
Genesis
TheCompfm

Adventure Creation System

AMSTRAD CPC 464/664

1. About Genesis

2. Generating the game

3. Playing the Adventure

4 . Structure of Genesis games

5.

6.

7 .

Messages
Locations
Objects
Commands
Actions

Some Examples

A Help command
A Take command
Look
Moving a~ound
Scoring

Texture Reference Section

The DEPICTER Utility

8. Appendix 1 - The example game

CONTENTS

4

12

9 . Appendix 2 - Hints for Advanced Users

23

28

30

A bout Genesis

Consisting of three utilities for creating a professional quality Adventure game, plus a free
example game, Genesis provides everything needed to design text Adventures, complete with
Sound and Graphics w ith only a minimum of computer e)(pert ise. The games produced will run
independently of Genesis when complete.

M ost of the structure and mapping of your game is done using the Te)(ture utility. With this all
the game Actions are designed, commands defined and locat ions and objects/ characters set
up, At the same time, arrangements are made to activate Picture/ Sound blocks at the correct
time, ego when changing locations or firing a gun. The actual pictures and sounds are created
using DEPICTER, which has full editing facilities on both sound and graphics. Up to 20 separate
graphic windows can be defined, and pictures plotted in different windows at different t imes if
desired. A split-mode screen option allows the combination of say, 16-colour graphics and 80
column text on the same screen, a great boon for graphics adventures.

Sound wise. up to three sound tracks can be laid down and synchronised for each picture, with
full control over envelope shaping for special effects.

80th Texture and DEPICTER produce data files on cassette, which are eventually loaded into the
CLONER program to produce the finished game.

Note:

In what follows. we hdve enclosed th ings to type in $ signs, eg o SAUNS. The actual dol lar signs
are not typed. Where the ENTER key is required. this is illustrated by a pair of dollar SS.

2

The first steps. Cloning the example Adventure.

As an easy introduction to Genesis. we will generate a stand-alone game from the example
Adventure. For this. Side 2 of the cassette is used. containing the CLONER program, plus the
two data files from Texture and DEPICTER. You will also need a blank tape IC15 is OK if you
save on Fast speed).

First. zero the tape counter. then run CLONER using:
'RUN···· ••
(It is always best to start with a clean machine before running a new program, Press SHIFT.
CTRL. and ESC together to clear it. before typ ing RUN).

When the lape stops, leave it on PLAY. but press the PAUSE key while you select the save speed
for your output tape. Then raise PAUSE and wa it for the tape to stop again,

Normally at this point you wou ld rewind the ClONER tape and load your blank tape, However.
since the data files follow the ClONER program. rather than being on a separate tape, just
remove the ClONER tape without rewinding . It is a good idea to note the reading on the tape
counter at this point. as we shall need to locate the data files again in later sections of the
manual.

Insert the output tape, making sure you have advanced it past the plastic leader tape. This is
important - Genesis does not wait for the leader to pass through before starting to save data. Put
the datacorder to RECORD, and press any key to save the :irst section.

Now remove the output tape (do not rewind it). and re- insert the CLONER tape (or of course your
own data f i les if you are cloning your own Adventure) . Before reading the data. ClONER will ask
for the following parameters;.

The Initial Action Number. Type in $26$$ forthe example. As explained later, Action are
used in Genesis to do things such as print tng messages. displaying pictures, etc. They are
numbered" to 249, and every game must have one set up to create the initial screen
pictures and messages. and to put the player into the start location. Of course. it is up to
you what Action number you use, and what the Action does.

2. Pen Colour Selection

There now follow 3 prompts asking for the inks for pens 1, 2 and 3 . Pen 1 is used to print
messages, pen 2 for player inputs, and pen 3 for location names. The inkselected must be
sensible for the screen mode. as follows:-

Mode 111 Inks ~ to 15 valid
Mode 1 Inks 111 to 3 on ly
Mode 2 Inks" or 1 only

Of course, you would not normally use Inkjl, as th is would make the text invisiblellf you
choose a higher value than is valid , this can also cause the same effect.

It .s assumed that you are aware of the difference between screen modes, if not. look it up
in your Amstrad User Manual. Genesis allows you to have split-mode screens (ie . top and
bottom of the screen having different modes). as well as the normal single mode screen.
This is ideal for mixing 8~ column text with 4 or 16 colour graphics on the same screen.

