines
appended to, and which form a part of, a saved game which you are
free to distribute any way you wish in that form. All we would
request is that you credit the use of the Professional Adventure
Writer somewhere within the game.

2

Acknowledgement

Thanks to Howa~d and Pam for their
forbearance. Phil for his 'comments',
Graeme for his ideas, Dicon et al for the
graphics and all our customers for their

support and suggestions.
Contents

Overview

The Interpreter

The CondActs

Conditions
Actions

The Database

The Editor

The Graphics Editor

Errors

Printers

The Essays

128K Considerations
Colour Boundaries
The parser
Screen Output
Objects
Multi-part games
Light 8: Dark
EXTERN and loading SCREEN$
PS Is

Summary

Graphics Editor commands
System messages
Flags
CondAct s

Page 5

Page 6

Page 11
Page 14

Pag,e 33

Page 38

Page 49

Page 53

Page 55

Page 56
Page 57
Page 58
Page 59
Page 60
Page 61
Page 62
Page 63
Page 64

Page 66
Page 67
Page 68
Page 70

Contents

4

Overview

Overview

PAW can be divided into three main functional areas thus:

1 / The Database

The database is a collection of tables organized in a logical
manner, which contain all the information to define an
adventure game. This database is initially set up to contain
a minimum of entries which will probably be needed in every
game. There is usually one entry in a table to simplify the
operation of the system. The database may utilize the
additional sideways RAM pages of a 128K spectrum.

2/ The Editor

This consists of a two level menu system i.e. most functions
on the main menu present a sub-menu from which all facilities
can be selected. All facilities are set either from a command
line as part of the sub-menu option or in response to a
prompt. This combination of menu and command line has been
found to be most efficient both for the beginner and the more
experienced user.

3/ The Interpreter

The real heart of PAW is contained in this section of the
program. The next chapter deals with the operation of the
interpreter in detail, but it essentially fetches commands
from the player and uses the information contained in the
database to decode and respo"nd to those commands.

The sheer size of PAW precludes it being held entirely within the
main memory area. On a 128K spectrum the majority of the code is
held as overlays on a sideways RAM page and transferred into the
main area whenever required. A similar system is used on a 48K
spectrum by holding three of the overlays in free memory until
the area of memory used is overwritten. If the sideways RAM page
is initialised on a 128K or the memory area overwritten on a 48K,
an attempt to select an option not in the current overlay will
result in PAW attempting to load the requisite overlay from
cassette (or disc). The main menu and overlay system gives an
overhead of approximately 4K which is unavailable to PAW for the
database. About 10K is consumed by the interpreter and its
workspace (e.g. Ramsave buffer, input and wordwrap buffers etc.).
This leaves approximately 27K for the database, plus 5 pages of
16K each, on a 128K spectrum (a total of about 117K). This is
maximised by the inclusion of a text compressor which introduces
an overhead of 222 bytes (for an expansion dictionary) thus
giving about 40% effective text compression. On an average text
only game on the 48K spectrum this provides an effective addition
of BK of database space (i.e. a total of 35K!).

5

The Interpreter

The Interpreter

The following description of the interpreter should be read in
conjunction with the flowcharts provided overleaf.

Initialise

The background colours and character set are selected - the
screen isn't cleared as this alva7s occurs upon describing
location zero. The flags are all zeroed except for; flag 37, the
number of objects conveyable, which is set to 4; flag 52, the
maximum weight of objects conveyable, which is set to 10; flags
46 & 47, the current pronoun ("IT" usually), which are set to
255 (no pronoun) and flag 1 which is set to be the number of
objects carried but not worn. Note that clearing the flags h~s
the effect that the game always starts at location zero. This is
because flag 38, the current location of the player, is now zero.

Describe Current Location

If flag 2 is non zero it is decremented (reduced by 1). If it is
dark (Flag 0 is non zero) and flag 3 is non zero then flag 3 is
decremented. If it is dark, flag 4 is non zero and object 0 (the
source of light) is absent, then flag 4 is decremented.

The screen is cleared if the current screen mode (contents of
flag 40) is not 1.

If it is dark, . and Object 0 is absent, then System message 0
(referred to as SMO - "It's too dark to see anything") is
displayed. Otherwise any picture present for the location is
drawn and the location description displayed without a NEWLINE.

Search Process Table 1

Flowchart 2 and the next section describe the scanning of a
process table. Process table 1 is used mainly to contain the
entries to add extra information to the current location
description. E.g. details of open ~oors, objects present etc. It
will also contain a PROTECT action, when using screen mode 4, to
set the screen line for text to scroll under.

We now enter the main loop of the interpreter which deals with
each time frame (i.e. each phrase extracted or each timeout on
input which occurs) and the response to players commands.

Search Process Table 2

This contains the main control for PAW's turn at the game. It is
used to implement the movements and actions of PSI's, the
uncontrolled events such as bridges collapsing, and so on.

6

The Interpreter

Get Phrase

If flags 5 to 8 are non zero they are decremented. If it is dark
(Flag 0 is non zero) and flag 9 is non zero then it is
decremented. If it is dark and flag 10 is non zero it is
decremented if object 0 is absent.

The parser is called to extract a phrase and convert it int o a
logical sentence - LS. If the input buffer is empty, a new input
line is obtained from the player by printing a prompt and making
a call to the input routine. The prompt will be the system
message whose number is contained in flag 42 - a value of O will
select one of system messages 2,3,4 or 5 in the ratio 30:30:30:10
respectively.

If the time out option is selected, by making flag 48 contain a
value greater than zero, then the input routine might time out.
In this case SM35 ("Time passes • •• ") is displayed and a return
made to scan process 2 again.

A phrase is extracted and converted into the logical sentence;
by converting any words present, that are in the vocabulary, int o
their word value and placing them in the required flags.

If no valid phrase can be found then SM6 ("I couldn't understand
any of that") is displayed, and a return made to scan process 2.

Search Response Table

Turns (flags 31 and 32), which is the number of valid phrases
extracted by the parser, is increased by one. Two flags are used
to allow 256 lots of 256 turns (i.e. 65536).

The Response table is then scanned, for an entry which matches
the Verb and Noun1 of the current LS, using the process table
routine detailed below.

If it is successful in carrying out an action (i.e. If PAW
executes at least one action other than NOTDONE) then a return is
made to scan process table 2.

Search the Connections Table

A search is made of the connections table entry for the current
location, for a word which matches the current LS Verb. If one is
found then the players current location (flag 38) is set to be
the number associated with the word. Then a return is made to
describe the current location. Otherwise PAW prints SM8 ("I can't
go in that direction") if the current LS Verb has a word value
less than 14 or SM7 ("I can't do that") if it does not. In both
cases a return is made to scan process table 2.

7

The Interpreter

Flowchart l

D

No

8

Start

Initialise

Describe
Location
Process 1

Process 2

Get Phrase

Yes

TURNS+1
Search
Response

SM8
"Can't go
that way"

No

Search
Connection
Table

Flowchart 2

End

No

No

Do Action

The Interpreter

Start

Yes

No

No

Yea

9

The Interpreter

Scan a Process Table

Response is a process table (Note that any sub-processes which
are called from within Response exhibit the same features), so it
will also be scanned by this section of PAW. The difference of
course is that PAW tries to mat-eh the Verb and Noun1 of the
logical sentence in a Response table.

Essentially PAW will look at each entry in the table until it is
exhausted - the table of entries, not PAW! Assuming there is an
entry, it will, if in Response, ensure the Verb and Noun match
those of the LS. The use of the words "*" and " ", as either the
Verb or the Noun, will cause a match with any word in that part
of the logical sentence. Thus entries in Response of "* *"," ",
and c om bins t ions of same' will cause a trigger of the entry no
matter what the LS. This feature must be used in any table which
will be called by both a Response and a Process table. If in a
Process the Verb and Noun will match anyway, no matter what the
logical sentence.

PAW will then look at each CondAct in turn; if it is a condition,
which succeeds, then PAW will look at the next condact. Otherwise
it will drop out of the current condact list and look at the next
entry, if present, in the table - an exception to this is the
CondAct QUIT which, if it fails, will drop out of the table
completely - this is not shown in flowchart 2 for clarity. If it
is an action it will be carried out. Actions can be divided into
five main groups:

1/ Desc; which ·will completely exit the execution of all tables
(i.e. even if in a 1 Oth level sub-process) andJump to
describe the current location.

2/ END; (a group on its own) which will completely exit the
execution of all tables and jump to initialise a new game.

3/ Exit; any action which will stop processing of the current
table and exit to the calling table (or back to the main loop
if in Response, Process 1 or 2). e.g. INVEN,DONE etc.

4/ Conditional Exit; any action which will stop processing of the
current table and exit to the calling table (or back to the
main loop if in Response, Process 1 or 2) if it fails to do
its required function. e.g. GET, PUTIN etc. Otherwise it will
continue with the next CondAct.

5/ Normal; any action which carries out its function, and allows
PAW to continue looking at the next CondAct in the current
entry. e.g. COPYFF, PLUS etc

It may be seen that QUIT acts like a type 4 action, bu .t is still
a condition, so it's a CondAct! The summary of CondActs at the
end of this book shows which type each Action is.

10

The CondActs

The CondActs

There now follows a detailed description of each CondAct. They
are divided into groups according to the subject they deal with
in PAW; such as flags, objects etc and give some hints as to a
possible use.

Several abbreviations are used in the descriptions as follows;

locno. is a valid location number.

locno+ is a valid location number or; 252 (not-created}, 2 53
(worn), 254 (carried) and 255 which is converted into the current
location of the player.

aesno. is a valid message.

sysno. is a valid system message.

rlagno. is any flag (0 to 255).

procno. is a valid sub-process number.

•ord is word of the required type, which is present in the
vocabulary, or" " which ensures no-word - not an anymatch as
normal.

value is a value from 0 to 255.

Conditions

There are four conditions which deal with testing the location o f
the player as follows;

AT locno.

Succeeds if the current location is the same as locno.

l'OTAT locno.

Succeeds if the current location is different to locno.

ATGT locno.

Succeeds if the current location is greater than locno.

ATLT locno.

Succeeds if the current location is less than locno.

11

The CondActe

There are eight conditions which deal with the current ·location
of an object;

PRBSBIT objno.

Succeeds if Object ob.]no. is carried, worn or at the current
location.

ABSBIT objno.

Succeeds if Object objno. is not carried, not worn and not at the
current location.

YORI objno.

Succeeds if object objno. is. worn

IOTYORI objno.

Succeeds if Object objno. is not worn.

CARRIED objno.

Succeeds if Object objno. is carried.

IOTCARR objno.

Succeeds if Object objno. is not carried.

IsAT objno. locno+

Succeeds if Object objno. is at Location locno.

ISIOTAT objno. locno+

Succeeds if Object objno. is not at Location locno.

There are eight conditions which deal with the value and
comparison of flags;

ZERO f'lagno.

Succeeds if Flag flagno. is set to zero.

IOTZBRO f'lagno.

Succeeds if Flag flagno. is not set to zero.

BQ f'lagno. value

Succeeds if Flag flagno. is equal to value.

12

The CondActs

IOTBQ f'lagno. value

Succeeds if Flag flagno. is not equal to value.

GT f'lagno. value

Succeeds if Flag flagno. is greater than value.

LT f'lagno. value

Succeeds if Flag flagno. is set to less than value .

Succeeds if Flag flagno1 has the same value as Flag flagno 2 .

Succeeds if Flag flagno 1 does not have the same value as Flag
flagno 2 •

There are five conditions to check for an extended logical
sentence. It is best to use these conditions only if the specific
word (or absence of word using " ") is needed to differentiate a
situation. This allows greater flexibility in the commands
understood by the entry.

ADJBCT1 YOrd

Succeeds if the first noun's adjective in the current LS is word.

ADYBRB word

Succeeds if the adverb in the current LS is word.

PR.Kl' word

Succeeds if the preposition in the current LS is word.

IOUI2 Yord

Succeeds if the second noun in the current LS is word.

ADJBCT2 word

Succeeds if the second noun's adjective in the current LS is
word.

The following condition is for random occurrences. You could use
it to provide a chance of a tree falling on the player during a
lightning strike or a bridge collapsing etc. Do not abuse this

The CondActe

facility, always allow a player a way of preventing the problem;
such as rubber boots for the lightning, or similar.

CHAICE percent

Succeeds if percent is less than or equal to a random number in
the range 1-100 (inclusive). Thus a CHANCE 50 condition would
allow PAW to look at the next CondAct only if the random number
generated was between 1 and 50, a 50% chance of success.

A single condition to test for a timeo.ut;

TillEOUT

Will succeed if the last request for input from the player was
allowed to timeout. For example an entry in Process table 2 of;
TIMEOUT MESSAGE 0 (where message 0 read "Come on sleepy") could
be created, perhaps with a CHANCE or a count of time outs to make
it lees monotonous!

The true CondAct;

QUIT

SM12 ("Are you sure?") is printed and the input routine
called. Will succeed if the player replies with the first letter
of SM30 ("Y") to the prompt. If not then Actions NEWTEXT and
DONE are performed.

Actions

There are nineteen actions to deal with the manipulation of
object positions;

GBT objno.

If Object objno. is worn or carried, SM25 ("I already have the
_.") is printed and actions NEWTEXT DONE are performed.

If Object objno. is not at the current location, SM26 ("There
isn't one of those here.") is printed and actions NEWTEXT DONE
are performed.

If the total weight of the objects carried and worn by the player
plus Object objno. would exceed the maximum conveyable weight
(Flag 52) then SM43 ("The weighs too much for me.") is printed
and actions NEWTEXT DONE are performed.