For the example Adventure. respond $1 $$.$1 S$, and $3$$ respectively to the three
prompts.

3

N,ow ClO~ER is ready to read the data files. Press PtA Y. and any key to start loading these.
Finally, r~-Insert the outpu t tap~ to save the second main section of the game. You should now
have an Independent game wh.ch can be loaded using SRUN""$$ (clear the computer first).

Playing the Adventure

~e don't tell you ho:""" to solve the. Adventure. you wi ll have to work it oull However. there are a

c~~:t:o~~~s~~: ~hh~~: :;::-common to all GeneSis Adventures. in addition to those that you

1. Save and load

fr~i~y ;~~~~u~~ t~e~~~f~~e used to save panly complete games. so that the player can start

2. Cuit

This effect !vel~ restarts ~rom the beginning, resetting all objects. etc. to their initial status
and re-actlvatlng the In.tial Action.

3. CTRL A

~k~~~:~. down the CTRL key and pressing key A will cause any picture being drawn to be

4. Upper f lower Case

~enerally speaking, Genesis ignores any Upper/ lower case letter differences (ie SAVE
IS the same as save). .

4

LOCATIONS

I
r I I

STANDARD

NAME STATUS MESSAGES
0 , 1 & 2

Fig, 1 LOCA TlONS

OBJECTS

I -
1 1

OBJECT

NAME
STATUS

SET

Fig, 2, OBJECTS

OBJECT
STATUS

SET

I
I I

LOCATION
STATUS

Fig, 3, OBJECT STATUS SET STRUCTURE

COMPONENT STRUCTURES IN TEXTURE

5

I
PICTURE

SelECTIONS

FURTHER I STATUS
SETS

L_~

COMM ANDS

I
I J I

TWO
2 - OBJECT 1 - OBJECT NO - OBJECT

DEFAULT
MESSAGES

COMMANDS COMMANDS COMMANDS

I
-~I

I --7 ~ I I I I
COMMAND COMMAND OBJECT

COMMAND
OBJECT

COMMAND
OBJECT

NAME' NAME 2 SEQUENCEjS) SEQUENCEjS) SEOUENCE/SI

feg, 'HIT') feg, 'WITH') 12 - OBJECT} NAME (1 - OBJECT) NAME 10 - OBJECn

Fig. 4. STRUCTURE OF COMMANDS

OBJECT OBJECT
SEQUENCE SEQUENCE

(NO-OBJECn 12-0BJECT)

I
I I I I I I

COMMAND ACTION
LOCATION NUMBER

COMMAND
NAME OF NAME OF

ACTION
LOCATION

151 OBJECT 2nd OBJECT
NUMBER (OB1) fO B2)

Fig. 5. a -OBJECT SEQUENCE Fig. 7. 2·0BJECT STRUCTURE

I
OBJECT

SEQUENCE
{1-0BJECn

COMMAND
OBJECT

ACTION
LOCATION

NAME
NUMBER oe1

Fig. 6. 1 -OBJECT STRUCTURE

6

THE STRUCTURE OF GENESIS ADVENTURES

We must now begin to probe a little deeper into the components of Genesis Adventures.

Most users of Genesis will have at least a general idea of what an Adventure consists of. In the
rest of this section we will build on this and explain how the various major components of a
Genesis adventure are linked together. In fact there are only five major components, Messages,
Locations. Objects, Commands and Actions. Each of these will be expanded upon. The purpose
of this stage is to give an overview - do not worry about details.

MESSAGES
Messages are simply all those things you w ant the player to see during the game, for example
the descriptions for the locations and the visible responses to all the players commands. They
are numbered starting at zero. You will need to keep a note of message numbers as you create

them.

LOCATIONS
Locations are, of course, the places which the player can visit during the game. In Genesis, each
location is identified by a name (which can be several words), as shown in Fig, 1.

You may already be asking how the 'map' is created, ie. what determines the directions the
player can move in from each location, This is done using 'status' markers, each of which can be
either 'rue' or 'False'. You can have up to 24 such markers representing not only directions
'north ', 'south', etc" but anything else relevant to the game. It is up to you to decide what you
want to use them for. You might decide to use one to determine whether that location was 'dark'

or not, for example.
Stratus markers are used in Actions - described later - in order to control what happens in
responsa to the player's commands. For example, a 'go north' command would be linked to an
Action which tested whether the 'north' status is 'true' for the current location, and ifsowould
move the player to a new location, Thus the map is defined by both the Action and the status
markers. This arrangement gives great design possibilities, for example the map can easily be
changed during the game, simply by changing location status markers from True to False or

vice-versa.