If the maximum number of objects is being car'ried (Flag 1 is

14

The CondActe

greater than, or the same as, Flag 37), SM27 ("I can't carry any
more things.") is printed and act ions NEWT EXT DONE are performed.
In addition any current DOALL loop is cancelled.

Otherwise the position of Object objno. is changed to carried,
Flag 1 is incremented and SM36 ("I now have the _.") is printed.

DROP objno.

If Object objno. is worn then SM24 ("I can't. I'm wearing the
_.") is printed and actions ' NEWTEXT DONE are performed.

If Object objno. is at the current location (but neither worn nor
carried), SM49 ("I don't have the .") is printed and actions
NEWTEXT DONE are performed.

If Object objno. is not at the current location then SM28 ("I
don't have one of those.") is printed and actions NEWTEXT DONE
are performed.

Otherwise the position of Object objno. is changed to the current
location, Flag 1 is decremented and SM39 ("I've dropped the .")
is printed.

HAR objno.

If Object objno. is at the current location (but not carried or
worn) SM49 ("I don't have the _.") is printed and actions NEWTEXT
DONE are performed.

If Object objno. is worn, SM29 ("I'm already wearing the_.") is
printed and actions NEWTEXT DONE are performed.

If Object objno. is not carried, SM28 ("I don't have one of
those.") is printed and actions NEWTEXT DONE are performed.

If Object objno. is not flagged as Wearable (WR option in the
object weight menu) then SM40 ("I can't wear the .") is printed
~nd actions NEWTEXT DONE are performed.

Otherwise the position of Object objno. is changed to worn, Flag
1 is decremented and SM37 ("I'm now wearing the _.") is printed.

RDO'IE objno.

If Object objno. is carried or at the current location (but not
worn) then SM50 ("I'm not wearing the .") is printed and actions
NEWT EXT DONE are pa rfo rmed. -

If Object objno. is not at the current location, SM23 ("I'm not
wearing one of those.") is printed and actions NEWTEXT DONE are
pa rfo rmed.

1 5

The CondActs

If Object objno. is not flagged as wearable (and thus removeable)
then SM41 ("I can't remove the .") is printed and actions
NEWTEXT DONE are performed.

If the maximum number. of objects is being carried (Flag 1 is
greater than, or the same as, Flag 37), SM42 ("I . can't remove the

My hands are full.") is printed and actions NEWTEXT DONE are
performed.

Otherwise the position of Object objno. is changed to carried.
Flag 1 is incremented and SM38 ("I've removed the _.") printed.

CREATE objno.

The position of Object objno. is changed to the current location
and Flag 1 is decremented if the object was carried.

DESTROY objno.

The position of Object objno. is changed to not-created and Flag
1 is decremented if the object was carried.

SVAP objno1 objno2

The positions of the two objects are exchanged. Flag 1 is not
adjusted. The currently referenced object is set to be ObJect
objno2 •

PLACE objno. locno+

The position of Object objno. is changed to Location locno. Flag
1 is decremented if the object was carried. It is incremented if
the object is placed at location 254 (carried).

PUTO locno+

The position of the currently referenced object (i.e. that object
whose number is given in flag 51), is changed to be Location
locno. Flag 54 remains its old location. Flag 1 is decremented if
the object was carried. It is incremented if the object is placed
at location 254 (carried).

PUTII objno. locno.

If Object locno. does not exist or is not flagged as a container
(option C on the object weight menu) then a run time error is
generated of "Illegal Argument".

If Object objno. is worn. then SM24 ("I can't. I'm wearing the
_. ") is printed and actions NEWT EXT DONE are performed.

If Object objno. is at the current location (but neither worn nor
carried), SM49 ("I don't have the _.") is printed and actions

16

The CondActs

NEWTEXT DONE are performed.

If Object objno. is not at the current location, but not carried,
then SM28 ("I don't have one of those.") is printed and actions
NEW TEXT DONE are pe rfo rme d.

Otherwise the position of Object objno. is changed to Location
locno. Flag 1 is decremented and SM44 ("The is in the") , a
description of Object locno. and SM51 (".") is printed.

TAKEOUT objno. locno.

If Object locno. does not exist or is not flagged as a container
(option C on the object weight menu) then a run time err o r is
generated of "Illegal Argument".

If Object objno. is worn or carried, SM25 ("I already have the
_.") is printed and actions NEWTEXT DONE are performed.

If Object objno. is at the current location, SM45 ("The isn't
in the"), a description of Object locno. and SM51 (".") is
printed and actions NEWTEXT DONE are performed.

If Object objno. is not at the current location and not at
Location locno. then SM52 ("There isn't one of those in the"), a
description of Object locno. and SM51 (".") is printed and
actions NEWTEXT DONE are performed.

If Object locno. is not carried or worn, and the total weight of
the objects carried and worn by the player plus Object objno.
would exceed the maximum conveyable weight (Flag 52) then SM43
("The _ weighs too much for me.") is printed and actions NEWTEXT
DONE are performed.

If the maximum number of objects is being carried (Flag 1 is
greater than, or the same as, Flag 37), SM27 ("I can't carry any
more things.") is printed and actions NEWTEXT DONE are performed.
In addition any current DOALL loop is cancelled.

Otherwise the position of Object objno. is changed to carried,
Flag 1 is incremented and SM36 ("I now have the _. ") is printed.

Iote: No check is made, by either PUTIN or TAKEOUT, that Object
locno. is actually present. This must be carried out by you if
required.

DROP ALL

All objects which are carried or worn are created at the current
location (i.e. all objects are dropped) and Flag 1 is set to o.
This is included for compatibility with older writing systems.
Note that a DOALL 254 will carry out a true DROP ALL, taking care
of any special act ions included.

17

The CondActs

The next six actions are automatic versions of GET, DROP, WEAR,
REMOVE, PUTIN and TAKEOUT. They ars automatic in that instead of
needing to specify the object number, they each convert
Noun(Adjective)1 into the currently referenced object - by
searching the object word table. The search is for an object
which is at one of several locations in desc.ending order of
priority - see individual descriptions. This search against
priority allows PAW to 'know' which object is implied if more
than one object with the same Noun description (when the player
has not specified an adjective) exists; at the current location,
carried or worn - and in the container in the case of TAKEOUT.

AUTOG

A search for the object number represented by Noun(Adjective)1 is
made in object word in order of location priority; here, carried,
worn. i.e. The player is more likely to be trying to GET an
object that is at the current location than one that is carried
or worn. If an object is found its number is passed to the GET
action. Otherwise if there is an object in existence anywhere in
the game or if Noun1 was not in the vocabulary then SM26 ("There
isn't one of those here.") is printed. Else SM8 ("I can't do
that.") is printed (i.e. It is not a valid object but does exist
in the game). Either way actions NEWTEXT DONE are performed

AUTOD

A search for the object number represented by Noun(Adjective)1 is
made in object word in order of location priority; carried, worn,
here. i.e. The · player is more likely to be trying to DROP a
carried object than one that is worn or here. If an object is
found its number is passed to the DROP action. Otherwise if there
is an object in existence anywhere in the game or if Noun1 was
not in the vocabulary then SM28 ("I don't have one of those.'') is
printed. Else SM8 ("I can't do that.") is printed (i.e. It is not
a valid object but does exist in the game). Either way actions
NEWTEXT DONE are performed

AUTOV

A search for the object number represented by Noun(Adjective)1 is
made in object word in order of location priority; carried, worn,
here. i.e. The player is more likely to be trying to WEAR a
carried object than one that is worn or here. If an object is
found its number is passed to the WEAR action. Otherwise if there
is an object in existence anywhere in the game or if Noun1 was
not in the vocabulary then SM28 ("I don't have one of those.") is
printed. Else SM8 ("I can't do that.") is printed (i.e. It is not
a valid object but does exist in the game). Either way actions
NEWTEXT DONE are performed

18

The CondActs

AUTOR

A search for the object number represented by Noun(Adjective)1 is
made in object word in order of location priority; worn, carried,
here. i.e. The player is more likely to be trying to REMOVE a
worn object than one that is c arried or here. If an object is
found its number is passed to the REMOVE action. Otherwise if
there is an object in existence anywhere in the game or if Noun1
was not in the vocabulary then SM23 ("I'm not wearing one of
those.") is printed. Else SM8 ("I can't do that.") is printed
(i.e. It is not a valid object but does exist in the game).
Either way actions NEWTEXT DONE are performed

AUTOP locno.

A search for the object number represented by Noun(Adjective)1 is
made in object word in order of location priority; carried, worn,
here. i.e. The player is more likely to be trying to PUT a
carried object inside another than one that is worn or here. If
an object is found its number is passed to the PUTIN action.
Otherwise if there is an object in existence anywhere in the game
or if Noun1 was not in the vocabulary then SM28 ("I don't have
one of those.") is printed. Else SMB ("I can't do that.") is
printed (i.e. It is not a valid object but does exist in the
game). Either way actions NEWTEXT DONE are performed

AUTOT locno.

A search for the object number represented by Noun(Adjective)1 is
made in object word in order of location priority; in container,
carried, worn, here . i.e. The player is more likely to be trying
to get an object out of a container which is actually in there
than one that is carried, worn or here. If an object is found its
number is passed to the TAKEOUT action. Otherwise if there is an
object in existence anywhere in the game or if Noun1 was not in
the vocabulary then SM52 ("There isn't one of those in the"), a
description of Object locno. and SM51 (".'')is printed. Else SMB
("I can't do that.") is printed (i.e. It is not a valid object
but does exist in the game). Either way actions NEWTEXT DONE are
performed

Iote: No check is made, by either AUTOP or AUTOT, that Object
locno. is actually present. This must be carried out by you - if
required.

COPYOO objno1 objno2

The position of Object objno2 is set to be the same as the
position of Object Objno1• The currently referenced object is set
to be Object objno2•

19

The CondActs

There are four actions which allow various parameters of objects
to be; placed in flags, set from flags - for c ompariaon or
manipulation.

COPYOP objno. flagno.

The position of Object objno. is copied into Flag flagno. This
could be used to examine the location of an object in a
comparison with another flag value. e.g. COPYOF 1 11SAME11 38
could be used to check that object 1 was at the same location as
the player - al though ISAT 1 255 would be better!

COPYPO flagno. objno.

The position of Object objno. is set to be the contents of Flag
flagno. An attempt to copy from a flag containing 255 will result
in a run time error of "Invalid Argument". Setting an object to
an invalid location will still be accepted as it presents no
danger to the operation of PAW.

VHATO

A search for the object number represented by Noun(Adjective)1 is
made in object word in order of location priority; carried, worn,
here. This is because it is assumed any use of WHATO will be
related to carried objects rather than any that are worn or here.
If an object is found its number is placed in flag 51, along with
the standard current object parameters in flags 54-57· This
allows you to create other auto actions (the tutorial gives an
example of this' for dropping objects in the tree).

WEIGH objno. flagno.

The true weight of Object objno. is calculated (i.e. if it is. a
container, any objects inside have their weight added - don't
forget that nested containers atop adding their contents after
ten levels) and the value is placed in Flag flagno. This will
have a maximum value of 255 which will not be exceeded. If Object
objno. is a container of zero weight, Flag flagno. will be
cleared as objects in zero weight containers, also weigh zero!

Now ten actions to manipulate the flags;

SET flagno.

Flag flagno. is set to 255.

CLEAR flagno.

Flag flagno. is cleared to o.

20

The CondActs

LET flagno. value

Flag flagno. is set to value.

PLUS flagno. value

Flag flagno. is increased by value. If the result ex c eeds 255
the flag is set to 255.

MIIIUS flagno. value

Flag flagno. is decreased by value. If the result is negative
the flag is set to o.

Flag flagno2 has the contents of Flag flagno1 added t o it. If the
result exceeds 255 the flag is set to 255.

SUB flagno1 flagno2

Flag flagno2 has the contents of Flag flagno1 subtracted from it.
If the result is negative the flag is set to o.

COPYPP flagno 1 flagno2

The contents of Flag flagno1 is copied to Flag flagno 2 •

RAIDOM flagno.

Flag flagno. is set to a number from the Pseudo-random sequence
from 1 to 100. This could be useful to allow random decisions to
be made in a more flexible way than with the CHANCE condition.

KOTE flagno.

This is a very powerful action designed to manipulate PSI's. It
allows the current LS Verb to be used to scan the connections
table for the location given in Flag flagno. If the Verb is found
then Flag flagno. is changed to be the location number associated
with it, and the next condact is considered. If the verb is not
found, or the original location number was invalid, then PAW
considers the next entry in the table - if present. Thus you
could consider that PAW carries out the following imaginary
entries on exit from Response if no action has been done;

MOVE
DESC

38

LT 33 14
SYSMESS 7
DONE

;Attempt to move player
;Describe his new loc.

;Movement word?
;"Can't go that way ••

21

The CondActe

SYSMESS 8 ;"I can't do that"

This feature could be used to provide characters with Random
movement in valid directions; by setting the LS Verb to a random
movement word and allowing MOVE to decide if the character can go
that way. Note that any special movements which are dealt with in
Response for the player, must be dealt with separately for a PSI
as well.

Three actions to manipulate the flags dealing with the player;

GOTO 1ocno.

Changes the current location to locno. This effectively sets flag
38 to the value locno.

HIGHT f'1agno.

Calculates the true weight of all objects carried and worn by the
player (i.e. any containers will have the weight of their
contents added upto a maximum of 255), this value is then placed
in Flag flagno. This would be useful to ensure the player was
not carrying too much weight to cross a bridge ·without it
collapsing etc.