Location Me ges
There are three messages associated with each location, the Help message, the ,Description,
and the response to an undefined Command. The last of these allows you to vary the usual
standard and very boring response to the player when he uses a command that you haven't built
in. Used skillfully, you can create the impression that the computer is understanding every

word!

Picture / Sound Blocks
pictures and sounds are created separately with the DEPICTER utility, and twO different blocks
can be associated with each location . These are normally the ones the player would see at that
location, though it is possible to put other pictures or sounds on top of these if needed.

OBJECTS
The third major component is the set of objects in the Adventure. In GenesiS it is possible to
have similar objects at different location in the game, so objects have to be specified by location
as well as name. Thus each object name may have many Object Status Sets associated with it,
as indicated in Fig. 2. Each Status Set specifies a location for the object, but also the object
status. Obviously there must be something to indicate whether, for example, the object is being
carried or not and this is done by Status markers. You can have up to 48 of these, allocated to
whatever purpose you wish. Apart from a " carry' status you might have, for example, another
status mar1.(er to show whether it is possible to carry the object.

7

1

COMMANDS

:dhe~ st~t~~ure of Comma~ds is s~own in Fig. 4. The first thing to notice is that there are two
au . essages aSSOCIated with each command, These are the Messages which would b

s~o~~ If the player used (1) an object which is not in the Adventure or (2) an object which is i~
t e venture, but cannot be used with th is command (eg. 'take floor' would be ridiculous).

CO,mmands ,m.ay have. no objects (eg, ' look' or 'inv'), one object (eg. 'take somethin ' a
?b!e~S (eg. hl'lt wall With head'). In the last case, tne Command would have two name: ~hi;':~
Wit , as we as two objects, This is illustrated by Fig. 4 . '

Ofte~ in an Adv.enture, the same command will do different things at different locations and/ o
~~.dlfferent objects. In TEXTURE these different Actions are catered for by having a differen;
to r:ct Sequence for each case. Thus a Command may have many Object Sequences attached

As shown by Figs, 5 to 7, an, Object Sequence format differs slightly for e, 1 and 2-ob'ect

~~~P~~i~i~~ !fs t~~~,a) re ndo Ob~ct.S, the Object Se~uence simply defines a location (which ~ay 
. . .' an an ctlon number, Actions will be described later, and are used to do 

~~~ I~~;t~!n~~ ~;~~tlOg messages, changing status markers, moving objects or the player to 

700~:;:,Y ~:t?Sking :~at hap~ens if, fo~ i,nstanc.e, you define an Object Sequence which applies
o lon , a~ a soone or a specific location, both on the same Command Therule 'S h

the f~,equ:v~ce defined for t~e specific location takes precedence at that locat io~, so ther~ i! :~
con ICt. en you hav~ obJ~ct~ as well as locations in the Object Sequence (see Fi s 6 7 the
~a~~ tv:e of rule, applies, Ie, I~ a Sequence for a specific object conflicts with : se~u~nce
e elOe as apply 109 to ALL objects, the specific sequence takes priority).

Obje~~ Sequ~nce~ for l -object Commands include an object name, which of cour e

~~~t~~~~~~~~~~rn·t~:~~:::~:~~n~:~~I:r~~~~:r';~I~~:~t ~~~%~~~s~~~~1 ~:~~~aJt";:u;~~~~~: 
ACTIONS 

To. recap slightly, we have seen how locations have status markers attached t o~Jectsh h~ve both stat~s markers and locations, and how Actions are linked t: ~~~m";ah:; 
I roug t e use of Object Sequences, Obviously, in Actions we shall need to be abl t 
,e:amPI,e, alt.er status .markers of specific locations or objects, change object locations .:ov~ t'~; 
payer oeallon, or prlOt responses to the players' Commands. ' 

It ~hould also be obvious that we need to be able to test such thO , . 
~~~t~oc:rried, whether a location is dark or not, or whether a part:~~~a~~~:c~t~e;t ~~:~::~:;~ 
We ter,:" things like the location of the player, or the status of a location 'Va ' bl ' T
determine the value of a Variable will be termed 'Condit ions ' The a ' r~a es . ~st~ to
messages or altering thevalueof a Variable will be done by 'Acti~n ope~~~::s~ctlo.ns ~ printing
~or ~hort-, A ful1lisl an.d explanation of these three elements which m'ake up a'no; ~c~~o:·:ra-,ors
In t e re erence section, At present it is enough to have a broad idea of what an AC:io~I~:~

8

Some EXlimpl.a

Before entering the heavy stuff in the reference section, we shall take a look at a few examples
of Actions used in the example Adventure. Hopefully, an understanding of these will make the
Reference Section easier going. Incidentally, a complete list of Actions, Commands, etc. is
given in Append ix 1 for the example game, If desired, you can load Texture on Side 1 of the
cassette ($RUN' TEXTURE'$$), and then load in the Texture data files from Side 2. Make sure
you wind the tape forward to just before the data files , or else you will be trying to load the
CLONER program as datal If you load the files correctly. you will be able to call up the Action on
the display, and compare it with the explanation below. (Use the 'Define Action ' option).

The HELP Commend Action

The HELP Command has been linked to Action number 5 in the example game. This was done by
setting up an Object Sequence for Help which specified all locations. and Action 5. The actual
Action reads:-

CALL<3\4>:MSG<PLOC:0:1> :FINISH:

This is a nice easy one to start with . We shall ignore the first Operator CALL<30>, as this
simply calls Action number 3~. The second operator, MSG<PLOC;f : 1 > is used to select the
Help message for the current player location (PLOC). As mentioned previously. three special
messages can be linked to each location, and these are indicated by the numbers _ . 1 and 2 for
the Help, Description and Invalid Command messages. Thus MSG<PlOC;tJ; 1> produces the
Help message, while MSG<PLOC;1;1> would produce the description.

The other number 11 in this case) is priority of the message. When an action prints several
messages. the higher priority ones are printed first. regardless of what order they appear within
the Action.

The last Operator is FINISH. All Actions should end with this Operator.

The reke Action

Taking objects is a command which you will find in every Adventure. In the example it has been
linked to Action 2 for most objects and locations, though there is a special action for 'take Vid
file ' at the 'G,I.A. Office ' ·Iocation (Action 4), We shall look at Action 2. which can probably be
used as it stands in your own games, provided you use the same status names.

The .complete Action is:-

CALL <3e>:
[OBST(CARRIABLE. OB1)=~1 MSG<17. 1::' :FINISH:
[OBLC(OB1H1PLOC[MSG<9:1>:FlNISH :
[OBST(CARRY.OBl }If(}l) MSG<8.1>:FINISH:
COPY<1 :OBST(CARRY.OB 1 » :CALL<39>:FINISH:

Ignoring the CAlL<3">line again, the next line reads in words :- " If the object referred to by
the player is not carriable, print message 17 and finish. "

To see hu .. ~ ~: 'Iis is decoded, the first thing to realise is that anything in square brackets is a
Condition. Thus the object status (OBST) marker name 'CARRIABlE ' is tested to see if it is the
zero (ie. false), By using the symbol (OB1). we ensure that it is the object referred to by the player
that is used. As explained later, there are several forms that the OBST variable can take, for
example instead of OB 1 you could use a specific object name. However, for the take command.
we must use OBl as it is the object named by the player that must be tested . (For 2-object
commands, you can use OB,l or OB2).

If the Condition is true, then what follows it on the same line is carried out. In this case. it is a
slightly different form of the MSG Operator met earlier. When PlOC is not included in the
brackets then' the first number is simply the actual message number to print. Thus,
MSG<17;1> simply prints message 17 at priority 1. (This is message " Impossible I").

9

Th~ next lin.e of the Action tests to see whether the object exists at the player location. Thusthe
obJe~t location (OBl.C) of the play.er-named object IOB1) is tested to be nOf-equal-to the player

!~~~t~~~ ~b~~~J i~f ~~tSt~~tr-:qtlal ' (le . the Condition is nue), then message 9 is printed indicating

The following line checks to see whether the object is already being carried You should by now
be a~le to see ~ow that works. Fin~"y, if none of the three Conditions are tr~e (ie . if the object is
~arnable, and IS at the ~Iayer I~catlon , and is nOt already being carried), then the COpy Operator
I~ used to change the CARRY status to 1 (ie. 'true'). The CAll<39>simply calls an action to
display the new, state ~f the objects, as in the example game carried objects are displayed on the
left. and those Just lYing around on the right.