ABILITY va1ue1 va1ue2

This sets Flag 37, the maximum number of objects conveyable, to
value1 and Flag 52, the maximum weight of objects the player may
carry and wear at any one time (or their strength), to be value 2 •
No checks are made to ensure that the player is not already
carrying more than the maximum. GET and so on, which check the
values, will still work correctly and prevent the player carrying
any more objects, even if you set ths value lower than that which
is already carried!

There are seven actions which deal with the manipulation of the
flags for screen mode, format and input etc;

RODE aode option

There are five screen modes each controlled by Flag 40 and set
using the MODE action thus:-

22

Mode 0

If a picture (other than 'subroutine') is present in the
database, the screen is cleared to the default colours and
the picture drawn. Once a key is pressed the original
colours are restored, and the location is described.

The CondActs

Mode

Text Only. Full screen sc rol).. Text is output to the s c reen
continuously. CLS is not active on describe.

Mode 2

If a picture (other than 'subroutine') is present in the
database, the screen is cleared to the default colours and
the picture drawn. The original colours are restored, the
area below the line given in Flag 41 is cleared and text
printed from the same line.

Mode 3

As Mode 2 above but the picture does not scroll away. ·

Mode 4

A text only mode which protects the location description as
if it were a picture, all other text scrolls under. You
will probably need a PROTECT action at a suitable point in
Process 1 (e.g. after LISTOBJ?) as otherwise only as far as
the last but one line of the text wi 11 be protected. ·

In all the graphic modes above; option 2 forces the border NOT to
be set to the Paper colour - it's best to select this on modes 2
ll 3 as the border is reset as soon as the picture is fully drawn
causing an annoying flicker. Option 1 makes SM32 ("More ... ")
appear when the screen area fills (unlike 'Scroll?' you cannot
break out - well, in the editor you can!). Option 3 of course
provides both options and option 0 neither! e.g. MODE 4 1 will
select a fixed text window with a "More ... " prompt.

LID 1ineno.

This sets the line that text should be printed from in the split
screen graphic modes, and in the case of mode 2 the top line of
the area to be cleared. Be careful when using a lower screen
input (see INPUT action) to allow at least four spare lines in
the upper screen (not forgetting to account for the number of
lines used by the prompt and marker) or a runtime error will
occur if a full input line is entered.

GRAPHIC option

This allows the way in which pictures are dealt with by PAW to be
modified, there are three valid options;

0 - Normal, any picture _present f'or a location is drawn when
the player first visits that location, and then only if
pictures are turned ON or a temporary redraw is
requested.

23

The CondActe

1 - OFF, any pictures are completely ignored by PAW, even if
a temporary redraw is requested

2 - ON, any picture present for a location is drawn every
time the player visits that location.

There is an option 3 (option = 2+1) but pictures OFF takes
priority anyway, so it is redundant. The current picture for a
location can be redrawn by adding 128 to Flag 29, this is a
temporary redraw, which can be used for when the player requests
the picture in Normal mode. i.e. PLUS 29 128 DESC would be the
required entry in Response.

PROllPT a;rsno.

Causes System message ayano. to be displayed whenever PAW obtains
a command line from the player. A value of 0 (default) will cause
PAW to select ons of SM2,SM3,SM4 or SM5 in the ratio 30:30:30:10
respectively. Note this does not affect the prompts displayed by ·
the END or QUIT condact a.

TIKB duration option

Allows input · to be set to 'time out' after a specific duration in
1 .28 second intervals, i.e. th• Process 2 table will be called
again if the player types nothing for the specified per~od.
'option' allows this to also occur on ANYKEY and the "More ••• "
prompt. In order to calculate the number to use for the option
just add the numbers shown next to each item to achieve the
required combination;

1 - While waiting for first character of Input only.
2 - While waiting for the key on the "More ••. " prompt•
4 - While waiting for the key on the ANYKEY act ion. ·

e.g. TIME 5 6 (option = 2+4) will allow 6.4 seconds of inactivity
on behalf of the player on input, ANYKEY or "More ••• " and between
each keypress. Whereas TIME 5 3 (option = 1 +2) allows it only on
the first character of input and on "More ••• ".

TIME O O will atop timeouts (default).

IBPOT option

This action allows the way the input routine operates to be
changed by selecting options. Some combinations are of no use but
are a by product of the way PAW works. To calculate the number to
use for the option just add the numbers shown next to each item
to achieve the required combination;

24

1 - will cause the input prompt, marker and cursor to be
displayed in the lower screen ar&a. This is the
preferred input mode for time out games, where timeout

The CondActs

can occur between keypresaes, as the input line is not
left partially printed if a timeout occurs part way
through.

2 - will cause PAW to print a copy of the input line when
ENTER is pressed, this is for use mainly with item 1 to
allow the final input line to be di splayed on screen so
that the player knows what has been typed.

4 - This will cause the reprint of any text input so far,
when input is resumed after a timeout. Again mainly for
use with item 1 when timeout can occur between
keypresses.

A default of INPUT 0 (no options) is assumed by PAW.

PROTECT

Used in conjunction with MODE 4 mainly. This action sets the
current print line as the top of the scrolling text window. It
should only be used within Process 1 (it will be allowed
elsewhere but has no meaning) after any text you want protected
has been printed. This is usually before/after a LISTOBJ act:j.on
as objects are usually the last thing printed.

It also has uses in other modes to allow say a picture and part
of the location description to be protected, with the remainder
of the text scrolling underneath!

Three actions to deal with the printing of flag values on the
screen;

PRIBT :tlagno.

The decimal contents of Flag flagno. are displayed in the current
temporary colours without leading or trailing spaces. This is a
very useful action. Say flag 100 contained the number of coins
carried by the player, then an entry in a process table of MES 10
("You have ") PRINT 100 MESSAGE 11 (" gold coins."), could be
used to display this to the player.

TURIS

SM17-20 "You have taken x turn(s)." is printed where x is Flag 31
+ 256 *Flag 32.

SC ORB

SM21-22 "You have scored x%" .is printed where x is Flag 30.

25

The CondActe

Thirteen(!) actions to deal with screen output and control;

CLS

Clears the screen to current background colours. Also clears the
current print position and SAVEAT position to 0,0.

JIKVLID

Prints spaces to the end of the current line and then resets the
colours & character set to the current background colours.

llES aesno.

Prints Message mesno. in the current temporary colours.

The CondActs

The next three screen control actions allow a section of text to
be printed on the screen away from the current print position.
This could be used to provide an information line on top of the
current picture, or a sect ion of text in a small window on the
picture etc etc. TEWK uses this facility to provide its drop down
window inventory in response to the STATUS command.

SAYEAT

Flushes the current wordwrap buffer thus restoring the current
background colours. Then saves the current print position,
overwriting any previously saved position.

BACl:A'r

Flushes the current wordwrap buffer thus restoring the current
llESSAGB aesno. background colours. Then restores the print position last saved

by SAVEAT.
Prints Message mesno. in the current temporary colours, then
carries out a NEWLINE action.

SYSllJISS sysno.

Prints System Message sysno. in the current temporary colours.

PICTURJI locno.

Draws graphics picture locno. regardless of whether it is a
subroutine or main picture. Note: the screen and colours are not
cleared first as with describe location. This could be used to
add (or take away if you use PRINTAT and MES to remove with
spaces) parts of a picture. The sample game TEWK uses this
feature several times. Note that ~ picture will be drawn from ·the
last point used by the previous picture drawn!

PAPJl!l n

Where n ranges from 0 to 9. Changes background paper colour.

ID: n

Where n ranges from 0 to 9. Changes background ink colour.

BORDJl!l n

Where n range from O to 7. Changes screen border colour.

CHARSJIT value

Changes main character set to value given if valid, otherwise no
action is taken.

26

PRillTAT lineno. colno.

The current print position is changed to the specified value.
Note this will also flush the wordwrap buffer and restore the
temporary colours to the background colours.

Three actions dealing with listing objects on the screen. The
first two are controlled by/set the value of flag 53 as described
in the chapter on objects.

LISTOBJ

If any objects are present then SM1 ("I can also see: ") is
printed, followed by a list of all objects present at the current
location. If there are no objects then nothing (as in null, not
the word!) is printed.

LISTAT locno+

If any objects are present then they are listed. Otherwise SM53
("nothing.") is printed - note that you will usually have to
precede this action with a message along the lines of "In the bag
is;" etc. It would be possible to create an alternative to the
INVEN action described next by using 253 & 254 as parameters for
LISTAT.

IllYJlll

This action is not affected by the continuous object list flag
for compatability with older writing systems.

SM9 ("I have with me:-") is printed. If no objects are carried
or worn SM11 ("Nothing at all.") is printed. Otherwise the object

27

The CondActs

text for each object that is carried or worn is printed on a
separate line. If an object is worn its object text is followed
by SM10 (" (worn)"), right aligned on the next line if it will
not fit on the same one. Action DONE is then performed.

The two actions which completely exit Response/Process execution;

DBSC

Will cancel any DOALL loop, any sub-process calls and make a jump
to describe the current location.

EID

SM1 3 ("Would you like to play again?") is printed and the input
routine called. Any DOALL loop and sub-process calls are
cancelled. If the reply does not start with the first character
of SM31 a jump is made to Initialise. Otherwise a jump is made
to the Editor (if it is present) or to the BASIC NEW command.

Three exit table actions;

DOH

This action jumps to the end of the pro c ess table and flags to
PAW that an action has been carried out. i.e. no more condacts or
entries are considered. A return will thus be made to the
previous calli~g process table, or to the start point of any
active DO ALL loop.

IO'fDOH

This action jumps to the end of the process table and flags to
PAW that no act i on has been carried out. i.e. no more condacts or
entries are considered. A return will thus be made to the
previous calli ng process table or to the start point of any
active DOALL loop. This will cause PAW to print one of the "I
can't" messages if needed. i.e. if no other action is carried out
and no entry is present in connections for the current Verb.

01:

SM1 5 ("OK") is printed and action DONE is performed.

28

The CondActs

Four actions to allow the current state of the game to be saved
and restored;

SATB

The standard start tape message for the spectrum is printed at
the. b?tto~ of the screen. When a key is pressed the g ame
position is saved to tape, then action DESC is performed. If
BREAK is pressed during the save a jump is made to Initialise.
The save includes all information required to allow the
restoration of the game to the exact same state as it was before
the save, including the values of flags, positions of objects
picture drawn flags etc. '

LOAD

Loa~s data ~which should be a game position) from tape, then
action DESC is performed. If BREAK is pressed during the load or
a tape error is detected a jump is made to Initialise. If data
is loaded which is not a game position, a tape error will
normally be detected.

R.AJISATB

In a similar way to SAVE this action saves all the information
relevant to the game in progress not onto tape but into a memory
buffer. This buffer is of course volatile and will be destroyed
when the machine is turned off which should be made clear to the
player. In addi tion it will also be cleared when you return to
the editor section of PAW - in case you then change the design of
the game! ·

RJJILOAD f'lagno.

This action is the counterpart of RAMSAVE and allow.a the saved
buffer to be restored. The parameter specifies the last flag to
be reloaded which can be used to preserve values over a restore,
for example an entry of:

RAMLO COPYFF
RAMLOAD
COPYFF
DESC

30
254
255

255

30

could be used to maintain the current score, so that the player
can not use RAMSAVE/LOAD as an easy option for achieving 100%!

Rote: unlike SAVE and LOAD the RAM actions allow the next Condact
to be carried out. They should normally always be followed by a
DESC in order that the game . state is restored to an identical
position.

The actions could be used to implement an OOPS command that is

29

The CondActe

common on other systems to take back the previous move; by
creating an entry in Process 2 (or Response) which does an
automatic RAMSAVE every time the player enters a move.

Two actions to allow the game to be paused for a time or until a
key is pressed;

Ailll:BT

SM1 6 ("Press any key to continue") is printed at the bottom of
the screen and the keyboard is scanned until a key is pressed or
until the timeout duration has elapsed if enabled .

PAUSE value

Pauses for value / 50 sees. However, if value is zero then the
pause is for 256/50 sees. Note that the keyboard is disabled for
the duration of the pause.

Two actions to deal with control of the parser;

PARSE

This action was designed to deal with speech to PSis. Any string
(i.e. a further phrase enclosed in quotes[""]) that was present
in the players current phrase is converted into a LS -
overwriting the existing LS formed originally for that phrase . If
no phrase is present, or it is invalid, then PAW will look at the
next condact . Otherwise the next entry is considered with the
new LS of the speech made to the PSI. Because it overwrites the
current LS it must be used only in a sub - response table, the
table will have the form of:

* * PARSE ;Always do this entry
MESSAGE x ; "They don't understand "
DONE

word word CondAct list ;Any phrases PSI underst ands

MESSAGE x ;as above or different message

there will be two or more calling entries which will be similar
to:

SAY name SAME pos 38 ;Are they here?
PROCESS y ;Decode speech . •
DONE ;LS destroyed so always DONE.

SAY name MESSAGE z ; "They are not here!"
DONE

30

The CondAc ts

llBVTEXT

Forces the loss of any remaining phrases on the current input
line. You would use this to prevent the playe r continuing without
a fresh input should something go badly for his situation. e.g .
the GET action carries out a NEWTEXT if it fails to get the
required ob ject for any reason, to prevent disaster with a
sentence such a s:

GET SWORD AND KILL ORC WI TH IT

as attacking the ORC without the sword may be dangerous!

One action to deal with sound

BBBP duration p itch

Both duration and ·pitch may range from 0 to 255. Duration is in
units of one hundredth of a second. The value of pitch is
obtained by tak i ng the va l ue you would use in a BASIC BEEP
command , adding 60 then dividing by 2.

Several actions which are more difficult to c l assify;

PROCESS procno.

This powerful action transfers the at t ention of PAW to the
specified Process table number. This sub- process will exhibit the
same features as the table which called it. i.e. if called by
Response, PAW will match the Verb and Noun1 of the LS against the
word entries as with the main table . Note that it is a true
subroutine call and any exit from the new table (e.g. DONE, OK
etc) will return control to the condact which follows the calling
PR OCESS action. A sub-process can ca l l (nest) further process'
to a depth of 10 at which point a run time error of "Limit
reached" wil l be gene rated .

DOALL loc no+

An other powerfu l ac:tion which allows the implementation of an
' ALL ' type command.

1 - An attempt is made to find an object at Location locno.
If this is unsuccessful the DO ALL is cancelled and
action DONE is performed.

2 - The o b ject number is converted into the LS Noun 1 (and
Adjective1 if p resep.t) by re f e r ence to the object word
tab l e . If Noun(Adjective)1 matches Noun(Adjective)2 the n
a ret urn is made to step 1. This implement s the "Verb
ALL EXCEPT ob ject" f acility of t he pa rser.

.,,

The Cond.lcts

3 - The next condact and/or entry in the table is then
considered. This effectively converts a phrase of "Verb
All" into "Verb object" which is then processed by the
table as if the player had typed it in.

4 - When an attempt is made to exit the current table, if
the DOALL is still active (i.e. has not been canceled by
an action) then the attention of PAW is returned to the
DOALL as from step 1; with the object search continuing
from the next highest object number to that just
considered.

The main ramification of the search method through the object
word table is; objects which have the Same Noun(Adjective)
description (where the game works out which object is refered to
by its presence) must be checked for in ascending order of object
number, or one of them may be missed.

Use of DOALL to implement .things like OPEN ALL must account for
the fact that doors are often flags only and would have to be
made into objects if they were to be included in a DOALL.

RESET locno+

This action is designed to allow the implementation of multi-part
games where the objects which are not carried forward are :i:eset
to their starting location.

All objects which can be carried between parts must be present
(with the sam~ description) in each part. Any others may be
reused within each part at will. ·

Any objects which are present at the current location are moved
to Location locno. And the current location is set to be locno.
Any other objects are set to the locations given by the Initially
At table. No effect on flags. Action DESC is performed when
complete.

The suggested method of its use is given in the chapter on multi
part games.

EXTEB.I value

Calls external routine with parameter value. There is a special
chapter dealing with this subject.

32

The Database

Detailed Description of the Database

The database consists of a number of inter-related tables and
also contains an area of miscellaneous information e.g. values of
background colours, number of objects conveyable, character sets
etc. On a 128K machine the main data areas and pointers are
present for each RAM page. Effectively each page is an
independent database. The tables present (in the order they
appear in memory) are:-

UDG's

This table, which is 152 bytes long, contains the User Defined
Graphics. The UDG's can be changed with the character editor
described later. Codes 144-162.

Shades

This table is 128 bytes long and contains the graphics Shade
patterns. These can be changed with the ~haracter editor as
described later. Codes 0-15.

The above two ta.bles are saved/loaded as a pair. and are termed
character set Q. (although the ROM set provides codes 32-127). ·

lliscellaneous

Several small tables and values, 50 bytes in total.

Character Sets

This table is empty until a character set is inserted using the
character editor. 768 bytes are used then by each character set
inserted.

Dictionaq

This table contains only one byte until the compressor is used
for the first time on the database. After that it contains 222
bytes of expansion diet ionary to allow the tokens 165-255 to be
converted into the letter groupings they represent.

The Process tables

These tables form the heart of the database providing the main
game control.

The Response Table

Each entry contains the word . values of the Verb and Noun for the
LS the entry is to deal with followed by any number of condacts.
When the adventure is played, if there is an entry in the table
which matches the Verb and Noun1 of the LS entered then the

The Database

condacts are performed. The condacts that may be present and the
effect that they have is fully specified in the description of
the Interpreter. The order of entries in the table is in
ascending order of the Verb value. Entries which have the same
Verb value are held in ascending order of the Noun value.
Entries with the same Verb and Noun value are held in the order
they were inserted into the database. The word ''.__" has a word of
value 255 while the word "*" has a word value of 1. An example of
the order of the table, with word value shown in brackets, is as
follows:-

* (1) * (1)
LOOK (30) UP (10)
LOOK (30) DOWN (11)
LOOK (30) (255)
GET (100) 1' (1)
GET (100) KEY (16)
GET (100) LAMP (26)
GET (100) LAMP (26)

(255) (255)

The othe r process tables are held in the same format, but the
words are ignored by PAW when they are scanned, unless the
process is called from within Response using a PROCESS action.

Process

Is s c anned by PAW after a location is described, to allow any
additional information which forms a part of the location
description to ·be displayed.

Process 2

Is scanned by PAW every time frame. That is after every phrase
extracted from the player's input, or after every timeout on
input.

Any further sub-processes follow the initial three when begun on
the Process option of the main menu.

The Verb and Noun used for each entry in Process 1 and 2 (and any
sub-processes called from them) have no meaning as they are
ignored but can be used to provide a note as to the function of
that entry within the table.

Every process table has an overhead of seven bytes (21 are used
in a null database as three - including Response - are already
present.). Each entry subsequently uses 5 bytes and each condact
uses 1 , 2 or 3 bytes depending on the number of parameters.

Bote: If a word is deleted from the vocabulary, and no synonyms
of it are present, then all entries in the · process tables
(including Response) which contain that word, are also deleted.

34

The Database

The Object Text table

This table, which has an entry for each object, contains the text
which is printed when an object is described. Each entry uses 3
bytes plus the length of the text. An object is anything in the
adventure which may be manipulated and objects are numbered from
O upwards. Object 0 is assumed by the In te rprete r to be a sou re e
of light. Whenever a new object text is inserted an entry of
not-created. is made for that object in the Initially at table, an
entry of" " in object word and a weight of 1 unit without a
containerorwear/remove attribute is inserted into the object
weight table

The Location Text table

This table, which has an entry for each location, contains the
text which is printed when a location is described. Each entry
uses 3 bytes plus the length of the text. The entries are
numbered from 0 upwards and location 0 is the location at which
the adventure starts. Whenever a new location is inserted a null
entry for that location is also made in the connections table.

The Xessage Text table

This table contains the text of any messages which are needed for
the adventure. The messages are numbered from 0 upwards and each
one uses 3 bytes plus the length of the text.

The S7atea Keaaagea

This table contains the messages used by the Interpreter. Each
entry uses 3 bytes plus the length of the text. The desc ription
of the Interpreter shows when these messages are used. In
addition extra messages can be inserted by the writer to provide
messages for the game if so required.

The Connections table

This table has an entry for each location and each entry may
either be empty (null) or contain a number of 'movement pairs'.
A movement pair consists of a word value of a Verb (or conversion
Noun) from the vocabulary followed by a location number. This
means that any Verb (or conversion Noun) with that word value
causes movement to that location. A typical entry could be SOUTH
6 EAST 7 LEAVE 6 NORTH 5 which means that SOUTH or LEAVE or their
synonyms cause movement to location 6, EAST or it's synonyms to
location 7 and NORTH or it's synonyms to location 5. Each entry
uses 3 bytes plus 2 bytes for each movement pair.

Note 1 • The movement pairs contain the word value not the actual
word. If a word value · is deleted from the vocabulary then
all movement pairs which contain that word value are also
deleted.

35

'l'he Database

Note 2. When the adventure is being played it is only the LS Verb
which will c ause movement.

Note 3. If a movement is performed by an entry in the Response
table using the GOTO action, then it may not be needed in
the Connections table, unless that entry is required for
a PSI who can move unconditionaly.

'l'he Yocabulaey

Ea c h entry in the table uses 7 bytes and contains a word (or the
first five characters, if the word is longer than five
characters) a word type from 0 to 6 and a word value in the range
2-254· The type s are:

0 - Verb
1 - Adverb
2 - Noun
3 - Adjective
4 - Preposition
5 - Conjugation
6 - Pronoun

Words with the same word value are called synonyms. The entries
are held in ascending order of word value and within each word
value, entries with more spaces come first e.g.

u
UP
CLIMB
ASCEN(D)

where entries with the same word value also have the same number
of spaces the entry inserted first comes earlier e.g. CLIMB ·was
inserted before ASCEN(D).

Note 1. Whenever the editor has to convert from a word value to a
word it takes the first word with that value of the
required type.

Note 2. Ve rbe and C onve re ion Nouns with values lee e than 1 4
should be reserved for movement words.

'l'he Object Initially At table

This table has a 1 byte entry for each object, which specifies
the location at which the object is situated at the beginning of
the adventure. An object can also start the adventure being
worn, carried or not-created.

I
J

l
I

'l'he Database

'l'he Object Vord table

This table has a 2 byte entry for eac h object, which holds t he
Noun and Adjective word values associa.ted with that object.

'l'he Object Weight and Attribute table

Thie table has a one byte entry for each object. Bit 7 is used to
show if the object can be Worn/Removed (i.e. the WR option). Bit
6 is used to show that the object is a container (the C option)
and Bits 0 to 5 define the weight of the object (giving a range
from 0 -63).

The graphics area of the database grows DOWN fr om the t o p o f
memory:

'l'he Location Flags

This table has a 1 byte entry for eac h picture ; Bit 7 spe ci fies
if the picture can be drawn when that location i s reached (i.e.
if the location is n ot a 'subroutine'), bits 0 to 5 describe the
start PAPER & INK for the picture while bit 6 is unused.

'l'he Picture Table

Each entry in the table uses 3 bytes plus the length of the
Drawstring. There are always the same number of entries as
locations in the adventure. The Drawstring is encoded as a
variety of various length commands which minimise the amount of
memory needed to produce the drawing.

'l'he pointers

The main database pointers.

The Editor

Detailed Description of the Editor

Each menu option is described in the order it appears;

Vocabulary

Insert I word Bo. Type

Bo. is in the range 2-254 and Type is in the range 0-6.

If word i s not already present in the vocabulary it is inserted
with a word value of Bo. and a type of Type.

Delete D word

If word is present in the vocabulary, it, its type and its word
value are deleted. If synonyms of the word deleted are present
in the vocabulary no further action is taken. However, if no
synonyms are present, then:-

a) all entries in the process tables which use this word
value (in respect of type also) are also deleted.

b) if the word value :i,s less than 14 then all movements in
the connection table which use this word value are also
deleted.

c) All entries in the Object Word Table which use this word
value (in respect of type also) are set to null.

Show synonyms S word

If word is present in the vocabulary, it and all other words with
the same word value and type are displayed. (Note that for
Conversion Nouns - those less than 20 - any synonymous Verba will
also be shown and vice -versa).

Print P (Type) or L (Type)

Printing is either to the screen using P or to the printer using
L. If Type is specified only words of that type are listed.

Note 1. Be careful using delete as it can also affect the
process, connections and object word tables. It can also
take a long time (minutes) if the database is large.

Note 2. Verbs and Nouns with a word value of less than 14 are
assumed to be movement words by the Interpreter and cause
SM7 ("I can't go in that direction.") to be printed
instead of SM8 ("I can't do that").

Note 3. Word values from 2 to 254 can be used for each word type.

38

The words will not by synonymous because they are of a
different type. This allows over 250 words of each type -
even without synonyms - to exist in the vocabulary!

The Editor

Location Text

Insert I

If the maximum number of locations has been inserted then the
error "Limit Reached" is generated. Otherwise the next available
location number on the highest used RAM page (shown on the Free
Memory option) is al located and a null entry is made for it in
the graphic location flags, the picture table, connections table
and the location text table. Processing then continues with an
automatic call to the amend routine to allow the writer to amend
the null text entry already set up in the location text table.

Begin new Page B

If all RAM pages have been used or the maximum number of
locations have been inserted the error "Limit Reached" is
generated. Otherwise the next available RAM page has a null
database created on it and the next available location number is
assigned. Processing then continues with an automatic call to the
amend routine to allow the writer to amend the null text entry in
the new page.

Amend A locno.

The existing text for Location locno. is copied to the input
buffer and displayed at the bottom of the screen for amending.
When ENTER is pressed the existing entry is replaced with the
contents of the input buffer.

Print P (locno.) or L (locno.)

Printing is either to the screen using P or to the printer using
L. Printing starts with the text for Location locno. or at the
beginning if locno. is not specified.

Note 1. The start of an adventure is always at Location O.

Note 2. There is a limit of 252 locations.

Note 3. You will be unable to begin a new page if all available
location numbers have been previously allocated.

Connections

Amend A locno.

The existing entry for ·Location locno. is decoded, copied to the
input buffer and displayed at the bottom of the screen for
amending. When ENTER is pressed the input buffer is vetted to be
empty or to contain word locno. repeated any number of times.
word must be a Verb (or Conversion Noun) which is present in the
vocabulary and locno. must be present in the location text table.

39

The Editor

If there are no syntax errors the existing entry is replaced with
an encoded copy of the input buffer (i.e. words changed to word
values).

Print P (locno.) or L locno.

Printing is either to the screen using P or to the printer using
L. Printing starts with the entry for Location locno. or at the
beginning if locno. is not specified.

Note 1. A location text must be present for a Location before
donnections can be present.

Note 2. Any Verbs (or conversion Nouns) in the Vocabulary may be
used in the Connections table not only movement words.