The Look Action fAction If)
This is an ~nteresting one as it uses an o~ject scan I?op, The purpose is to print all the objects
that are. IY.lng ar.ound at the current location, so obViously all objects must be checked one b
one, ThiS IS achieved using the OBlOOP: and ElOOP: Operators. y
The actual Action reads:-

MSG<6; 29>:COPY<~:M(1 l>:OBLOOP:
[OBLC()=PLQCI08ST(CARRYF0IOBST(LKAB)jj0NPRINT«A» :SPC:VPRINT<
OBJ>:NEWL:COPY<1 :M(1) : .
ELOOP:

~~~~~~) VPRINT«NOTHINGl>:NEWL: 

Several new Operators are used in this Action. On the first line, MSG is an old friend, and COpy 
has been met before. (The M(l) variable is a general purpose one usable for anything The 
rea~on f~r loa~ing it with lero will become apparent later), However, DB lOOP is a new o~e. In 

f~rn~~~~I~~j:~!ha~~ee~: ~~~~ie;n~own , it indicates that all lines between the two are repeated 

The .second ~n~ third '.'nes d~wn a~e in fact just one line, it 's just that the tine is too long to fit. 
ObViously thiS IS the Ime which Will be repeated. 

The line starts wi.th three C~nditions, enclosed in square brackets. All of these must be true 
bef~re the Operations follOWing them on the line can be executed. The f irst Condition checks to 

· ~ee I.f the current object 's lo~ation (OBlC) is the same as the player (PlOC). Notice that since the 
line IS repea~ed for e~ery object we do not specify the object. Thus instead of OBlC(OB 1) as in 
:::p:~ke Action, we Just have empty braCkets OBlCO. The latter form is only valid inside scan 

The seco.n.d co~dition checks that the object is not being carried. Again . the particular object is 
not speCified, re o OaST (CARRY) instead of OBST (CARRY, OB1). Finally the third Condition 
ch~cks that the object is 'looka.ble ', using status marker lKAB. There ";'ay be some objects 
,":,hlch you d~ not .want to sh~w In the .Lo?k com.mand, even if they are present, for example, a 
fixture descrrbed In the location deSCriptIon which is not really relevant to the game. 

A~suming aU the Conditions are true for the current object , then the fi rst VPRINT Operator 
prints the letter A. In general VPRINT can be used to print any variable including words enclosed 
In brackets. ~e~ comes the ~PC.Op~r.a~?r . Using VPRINT removes any spaces, for example 
VPRINT < (Thl~ IS» wOu!d print. !hISIS , so a space operator is needed to separate words, 
Ne~t, V~R,INT IS used agalO to print the name of the current object. The variable (OBJ) is only 
valid Within loops, and represe~ts th~ current object. The NEWl Operator prints a newline 
character, and then the M(l) variable IS loaded with the value 1, for reasons explained below. 

We. have, hopefully,. now be-laboured object loops enough. After the ElOOP operator, the 
~c.tlon check.s t? see If the general purpose variable Mil) is lero. 1f it is, it means that noobjec!s 
:~~t~~~J~~~:~li~~ '~V lOOK have been found at the player location, so VPRINT is used to print 

10 



Moving Around 

There are several main actions associated with the player moving between locations. Firstly, 
Act ion 12 is used in all cases, regardless of which way the player moves. Its effect isto mark that 
the location has been visited, to update the locations of any objects being carried, and to print 
the description message and put up the picture for that location. You should by now be able to 
follow the broad outline of the action. We shall confine explanation to the new things that the 
Action uses:-

[PLOC*IOUTEROFFICEIl COPY<¢;M(2» : 
COPY< 1 ;LCSTIVISIT. PLOCl>:OBLOOP; 
[OBSTICARRY).~I COPY<PLOC;OBLCO> : 
ELOOP:CALL<30> 
(MI9).01 CALL< 2B>:COPY<~. M(9» :MSG <;11 .2> 
CALL<32>:CALL<39>;PICT< PLOC;¢ ;fJ>:MSG<PLOC.1 ;3¢>:DO<O> 

In the first Condition, we see a new feature, the use of a string constan~ to check whether the 
player is at a given location, in this case 'OUTEROFFICE'. The spelling of the name must.be 
match exactly the name you gave to the location, orelse the Condition will never be truel String 
Constants are always enclosed in brackets as shown . 

On line 2, the LCST Variable is also new, though very similar to the OBSTVariable . It refers to 
the status marker of the specified location (in this case PLOC), Also new is the PICT Operator. 
This is similar in form to the MSG Operator (see the Reference Section), but displays pictures 
rather than printing messages. The second number in PICT is the graphics window for the 
picture rather than the message priority. 

The other Act ion involved in moving about are:

Action 7 for North 
Action 8 for South 
Action 9 for East 
Action 1 ~ for West 