Note 3. When an entry is decoded (for Amend or Print) the word
value is changed into the first Verb (or conversion Noun)
in the Vocabulary with that word value.

Graphics

Amend A picno.

The graphic database is expanded to provide a gap at the end of
the required picture. The main loop of the Graphic Editor
described below is then entered. When return is pressed any gap
still remaining is removed. n.b. unlike editing text the
database itself is changed, thus you cannot abandon an edit with
CAPS SHIFT & 6 · (it does a NEXT command for a start!).

Size S

The number of bytes between the start of the drawstring and· the
start of the next is calculated and printed on the screen.

Print, Copy and Dump. P picno., C picno. and D picno.

picno. must be specified.

IF D was selected a filename is requested.

The required picture is drawn on the screen.

If C was selected the printer COPY is called (see printer section
for details).

If D was selected a SCREEN$ file is saved with the filename
given (i.e. a code block of the screen 16384,6912), this file
could then be used as a loading screen for the game or edited
using another art package.

Note 1. You cannot reload a SCREEN$ file into the database.

40

The Editor

Default Colours

Amend A picno. (Paper Ink)

A flag is set to indicate that picture picno. is a subroutine
unless PAPER and INK values are specified, in which case they are
stored as the default colours for the picture. All locations in
the adventure which do not require ~ picture should be Amended as
asubroutine.

Print P or L

Printing is either to the screen using P or to the printer using
L. If the location is not a subroutine the colours are printed.

l!leeeagee

Insert I

The next available message number is allocated and a null entry
is made for it in· the message text table on the highest used RAM
page (shown on the Free Memory option). An automatic call to the
amend routine is then made to allow the user to amend the null
entry.

Begin new Page B

The next available message number is allocated to the null
message on the next RAM page if it has been initialised on the
location text menu. Otherwise theerror "Page not initialised" is
generated. Processing continues with an automatic call to the
amend routine to allow the user to amend the null entry.

Amend A aeeno.

The existing text for message 111.eeno. is copied to the input
buffer and displayed at the b 0ttom of the screen for am~nding. _
When ENTER is pressed the existing text is replaced with the
contents of the input buffer.

Print P (aeeno.) or L (111.esno.)

Printing is either to the screen using P or to the printer using
L. Printing starts with the text for message aeeno. or at the
beginning if aeeno. is not specified.

Note 1. There is a limit of 255 messages, but as system messages
can be inserted and printed they can also be used in the
game providing 510 messages (although some are used)!

Note 2. You cannot begin a new page of messages without first
initialising the page by inserting a location on it.

41

The '!ditor

Syatea lleaaages

Insert

The next available system message number is allocated and a null
entry made for it in the system message table on RAM~ O. An
automatic call is then made to the amend routineto allow the
writer to amend the null entry.

Amend A aesno.

~he axis.ting text for system message aesno. is copied to the
input buffer and displayed at the bottom of the screen for
amending. When ENTER is pressed, the existing text is replaced
with the contents of the input buffer.

Print P (aesno.) or L (aesno.)

Printing is either to the screen using P or to the printer using
L.· Printing starts with the text for system message aesno. or at
the ·beginning if aesno. is not specified.

Note 1. The description of the Interpreter shows where these
~essages are used. They may be changed to use "You"
instead of "I" if you prefer, i.e. "You're not wearing
it", or even into different languages, but be careful to
maintain their meaning.

Note 2. Messages 30 and 31 are not really messages but contain
the positive and negative replies used in the QUIT and
END condacts. Therefore be very careful changing these
as action END is the main way back to the Editor from the
Interpreter. You shouldn't make them more than one
character in length, or the comprepsor may tokenise them!

Note 3. SM10 (" (worn)") has its length calculated by INVEN. This
means it should not include any control codes, and must
be re-entered if the compressor is used to remove any
tokens. In addition, for the calculation of screen
position to work, it should start with a space.

Note 4. SM34 (the cursor) may contain any number of control
characters, but, must not move the print position more
than one character space or input will become confused.
Any input characters will be in the temporary colours in
force at the end of this message.

Note 5. A further 202 messages may be inserted for your own use,
but as there is no equivalent of the MESSAGE action a
NEWLINE act ion must be carried out explicitly if needed.

Note 6. CPM PAW uses messages 54 to 60. This should be borne in
mind if you intend transferring a game to another system.

42

The Editor

Object Text

Insert I

The next available object number is allocated and a null entry is
made for it in the object text table. An entry of not-created is
made for it in the object initially at table, an entry of"
in the object word table and a weight of 1 unit without-any
attributes in the object weight table. Processing then continues
with an automatic call to the amend routine to allow the user to
amend the null text entry already set up in the object text
table.

Amend A objno.

The existing text for Object objno. is copied to the input buffer
and displayed at the bottom of the screen for amending. When
ENTER is pressed the existing text is replaced with the contents
of the input buffer.

Print P (objno.) or L (objno.)

Printing is either to the screen using P or to the printer using
L. Printing starts with the text for . Object objno. or at the
beginning if objno. is not specified.

Note 1. Object 0 is considered by the Interpreter to be a source
of light.

Note 2. There is a limit of 255 objects.

Object Initially At table

Specifies the location at which an object is situated at the
start of the adventure.

Amend A objno. locno.

The existing entry for Object objJ!.O· is replaced with locno.
which must either be present in the location text table or be one
of the special locnos. 252 not-created, 253 worn or 254 carried.

Print P or L

Printing is to the screen using P or to the printer using L.

Note 1. An object text must be present for an object before a
start location can be present.

43

The Editor

The Object Word table

Amend A objno. Bonn Adjective

The existing entry for Object objno. is replaced with the values
of Bonn and Adjective which must be present in the Vocabulary (or
be an underline to set the entry to null).

Print P or L

Printing _is to the screen using P or to the printer using L.

The Object Weight table

Amend A objno. Weight Option

The existing entry for Object objno, is replaced with the weight
and option specified. The weight may range from 0 to 63. The
option specifies ·the object attributes and may take the values:

0 - No attributes
1 The object is a container.
2 The object is wearable/removeable
3 The object is a wearable/removeable container!

Print P or L

Printing is to the screen using Porto the printer using L. The
weight can be followed by "C" to indicate a container and/or "WR"
to indicate wearable/removeable.

Note 1. You may only select the container attribute for an
object, if a location with the same number exists. This
is because PAW treats this location as the 'inside'! ·

Note 2. A container of weight 0 will not have the weight of its
contents added to any calculation. This could be used to
create a magic sack or a levitation transporter etc.

The Process (including Response) tables

Two options are available only on the main Process sub-menu:

Begin new Table B

The next available process number is allocated and a null table
is created. Processing continues with a call to the Select table
option with the new table number.

Select table S Bo.

The specified table is. made the currently selected table and the
sub-menu is redisplayed.

44

The Editor

The other options are available on both the Response and Process
sub-menus:

Amend A Verb Bonn (n)

If an entry nu~ber n is not specified the first entry in the
table of Yerb and Bonn is copied to the input buffer and
displayed at the bottom of the screen for amending. Otherwise the
entry number specified is used (ranging from 0 to the number of
entries inserted - 1) . When ENTER is pressed the input buffer is
vetted to be empty, in which case the existing entry is deleted,
or to contain any number of valid condacts. If there are no
syntax errors the existing entry is replaced with the contents of
the input buffer. Any following entries in the table with the
same word values (i.e . Yerb and Bonn) are then displayed in turn
for amending in the same way.

Insert I Yerb Bonn (n)

Verb and Bonn must be underline characters, asterisk characters
or words which are in the vocabulary. The word values of Yerb
and Bonn (underline has a word value of 255, asterisk a word
value of 1) are used to find the correct place in the table for
the new entry to be created. If any e .ntries already exist for
Yerb Boun and no entry number n is specified then the new entry
will be created after the existing entries. Otherwise the new
entry will be created before the entry number specified. A null
entry is created at the appropriate place and an automatic call
made to the amend routine to allow the user to amend the null
entry. ·

The condacts that may be used are shown in the description of the
Interpreter and in the summary at the end of this guide.

Print P (Verb (Bonn)) or L (Verb (Boun))

Printing is either to the screen using P or to the printer using
L. Printing starts at the first entry with word values of Verb
Boun If Verb or Boun are not specified then a word value of 0 is
assumed. Thus P or L by itself starts at the beginning of the
table.

Note 1. To delete an entry; amend it, so that no conditions or
actions remain.

Note 2. There is a limit of 255 process tables. Calls can be
nested to a maximum of 10, after which an error occurs.

Bxtra Options

Selects the other display for the main menu.

45

The Editor

Teet Ad-ntnture

"Do you require diagnostics?" is printed and any reply that
doesn't start with "y" is assumed to be negative. A jump is then
made to the Interpreter. If diagnostics were requested then
w~enever th~ Interpreters' input routine is used, pressing ENTER
w~thout typing anything will result in the value of a flag being
displayed in the lower screen along with an input prompt. You can
at this point type in the number of another flag to display that
f~ag's value or an "=" followed by a number to set the flag
displayed_ to that value. Pressing ENTER returns to the input.

The main way back to the Editor from the Interpreter is by
performing the action END in a process table.

l'ree JlemorT

The number of unused bytes on each page are printed. Pages which
have not yet been: initialised are shown as "unused" and if Page 7
curren~ly contains the overlays this fact is also displayed.
Following the unused memory list will be lists of the last
message and last location used on each page to allow you to
monitor them.

Note that on a 48K spectrum only page O will be displayed - as
that's all there is!

Background Colours

The BORDER, PAPER & INK colours may be set to any valid values
INK 9 (i.e. contrast) is recommended but please note that INK g
behaves differently in the bottom part of the screen.

In addition if any character sets have been inserted into the
database you will be able to select them as the primary set.

Characters

Characters consist of an 8 by 8 pixel grid and define the way
letters, numbers, punctuation, UDG's and shades look on the
screen. Initially only one character set is present, the one that
is contained within the spectrum RO~. This set is also considered
to contain the 16 shade patterns (codes O to 15) and 19 UDGs
(codes 144 to 162) and is termed Set O.

Insert I

If the maximum number of character sets has not been reached the
next available set number is allocated. A 768 byte entry is
inserted in the characters table and a copy of the designs for
the 96 characters (codes 32 to 127) in the ROM are copied into
the entry. Otherwise an error of "Limit Reached" .is generated.

46

The Editor

Amend A set character

The character specified from the set specified is presented on
screen for possible amending. Only characters O to 15 and 144 to
162 may be amended from set 0, whereas only characters 32 to 127
may be amended from any other set.

The editor provides three areas of screen:-

1 / The Grid

2/

3/

The Test
Patterns

Status
Area

The bit patterns of a particular character are
shown on a much enlarged (x8) grid of yellow and
white squares, any set bits being shown by a black
square. Also present on the grid is a flashin g
red square showing the current cursor position.

To the right of the Grid are two test patterns of
the current character as if it was a shade in both
normal & Inverted forms. This does not change as
you change the Grid but it can be updated by
pressing key R for Redraw.

This shows the current character, set and a
summary of the commands available.

In order to modify the pattern use the cursor keys (CAPS SHIFT 5
to 8 on a 48K spectrum) to move the flashing cursor. The state
of the bit under the cursor can be changed at any time using the
SPACE key. ENTER will store the amended character back in the
database. Q will abandon the edit leaving the character
unchanged.

Print and Copy sets P or C

The currently defined UDG's, Shades and inserted character sets
are printed on the screen.

If C was selected then the printer COPY is called - see printer
section for details.

Load and Save sets L eat or S set

If eat has been inserted a prompt is printed for a filename, the
tenth letter is converted to a (c) sign and the required set
loaded or saved as specified. Saving/Loading set 0 acts on the
286 bytes of UDG's and Shades.

Note 1. You cannot amend a character from a set or load a set
until it has been inserted.

Note 2. The files for sets other than 0 are a standard 768 byte
spectrum character set. They could thus be loaded
into/defined with, a different designer as long as the
filename ends in position 10 with a (c) symbol.

47

The Editor

Co•press text

"Compress database (Y/N)?" is displayed and any reply which
doesn't start with "Y" is assumed to be negative and causes a
return to the main me.nu. Otherwise a 222 byte dictionary is
inserted into the database. The database is then scanned for
occurrences of each of 90 common letter groupings which are
replaced with a single byte token in the range 165 to 255. The on
screen counter displays the number of tokens remaining. This
method of compression reduces any text in the game by
approximately 40% This could on a text only 128K game provide an
equivalent of 160K of memory for the game!

Note 1. When editing text after compression the cursor will skip
2, .3, 4 or 5 characters due to the tokenisation.
Corrections should be typed in full as they will be re
compressed the next time the compressor is used.

Save Database

The database area is saved to tape as a sequence of files, two
per page. The tenth position of the filename is set by PAW as the
letters A to L in sequence for each file.

Verify Database

The files for a database previously saved to tape are checked for
differences against the database currently in memory.

Load Database

The files for a database previously saved to tape are loaded
overwriting any database currently in memory.

~ Important

If BREAK is pressed or a tape error is detected during a load
then the database held in memory will be corrupt and should not
be used as it may corrupt the Editor and Interpreter. Under
these circumstances the only Editor option which may be used
safely is Load Database and this should be used until a database
is loaded successfully.

Save Adventure

The Interpreter and database are saved to tape as a sequence of
files using the filename specified. They are saved in such a way
that the Adventure will auto run when loaded from BASIC using
LOAD"" - without the PAW Editor being present.

Verify Adventure

Verifies that an Adventure has been saved correct.ly.

48

The Graphic Editor

Det.ailed description of the Graphic Editor

This section of PAW allows a variety of operations to be carried
out on the drawstring for a location. When editing, the string
is laid out in memory as follows;

END The end of string marker

NEXT Any commands still undrawn

SPARE Available memory

END Temporary end marker

DRAW The main draw string

A rubber banded line is used for drawing; the base point of the
line (Known as 'point') shows the last point plotted, moved to
etc, the rubber banded end of the line shows the next position of
point or the start point for a fill/shade etc.

The Editor provides four groups of commands. Any which insert a
command into the drawstring require the SYMBOL SHIFT key to be
held down;

1) Dra1fing Co .. ands

ABS MOVE A

PLOT P

REL MOVE R

LINE L

Moves point to the x,y position of end of the line
setting only the attributes. This is coded as a
PLOT with Inverse and Over set on.

Sets the pixel at the end of the line according to
Inverse and Over, then moves point to that
position.

Moves point to the end of the line without
affecting the screen. This is coded as a relative
offset from the old point.

Draws (or fixes) a straight line from point to the
end of line according to Inverse and Over, then
moves point to end of the line. The line is coded
as a relative offset from the old point.

49

The Graph i c Editor

FILL F The area from the end of line (relative) is filled
using solid pixels. Fill works by passing a
pattern to the SHADE routine so the notes on SHADE
apply also

All the above use 3 bytes in the database.

SHADE s The area from the end of line (relative) is shaded
with one of a large number of patterns. The
database contains 16 patterns (0 - 15), which can be
changed using the Character Edito~

The pattern used for shading is determined as
follows: -
a) You are asked for 2 pattern numbers in the
range 0 to 15. If you only want the one pattern
then specify the same number for both patterns.
b) The 2 patterns specified are OR'd together
Le . they are placed on top of each other.
c) If INVERSE was 'on' the resultant pattern is
inverted, i.e. SET/RESET pixels are swapped.

Note 1 • The shade first works in a downward direction and then in
an upward direction. For speed, when it is going down it
doesn't look up and vice versa. Any area s the shade
misses must be shaded separately, although careful choice
of the start position for the shade will minimise this.

Note 2. If the area to be shaded is too complex then the shade
will b~ abandoned. It has to do this to enable it to
detect when it comes across an area which has already
been shaded . Thus an area can only be shaded once as an
already shaded area will be too complex to shade again.
You should not shade an area and then try to fill in the
background with a fill command, use the Inverse option!

TEXT T If any character sets have been inserted in the
database, a set number is requested . Then a
character code in the range 32 to 162 is
requested. This character is placed on screen in
the character square (as shown by the Grid
command) that the tip of line is contained within.
It is manly designed to allow "the fiddly bits" of
as picture to be drawn using the character editor
- thus using less memory than lots of lines!

Text and Shade use 4 bytes in the database each.

BLOCK B Causes a block of the currently selected colours
to fill the rectangle of attribute squares which
the line defines the diagonal of.

Block uses 5 bytes in the database.

50

The Graph i c Edi to r

2) Colour Co .. ands

INK x

PAPER c

FLASH v

BRIGHT z

The cu r rent ink is set to the value selected. INK
8 as in BASIC causes all ink to be taken from the
existing screen attributes .

Sets the current paper to the value selected.
PAPER 8 as in BASIC .
The new value of Flash is r equested (0,1 or 8) .

The new value of Bright is r equested (0,1 or 8) .

all the above use one byte in the database .

INVERSE I The state of Inverse (on/off) is toggled .

OVER 0 The state of Over (on/off) is toggled.

Neither Inverse nor Over use any memory but their state is
encoded as part of each future instruction which is affected by
them.

· 3) Subr outine Comaand

GO SUB G A picture number is requested which must be in the
range O to locno . A scale value for the picture is
then requested . This can be from 0 to 7 where the
number indicates the size of the picture in
eighths - O means ' no scale' (i.e. 8 / 8).

Please Note;

a) Scale only affects certain commands, these are
MOVE RELATIVE,LINE,FILL and SHADE. MOVE ABSOLUTE,
PLOT, BLOCK and TEXT commands will not be scaled
or relocated and should generally not be used in
subroutines (although they will work and can be
used usefully sometimes).

b) You may only nest subroutine calls to a level
of ten. (nesting means calling a subroutine from
within a subroutine).

c) Scale does not affect GOSUB commands, i.e . if a
GOSUB is used within a subroutine the string drawn
will be at a fixed size and not scaled.

d) Calling the same routine you are drawing will
cause a "Limit Reached" error as the limit of 10
subroutine levels will have been reached.

Gosub uses two bytes in the database.

51

The Graphic Editor

4) Editing co .. ands

START >
NEXT v
PREVIOUS /\
DELETE

DELETE NEXT .

GRID Y

JOYSTICK J

Puts the Drawstring pointer at the start of the
drawstring.

Executes next available drawstring command: if
there isn't one the command is ignored.

Moves the drawstring pointer back one command and
updates the screen.

(CAPS SHIFT & 0 on 48K) deletes the previous
command in the drawstring and updates the screen.

GRAPH(ICS) (CAPS SHIFT & 9 on 48K) deletes the
next command if there is one .

Has a toggle action for a character grid of INK O,
PAPER 7 and PAPER 6. This allows exact positions
of colour boundaries to be taken into account
while drawing.

Toggles the KempstonM joystick option on and off.

The .keys around S move the end of line around one pixel at a time
(this can be accelerated to eight pixels a time by holding down
the CAPS SHIFT key) thus:

.'\ i /'
Q w E

+- A D --+
z x c

ttf J. \.

The joystick should be plugged into Port 2 of Interface 2 or the
Spectrum Plus 2. Alternatively it can be plugged into a KempstonM
interface in which case SYMBOL SHIFT & J should be used to enable
PAW to read it. CAPS SHIFT will also accelerate the rate of
movement on the joystick. The Fire button will act like SYMBOL
SHIFT and L to draw a line.

52

Errors

Editor Error Keesagee and their aeanings

Due to the complex nature of PAW many features can generate
errors. Whenever an error is discovered a message describing the
error is printed in the lower sect ion of the screen. PAW then
waits for a key to be pressed before returning to the menu on
which that error occurred. There are two exceptions to this:

1/ After an error during editing of a drawstring; the Drawstring
pointer is positioned just before the command which caused the
error (i.e. a NEXT command will cause the error again) . If
you are unable to correct the problem then DELETE NEXT c an be
used to delete the erroneous command. Note that this may still
leave further commands undrawn (which may cause another
error).

2/ While an adventure is running; If the PAW edito r is not
present then a jump is made to initialise a new game after the
error report. Otherwise a diagnostic line is printed on the
bottom line of the screen. This displays the Process table,
Verb and Noun of the entry and the condact in which the error
occurred. You are then provided with the flag diagnostics to
help confirm where . the error occurred. When ENTER is pressed
the normal error report is printed .and a return made to ihe
main menu of PAW.

.When using your own programs in conjunction with the EXTERN
command any of the standard BASIC errors can occur. Note though
that the line and statement number are not printed - so test your
program thoroughly without the adventure present!

PAW also generates several errors of its own which are:

BREAK

STOP in INPUT

Tape loading error

Database full

Limit reached

BREAK was pressed during a peripheral
operation or while a game was running.

CAPS SHIFT & 6 pressed.

as BASIC. Note that a tape error during
a load database means that the database
is corrupt and only reloads should be
attempted.

There is not enough room in the database
for what you were attempting.

The maximum number of locations,
messages, objects, process tables or RAM
pages are already present. Alternatively
the maximum subroutine or sub-process
depth has been reached - 10. This can
also occur if an attempt is made to
DOALL while a DOALL loop is active.

53

Errors

Integer out of range

Out of memory

Invalid Argument

While drawing a picture a LINE command
has gone out of range. This is usually
due to a change of position of the
starting point while editing.

This indicates that the entry for a
process or connection entry was too
large for the buffer (unlikely to
occur). Also occurs when attempting to
start a new RAM page on a 48K spectrum,
loading a 128K game on a 48K spectrum or
if insufficient workspace has been left
e.g. by setting up fixed channels before
loading or by writing too big a program
for use with EXTERN.

This error is printed when a condact
discovers an illegal value. e.g. An
attempt to set flag 38 to an illegal
location, an attempt to PUTIN/TAKEOUT on
a non container object or to set an
object at location 255 (COPYFO only).
But see point 2 above for diagnostic
information.

Note 1 • During input the Spectrum will emit a RASP if the screen
and / or input buffer is full.

Note 2. If an entry is present in the database which is too big
to fit on one screen, the Spectrum will give out a RASP
when the entry is displayed at the bottom of the screen
for amending. .

Note 3. If an abnormally large entry is inserted in the
connections table using abbreviations e.g. N 1 W 6 S 4
etc and the abbreviations are deleted from the
vocabulary, the movement entry (when decoded) i.e. NORTH
1 WEST 6 SOUTH 4 etc could be too big for the input
buffer. If this happens an out of memory message will be
produced. The remedy is to reinsert the abbreviations in
the vocabulary. ·

54

Printers

PAY and printers

PAW prints to the printer using channel #3 (usually "P") .

Should this be a ZX thermal printer (or the Alphacom equivalent)
then all printout is directed to the required ROM routines. The
Thermal printers will only work in 48K mode on a 128K spectrum
and will print exactly what is on screen including new character
sets and so on. The "C" option on the characters and graphi c s
menus will COPY the screen as normal.

On a 128K spectrum the printer channel defaults to the RS 232 port
and again PAW will sense this. All printout is directed through
the port having filtered the character set thus:

O - 31 are suppressed except for 7 & 13 which print a CR (13) and
6 (TAB) which prints as a space.
32 - 127 are printed as normal.
128 - 162 are printed as a question mark ("?").
163 and 164 are expanded to be the keywords PLAY & SPECTRUM.
165 - 255 are expanded either to the standard keywords in an
uncompressed database, or to the correct letter groupings in a
compressed one.

If you have Interface 1, it is possible to use the RS232 to print
to a printer by opening the "t" channel with the command:

OPEN #3, "t"

before loading the PAW program. The channel will then operate as
described above for the 128K RS232.

In general it should be possible to use any printer interface
which redirects channel #3 correctly - with one proviso; it does
not mind having its output address redirected.

Failing that if you are nifty with the old m/ c you can write a
specific printer driver. PAW prints an address when it loads
called PRTADD. This gives the address of the vectors within PAW
for the printer system defined as follows (character is in A):

PRTADD
COPVEC
PRTRET

DEFW PRTRET
JP DOCOPY
RET

;Address of character output
;Make this your screen copy
;Put your driver here ••

There is free memory upto 29504 decimal for this to be expanded
into. Save your driver code from the correct address with a
filename with character position 10 set to "A" along with a file
of no bytes with the same name ending in "B". You must redirect
channel #3 (to anything) to fool PAW that there is a non thermal
printer connected before you load it. Then use the Load databas e
opt ion from the main menu to load your driver (PAW thinks it's a
database and loads both files, one of which is your driver) .

55

The Essays

The Essays

There now follows a discussion of nine topics which rely on
several features of PAW in combination and are thus not so easy
to describe under any one heading:

128K Considerations for those lucky 128K spectrum owners.
Colour Boundaries deals with the spikey problem of attributes.
The parser gives a little English lesson.
Screen Output starts a newline in descriptions.
Objects will be more flexible after reading this.
Kulti-part gaJ1es for when memory just isn't big enough.
Light & Dark throws some light on the matter?
EXTERN and SCREEN$ are just made for each other .
PSis add a bit of character to your games!

Enough of the frivolity there are pages to fill ...

128K Considerations

When loaded, only page 0 is in use and has about 25500 bytes
spare. Pages 1, 3, 4, 6 & 7 are unused but can hold 16K each.

Message & Location text, Connections, Graphics & Default Colours
can use pages 1-7, all the other tables only use page O. All
table entries for a location will be held within the same page.

When a location text is inserted null entries are made in the
Connection, Graphic & Default Colour tables for that location.
The I option on the Location Text _menu always inserts in the
highest used page. Option B on that menu is used to begin a new
page i.e. it inserts on the next page. You have to decide when
to use B to start a new page but we would suggest that you use
the compressor to gain all memory available before starting
another page as you cannot insert extra messages etc onto a page
once a new one has been started - only amend existing entries.

The start database supplied has location O on page 0 and you will
need to consider whether location 1 should be on a new page
bearing in mind that all the other tables can only use page o. We
would advise all messages and locations are on pages 1 and up, as
page 0 can soon become filled with vocabulary etc .

A similar thing applies to the message text table; I inserts on
the highest selected page, B begins another page ii' it has been
initialised by putting a location on it!

If you want your game to run on a 48K spectrum then you must not
use any page other than O.

56

The Essays

Colour Boundaries

Probably one of the most difficult aspects of using graphics on
the Spectrum is the problem of the attribute colour system.

This essentially means that only two colours can be used in any
one BxB pixel group. The areas are shown by the GRID option in
the graphics editor. The two colours are the PAPER and INK, the
colours of reset and set pixels respectively. Both Paper and Ink
can be any of eight values for each 8x8 pixel group.

The fill and shade routines fill in a defined area with a pattern
of set and reset pixels. So if you use different INK and/or PAPER
colours for two adjacent fills or shades, you will get a coarse
stepping effect. This is due to the colours for the second fill
affecting pixels in the groups which were set by the first .

This effect can be overcome in one of four main ways:

1 / Ignore it! This system is used on some pictures in the TEWK
game. The effect is minimised by not having shaded or filled
areas directly adjacent to each other .

2/ Use shade fully. The shade system can be used along with just
two colours to create very effective pictures using varying
densities of shade.

3/ Careful positioning as used in the tutorial manual. All areas
are defined on exact attribute boundaries. This has the effect of
creating very cubist pictures.

4/ Alternate colour. This allows two areas of solid colour (not
shades) to be adjacent to each other. It sounds complicated but
in principle is fairly straightforward: The diagram shows this
far more simply than reams of text:

The outlines of area A and B are drawn. Area A is filled using
an INK of the first colour required. Area B is filled using an
INK of the second colour required. The block command is used on
the rectangle (C) with the PAPER set to be the second colour
required and an INK of 8. This leaves area A and B unchanged.
The colouring of the PAPER makes the join look continuous.

57

The Essays

The Pa r s er

The parser works by scanning an input line (up to 125 characters)
for words which are in the vocabulary, extracting 'Phrases' which
it can turn into Logical sentences.

When a phrase has been extracted, the Response and Connect ions
tables are scanned to see if the Logical Sentence is recognised .
If not then system message 8 ("I can't do that") or system
message 7 ("I can't go in that direction") will be displayed
depending on the Verb value (i.e. if less than 14 then system
message 7 will be used) and a new text input is requested . A new
text input will also be requested if an action fails in some way
(e.g. an object too heavy) or if the writer forces it with a
NEWTEXT action. The results might otherwise be catastrophic for
the player. e.g. GET AXE AND ATTACK TROLL, if you don't have the
axe you wouldn't really want to tackle the Troll!

If the LS is successfully executed then another phrase is
extracted or new text requested if there is no more text in the
buffer.

Phrases are separated by conjugations ("AND" & "THEN" usually)
and by any punctuation .

A Pronoun · ("IT" usually) can be used to refer to the
Noun/Adjective used in the previous Phrase - even if this was a
separate input. Nouns with word values less than 50 are Proper
Nouns and will not affect the Pronoun.

The Logical Sentence format is as follows :-

(Ad verb)Verb(Adject i ve1 (Noun1))(preposition)(Adjective 2 (N oun2))

where bracketed types are optional. i.e. the minimum phrase is a
Verb (or a Conversion Noun - which is a Noun with a word value
<20 - which if no Verb is found in a phrase will be converted
into a Verb e.g. NORTH). If the verb is omitted then the LS will
assume the previously used verb is required. i.e . GET SWORD AND
SHIELD wi l l work correctly! - the pronoun will be the first
object in a list like this, SWORD in the example .

Note that the phrase does not strictly have to be typed in by the
player in this format . As an example:

GET THE SMALL SWORD QUICKLY
QUICKLY GET THE SMALL SWORD
QUICKLY THE SMALL SWORD GET

are all equivalent phrases producing the same LS. Although the
third version is rather dubious Engl ish .

A true sentence could be:-

58

The Essay s

GET ALL. OPEN THE DOOR AND GO SOUTH THEN GET THE BUCKET AND
LOOK IN IT.

which will become five LS's: -

GET ALL
OPEN DOOR
SOUTH
GET BUCKET
LOOK BUCKET

(because THE is not in the vocabulary)
(because GO is not in the vocabulary)

(from IT) IN (preposition)

Note that DOALL wi l l not gener a te the object described by
Noun(Adjective)2 of the Logical sentence. This provides a simple
method of implementing EXCEPT . e . g. GET ALL EXCEPT THE FISH, it
has the side effect of not allowing PUT ALL EXCEPT THE FISH IN
THE BUCKET, as this has three nouns!

Screen Output

Character sets are selected in text by selecting a colour 0 - 5
then a single DELETE to generate ESCCs 0-5, and will only take
effect if a corresp onding set has been inserted.

ESCC 7 is a true newline (but does not reset colours as it is
part of a message).

ESCC 6 works as a TAB but should be used with care as it will
often be suppressed by the text formatter when printing .

Colours and character sets selected within text will stay in
force until a NEWLINE action . e . g . To print the number of c o ins
carried by the pl ayer (held in flag 1 00 say); If message 1
contains a RED PAPER control code then an ent r y in Response (or
a Process tab l e) of :-

COINS MES
PRINT
MESSAGE
DONE

1
100
2

;"<RED>You are carrying"

coins.

will r esu l t i n the entire message being printed in red . This is
cal led a compound message and can be used successfully to create
neat displays .

59

The Essays

Objects

Under~in:s in text will be converted during gameplay into a
descrip~ion of the last object referenced by GET,DROP,DESTROY
etc. This is mainly to deal with the fact that GET,DROP etc
repo .rt. their. success (or failure!) but can be used usefully for
examining obJects and other automatic reports.

Flag 53 is used to control the way objects are displayed when
the LISTOBJ and LISTAT actions are used. If the flag is set to 64
(i .e. Bit 6 is set) then objects will be listed without newlines
between them, forming a valid English sentence - compound
listing.

The formats are as follows:

SM53 ("nothing.") - can only occur with LISTAT
object SM48(".")
object SM47(" and ") object SM48(".")
object SM46(", ") object SM47(" and ") object SM48(".")

In addition, Bit 7 of flag 53 will be set (i.e. flag will be
greater than 127) if any objects were printed. This allows you to
determine whether or not a NEWLINE is required to reset colours .

A LISTAT action will usually be preceded by a message.

The description of object is constructed from the full
description given in the object text table. The preferred format
for an object description is:

indefinite.article (adjective) noun • extra text

where; the
"Some 11

• The
letter e.g .
mouldy". PAW

indefinite article is "A" or adjectives "An" or
Adjective and the Noun should have a lower case
'A small key', 'Som e sand' or 'An orange. Rather
extracts a description of the object in two ways:

1 / For GET, DROP etc (i.e. " ") the indefinite article is
skipped and the deac ript ion printed upto (but not including)
the first full stop. e.g. "I now have the saall keJ'.".
2/ For a compound list of objects the indefinite article is
forced to start with a lower case letter and the description
printed upto (but not including) the first full atop. e .g.
"In the bag is a saall key.".

Obviously if you don't use underline or compound listings, then
you are free to describe objects any way you like.

Important: If an object is to be a container; there must be an
unused location with the same number for PAW to use as the
'inside'! i.e. Object objno. TWould need Locatio!l locno. 1 - Not
forgetting to mark it as a container ("C") on object weight!

60

The Essays

Creating Kulti-Part Adventures

In order to create a larger (and thus more interesting) play area
in an adventure, without sacrificing the quality of the
description, you can split the game into smaller sections. It is
best to do this with a game that lends itself to having several
areas, with only one join between each, this is called a
bottleneck. e.g. a game where setting sail on a boat is the
final task in the first part.

To allow the score, turns taken and other information to be
carried forward into the next game you must use the LOAD /S AVE
game position actions. In order to load a game position into a
different game to that which it was saved from, you need the same
number of locations and objects in each part. In addition, all
objects which may possibly be carried forward by the player, must
have the same description in all parts.

Let's take a game with 120 locations, that is to be split .in
half, thus requiring 60 locations in each part. Actually location
60 will exist in both games as the transition location (where the
player starts and finishes) and a spare flag.(~ay 26) will be
used to indicate which part of the game a position is from. So
when the player completes part 1 they are moved to location. 60
and flag 26 is set to 1 to show it.

The aetup for part 1 would be:

Location 60
End of Part - Prepare a tape to save your position.
(You may save more than one copy if you like).
Please LOAD part 2 and follow the onscreen prompts.

Process

END AT
LET
SAVE

And in part 2:

60
26

;End of game?
;Valid position from part 1.

Location 0
Part 2 - Prepare to load tape with saved position.

Location 60
Any introduction wanted for Part 2.

Process

START AT
LOAD

0 ;Just starting?
;Will then be at another location.

61

The Essays

START NOTEQ
GOTO
DESC

START AT
ANYKEY
RESET

26
0

60

;Not a valid position from part 1.
;So request another load.

;Just loaded a valid position
;Wait until introduction read
;Start game properly at location

The RESET action does a DESC of the new start location
automatically, after setting all objects that aren't carried,
worn or at location 60 to their starting position . Note that you
should insert any CLEAR actions for flags between the ANYKEY and
the RESET as the flags are not affected by the RESET.

Light and Dark

Darkness is becoming something of a cliche in adventures these
days, but used correctly it can add to the sense of realism
considerably.

Within PAW, darkness is created by setting flag O to a value
other than O. This must be done whenever the p l ayer moves into
and out of darkness. i.e . the move must be done with a GOTO in
the Response table, to allow the SET or CLEAR action to occur.

If the player is being provided with a source of light then
object 0 is the easiest way of implementing it. A source of light
does not have to be a torch or candle, with a l ittle imagination
it can be infra~red glasses or a wide beam laser!

Take for example the creation of a night and day cycle, over 24
time frames which we will assume are equivalent to 1 hour.

The entries required in Process 2 are :

CYCLE EQ 5 0 ;End of cycle
LET 5 24 ; Start the counter again

NIGHT EQ 5 18 ;Nightfall
SET 0
MESSAGE x

DAY EQ 5 6 ;Daybreak
CLEAR 0
MESSAGE y

Importantly if part of the game is underground , or inside a
building, don't forget to determine if the player can actually
see night f all and daybreak f r om whe r e t hey are, before printing
the messages.

62

The Essays

EXTERI and Loadi ng sc ree ns

The EXTERN command can be used to call either your own machine
l anguage programs or a section of a BASIC progra m. This feature
can b e utilized only in a final game, as the 4K of memory
previously occupied by the main menu becomes available (the other
2K is PAWs workspace so hands off !) . The important address is the
value printed when PAW loads called EXTVEC. You must use the
value given on the copy of PAW you save the final game from, or
chaos will ensue.

For machine coders only: In order that EX TERN can execute machine
code routines you must POKE the three bytes at EXTVEC with a JP
to your start address . Register IX must be preserved as it points
at F l ag o. Al l others may be dest r oyed , bu·t SP must be balanced .
Register A on entry contains the parameter to the EXTERN command.
If you save the two bytes at EXTVEC+1 they point to the routine
which cal ls a BASIC program - the line number must be in A.

For BASIC users: a POKE extvec,195 - after loading the
interpreter f i le - will enable any EXTERN actions to execute the
BASIC line (1 OO+parameter). e .g. EXTERN 10 will goto line 110 in
BASIC . To return to the next condact a STOP command in BASIC_ is
required . You cannot use CLS in BASIC (or m/c) , but add r ess
EXTVEC+3 contains a routine to do this. i.e. RANDOMIZE USR
extvec+3 wil l clear the screen. In addition EXTVEC+12 contains
the line number to print the filenames of the database files on
and EX TVEC+9 is the load database and start game entry point.

As an example the fol l owing program (without the REM's) must be
saved to a f r esh tape with SAVE "gamename " LINE 10:

1 O REM load game
15 BORDER O:PAPER O: INK O: RElol so filenames are invisible.
20 CLEAR 29856:REM this is maximum value for RAMTOP.
25 LET extvec=?????:RElol whatever it is •• •
30 LOAD" " SCREEN$: PRINT AT 19,0; : REM stops damage to pie!
40 LOAD " " CODE:RElol load interpreter file
50 POKE extvec,195:REM enable EXTERN
-60 POKE extvec +1 2 , 20:REM fi l enames on line 20
70 RANDOMIZE USR (extvec+9) : REM load database and start game

100 REM line that is cal l ed by EXTERN 0
11 O PRINT "hello from BASIC" : STOP
355 REM line that is called by EX TERN 255 !

Lines 100-355 cou l d contain GOTO statements if required .

Save your SCREEN$ immediately after the program on the tape. Then
from within PAW save the Adventure (using option A) after that.

I mportan t there must be at least 2000 bytes spare for PAWs
workspace or your BASIC program will start to disappear! RAMTOP
may be lowered to contain your machine code but 2K must be spare!

63

The Essays

Pseudo-Intelligences

The main thing to remember is that a character (or PSI) is a word
in the Vocabulary (usually a Noun with a value less than 50

80
as

to be a Proper Noun). Some flags, a series of messages and some
entries in one or more Process tables . One flag shows where they
are, the messages provide information about their actions and the
process table entries tie it all together.

So imagine a character called Sanec who can walk around
independently. He is described in the vocabulary as SANEC (word
value 25 , Noun). Flag number 20 is used to give his location .
Process table 3 will deal with speech to him . While Process
table. 4 will deal with his movements and actions. . The following
entries allow him to move around when you ask him too . After a
short time he will get 'bored' and vanish in a puff of smoke!

Message 1
Sanec did not seem to understand what you said.

Message 2
No one of that name here!

Message 3
Sanec replies "hello" in a gru ff voice.

Message 4
Sanec wanders that way as he has nothing better to do.

Message 5
Sanec the wizard is here .

Message 6
Sanec 'politely' ignores what you say .

Message 7
Sanec turns to face you and in hie gruff voice announces;
"I ' m bored with all this, I'm off to a bigger game"
and promptly vanishes in a puff of green smoke!

First; Sanecs ' presence at a location must be announced . So in
Process 1 (which is called after every describe of a location) we
check if he is here i.e. flag 20 (his location) is the same
flag 38 (our location). Note that we ensure we a r e not
location 0 as this is a l ways an int r oduction screen.

as
at

SAN EC SAME 20 38
NOT AT 0
MESSAGE 5

;Ensure Sanec is hers
;Player is not in location o.
;Say Sanec is here.

To deal with speech too Sanec, we need two ent r ies in Response as
follows: -

64

SAY SANEC PREP TO

SAME 20
PROCESS 3
DONE

SAY PREP TO
MESSAGE 2
DONE

The Essay s

;this could be omitted to allow
short Verb Noun sentences to be
understood

38 ;Make sure Sanec is here
;Deal with any speech

;Prevent drop through with new LS.

;again optional
; no one of that name here!

The following entries in Process 3:-

* * PARSE

MESSAGE

DONE

HELLO MESSAGE
DONE

LT
MOVE
MESSAGE
DONE

MESSAGE

3

34 14
20
4

6

;This entry always carried out to
convert the input string to a LS .

;PARSE comes here if it fails t o
find a valid phrase

;Note that t h e LS is corrupt and no
further table entries must be
eJ<ecuted

;Assuming HELLO is a verb in vocab
;So that SAY TO SANEC "HELLO" works

;A movement word said to Sanec?
;See if a connection for that way
;Come here and tell player if so

;He ignores you (i.e. nothing else)

Obviously many more entries would be required to give Sanec an
appearance of understanding speech, but with a few clever entries
h e can give a wide variety of responses .

Fina l ly; to give Sanec a chance of disappearing when bored, we
need an entry in Process 4 of:

SANEC EQ 20
CHANCE 1 0
SET 20
AT 2
MESSAGE 7

2 ;At location two?
; 1 o:t chance
;Location 255 does not exist
;are we where he was?
;POOFF! - tell player he disappeared

And an entry in Process 2 to cal l table 4 reqularly:

SANEC PROCESS 4

I n this way a very convincing character can be built up. They add
a g r eat dea l to the sense of realism in games. Especially if
interaction with them is required as part of the solution .

65

SU11111ary

Graphics Editor Co11J11ands

Occasionally when moving the line at speed it will disappear,
this is due to a beat frequency of update with screen flyback.

Moving the end of the rubber banded line is achieved with:

Q W E
A D
z x c

at 1 pixel per move. Alternatively
use Interface 2/Plus 2 joystick port 2
or Kempston- interface (SYMBOL SHIFT & J)

Hold down the CAPS SHIFT key to accelerate to eight pixels per
move .

The drawstring editing commands:

Cursor Right (CAPS SHIFT & 8) - Start of drawstring
Cursor Down (CAPS SHIFT & 6) - Next command
Cursor Up (CAPS SHIFT & 7) - Previous command

DELETE
GRAPHICS

(CAPS SHIFT & 0) - Delete previous command
(CAPS SHIFT & 9) - Delete next command

All the following commands require SYMBOL SHIFT to be held down
unless otherwise specified.

The toggles:

I Inverse Toggle
0 Over Toggle
Y Grid Toggle
J KempstonM joystick toggle.

The next commands all insert into the database:

A
B
F
G
x
L
c
p
R
s
v
z
T

Absolute Move (a PLOT with I and O selected)
Block in rectangle attribute area. Diagonal defined by line
Fill area from end of line. (See footnote)
Gosub to location number with scale
Ink (produces prompt for Ink selection)
Line fix (draws rubber banded line)
Paper Select
Plot point at end of line
Relative Move point to end of line
Shade an area of screen from end of line with pattern
Flash Select
Bright Select
Text character on screen, selects character and set no.

Note: Fill and Shade are ·not completely re-entrant. Fill is a
shade with all pixels in pattern set.

ENTER on its own to finish editing session.

66

Suaaary

The 117stea •essage.s

The majority of system messages contain ESCC 7s to allow correct
spacing on the screen.

SMO - is used instead of the location description when it is dark.
SM1 - is printed by LISTOBJ if at least one object is present.
SM2 to SM5 - are the four input prompts which are selected
randomly unless flag 42 is set to be a valid message number.
SM6 - is produced by the parser when no further phrase can be
understood.
SM7 - is produced if no action was carried out (or NOTDONE was)
in Response when the Verb is < 14
SMB - is produced if no action was carried out (or NOTDONE was)
in Response when the Verb is > 13
SM9 to SM11 - are printed by action INVEN.
SM12 - printed by QUIT
SM13 and 14 - are printed by the END action.
SM15 - the OK action message.
SM16 - the ANYKEY action message.
SM17 to SM20 - are the TURNS action messages.
SM21 and SM22 - are the SCORE action messages.
SM23 to SM29 - are the first of many messages produced by the
object manipulating actions.
SM30 - the positive response expected by END and QUIT.
SM31 - the negative response expected by END and QUIT.
SM32 - produced when a screen full of text has appeared.
SM33 - the input marker.
SM34 - the cursor
SM35 - displayed when a timeout occurs
SM36 to SM45 - are more messages produced by the object
manipulating act ions.
SM46 - the link between objects when listing continuously
SM47 - the final link between the last two objects when listing
SM48 - the termination of a list of objects (printed by both
LISTOBJ and LISTAT, so take care.)
SM49 and SM50 - yet more object messages
SM51 - the termination for a compound sentence on PUTIN/TAKEOUT
(and AU TOP/ AUTO T)
SM52 - a final object message.
SM53 - message for LISTAT action if no objects found.

SM54 onwards are free to be inserted for your own use. PAW on
other machines may use more messages, so bear this in mind if you
intend transferring the adventure to another version. E.g. PAW
under CPM uses messages 54 to 60!

67

SlllUlary

l'unction of P.A.V. Flags

The normal flags are free for use in any way in games. The auto
decrement flags (2 to 10) are also free for use, but be sure you
know in which situations they are reduced before using them.
Other flags should mostly only be set using the appropriate
action, but useful tests can be carried out on their contents.

Flag
Flag

0 When non zero indicates game is dark (see also object O)
1 Holds quantity of objects player is carrying (but not

wearing)

The following flags are decremented if non zero by PAW;
Flag 2 When a location is described
Flag 3 When a location is described and it's dark (Flag O not O)
Flag 4 When a location is described, it's dark and object O is

absent
Flags 5
Flag 9
Flag 10

to 8 Every
Every time
Every time

time frame (i.e. every phrase / timeout)
frame that it's dark
frame that it's dark and object O is absent

Flags 11 to 28 are free for use in your own games

Flag 29 holds Picture Control flags
Bit 7 - Set this to force picture to be drawn (LOOK)
Bit 6 - Set this to always draw picture (PICS ON)
Bit 5 - Set this to never draw picture (PICS OFF)
this is set by using the GRAPHIC action.

Flag 30 Score flag
Flag 31 /32 (LSB/MSB) holds number of turns player has taken

(actually this is the number of phrases extracted from
the players input).

Flag 33 holds the Verb for the current logical sentence
Flag 34 holds the first Noun in the current logical sentence
Flag 35 holds the Adjective for first Noun
Flag 36 holds the Adverb for the current logical sentence

Flag 37 holds maximum number of objects conveyable (initially 4)
Set using ABILITY action.

Flag 38 holds current location of player

Flag 39 holds current top line of screen
Set by the LINE action.

Flag 40 holds screen mode (range 0 to 4 ••) set with MODE action.
also Bit 7 - Forces no change of Border

Bit 6 - Produces "More .• " when screen fills
Flag 41 holds line number for split (if not in range 4-24 then 12

used) this is set 'by the PROTECT action to be the current
screen line.

Flag 42 holds prompt to use (a system message number - O selects

68

SlllUlary

one o{ four randomly
Set by the PROMPT act ion.

Flag 43 holds the Preposition in the current logical sentence
Flag 44 holds the second Noun in the current logical sentence
Flag 45 holds the Adjective for the second Noun
Flag 46 holds the current pronoun ("IT" usually) Noun
Flag 47 holds the current pronoun ("IT" usually) Adjective

Flag 48 holds Timeout duration required
Flag 49 holds Timeout Control flags

Bit 7 - Set if time out occurred last frame
Bit 6 - Set if data available for recall (not of use to

writer)
Bit 5 - Set this to cause auto recall of input buffer on

timeout
Bit 4 - Set this to print buffer on exit, (for use with

Bit 3).
Bit 3 - Set this to take input from lower screen
Bit 2 - Set this so timeout can occur on ANYKEY
Bit 1 - Set this so timeout can occur on "More ••• "
Bit O - Set this so timeout can occur at at.art of input

only
Set using INPUT and TIME (as is flag 48), TIMEOUT tests
Bit 7 of this flag.

Flag 50 holds Objno. for DOALL loop. i.e. value following DOALL

Flag 51 holds last object referenced by GET/DROP/WEAR/ WHATO etc.
This is the number of the currently referenced object as
printed in place of any underlines in text.

Flag 52 holds players strength (maximum weight of objects carried
and worn - initially 10)
Set with ABILITY act ion.

Flag 53 holds object print flags
Bit 7 - Set if any object printed as part of LISTOBJ or

LISTAT
Bit 6 - Set this to cause continuous object listing

i.e. LET 53 64 will make PAW list objects on the
same line forming a valid sentence.

Flag 54 holds the present location of the currently referenced
object

Flag 55 holds the weight of the currently referenced object
Flag 57 is 128 if the currently referenced object is a container.
Flag 57 is 128 if the currently referenced object is wearable

Flags 58 & 59 should be avoided as they will be used for any
expansion

Flag 60 to 255 are available for your own use.

69

Swamary

The CondActs

Conditions:

AT locno ;Ensure player at specific lo cat ion
NO TAT locno
ATGT locno ;higher location than specified
ATLT locno ;lower ...

PRESENT objno
ABSENT objno
WORN objno
NOTWORN objno
CARRIED objno
NO TC ARR objno
ISAT objno locno+
ISNOTAT objno locno+

ZERO flagno
NOTZERO flagno
EQ flagno 0-255
NOTEQ flagno 0-255
GT flagno 0-255
LT flagno 0 - 255
SAME flagno flagno
NOTSAME flagno flagno

ADJECT1 word
ADVERB word
PREP word ·
NOUN2 word
ADJECT2 word

CHANCE 0-99 ;Random possibility of success
. TIMEOUT ;P l ayers l a st input . timed out

QUIT

Actions (Those marked§ are type 4, t are type 3, ~ are type 1)

GET § ob jno
DROP § objno
WEAR § objno
REMOVE § objno
CREATE objno
DESTROY objno
SWAP objno objno
PLACE objno locno+
PUTO locno+
PUT IN § objno locno
TAKEOUT § objno locno
DROP ALL
AUTOG §

70

AUTOD §
AUTOW §
AUTOR §
AUTOP §
AUTOT §
COPYOO

COPYOF
COPYFO
WHATO

WEIGH

SET
CLEAR
PLUS
MINUS
LET
ADD
SUB
COPYFF
RANDOM
MOVE

GOTO
WEIGHT

ABILITY

MODE
LINE
GRAPHIC
PROMPT
INPUT
TIME
PROTECT

PRINT
TURNS
SCORE
CLS
NEWLINE
MES
MESSAGE
SYS MESS
PICTURE
PAPER
INK

locno
locno
objno

objno
flagno

objno

flagno
flagno
flagno
flagno
flagno
flagno1
flagno1
flagno1
flagno
flagno

locno
flagno

0 - 255

0- 4
0 - 20
0- 3
sysno
0-7
0 - 255

flagno

mesno
mesno
sysno
locno
0-9
0-9

objno

flagno
objno

flagno

0-255
0 - 255
0 - 255
flagno2
flagno2
flagno2

0-255

0- 3

0 - 7

SWUla ry

;Copy position of object to flag

;Convert Noun1(Adjective1) to
current object

;Weight of object is put in flag

;Add value to flag

;contents of flag1 added to flag2

;Set to random number from 0 to 99
;Adjust contents of flag according
to the LS Verb and the Connect .ion
table entry for location, that the
contents specify. (allows movement
in PSis)

;Weight of objects carried & worn
are put in flag

;Set conveyable objects and strength

;Set screen line to split picture

;Prompt on input. 0 is random

;Protect text on screen to current
print line from sc r olling .

;display contents of flag on screen

;message without a newline
;message with a newline
;system message without newline
;Disp l ay picture (without CLS)

71

Summary

BORDER
CHARS ET
SAVEAT
BACKAT
PRINTAT

LISTOBJ
LISTAT
INVEN

DESC

END

DONE
NOTDONE
OK

SAVE
LOAD
RAMS AVE
RAMLOAD

ANY KEY
PAUSE

PARSE
NEWT EXT

BEEP

t

~

t
t
t

~
~

0-7
0-255

0-20 0-31 .

locno+

flagno

0-255

0-255 0-25 5

;Select character set (if inserted)
;Save current print position
;return to it
;Set a new print position

;List objects at current location
;List objects at specified location

;Type 2,Exits table to restart game

;Delay program for n/50 of a second

;Convert input string to valid LS
;Force the loss of remaining phrases

PROCESS procno ;Execute sub-response/process

DO ALL l ocno+ ;Generate Noun(Adjective)1 for each

RESET ~ locno

EX TERN 0-255

Where:

object at Location locno.

;Move player and present objects,
reset others to initially at - used
to chain games with LOAD

;Call external program

locno. is a valid location number .
locno+ also allows the use of; 252 (not-created), 253 (worn) ,
2 54 (carried) and 255 which is converted into the current
location of the player.
mesno. is a valid message.
sysno . is a valid system message .
flagno. is any f l ag (0 to 255).
procno. is a valid sub- process number.
word; is a word of the required type, which is present in the
vocabulary, or " " which ensures no - word - not an anymatch as
nonnal).

72

© 1986 Gilsoft International Ltd.
Published by Gilsoft International Ltd.,

2 Park Crescent, Barry, South Glamogan CF6 8HD
Telephone Barry (0446) 732765

All rights reserved, unauthorised copying, hiring or lending strictly prohibited