These are the Actions which, in combination with the appropriate location status markers, 
determine the map of the Adventure . You should be ab le to work out yourself how they are 
constructed . 

Scoring 

In the example game, we have not included any scoring. You might like to by modifying the 
game to include a scoring scheme as one of the first things you do with Genesis. The sco~e 
Variable SC(~) to SC(9) hold the key - in fact the score given when the player enters SCORE IS 

simply the sum of the values in Sqif)) to SC(9). Since the score is expressed asa percentage, you 
should make sure that the total does not exceed 1 ~0. 

To modify the game, you will have to load the data files into Texture from Side 2, and then modify 
the appropriate Act ion to COpy values into the score variables. For example, you might pick lt1 
of the locations, and put values of 1 ~ into the l~score variables as each location is visited. For 
th is, Actions 7 to 1 ~ would be involved. 

11 

.. 

TEXTURE OPTIONS · REFERENCE SECTION 

This chapter explains all the options in more detail. When you first enter TEXTURE you will be 
presented w ith a 9-option Main Menu, which we cover below in order. 

1. DEFINE MESSAGES 

This option leads to a sub-menu giving options to either create a new message, or modify an 
existing one. Messages are numbered sequentially beginning at zero, and you will be told the 
number of any new message you create. It is as well to keep a note of this, including the purpose 
of the message (e.g. Swots End description etc.). You are limited to 250 different messages, 
though each can be of any length. 

The TEXTURE EDITOR is used to enter and correct messages, and this is a good time to mention 
the CTRL Q key. This key is always used to exit from the current option or menu, back to the 
previous menu. For example, after typing in a message under the editor, pressing CTRL Q will 
return you to the Message menu, after storing the message. Pressing it again would take you 
back from the Message menu to the Main menu . This is about all there is to Messages, though 
you will need to use the editor. which is explained next . 

TEXTURE EDITOR 

The editor provides all the facilitie.s for inserting / adding text, deieting it. and overtyping. Special 
keys are used for control, as explained below. 

The editor uses a screen window 80 characters wide. just below the menu windows. You can 
type across the end of a line, though this will appear to split words between two lines Quite 
often. 00 not worry about th is, as when the message is displayed during the game, the 
computer will automatically throw a new line if the word is too long to fit on the current line. 

You can of course, use ENTER to go onto a newline if you want. Remember that you will have to 
use the Insert key (CTRL I) to create space when adding text to the end of a line on which you 
have put a new line. The editor prevents you typing across the end of a line terminated by a new 
line. 

The editor is cursor controlled. and you will see the cursor move around as you type in text, or 
use the arrow keys. The cursor. of course, shows you where you are in the text at all times. 
The specia l keys used are:-

CTRL I This creates blank space at the cursor position, moving all text to the right . You can 
press it more than once, or hold it down, to create more blank space. It is used, of 
course, when you must add text to the middle of a message. 

CTRL 0 This deletes all characters beginning at the cursor position and up to the first non
blank character . It can therefore be used to get rid of any left-over blanks after using 
the CTRL I key, or to delete a block of characters in the middle of the text. To do this, 
position the cursor to the start of the block, hold down the SPACE key to overwrite 
the characters with blanks. move the cursor back to the start of the block, and press 
CTRL D. It takes much longer to explain than to dol 

DEL The DEL key is used to delete single characters. You can of course hold it down to 
delete more than one, but for deleting many characters it is usually Quicker to use 
CTRL 0 as explained . 

CTRL Q This exits from the editor. 

Left and Right arrow keys. - These are used to move the cursor around the text. 

12 



2. OBJECT STATUS LIST 
You should have a good idea of what an Object/Status marker is by this t ime. This option allows 
you to name up to 48 markers. but only allows you to add new markers to the list . not delete 
them. Try to keep the names as short as possible. in order to save memory space dur ing the 
design. 

The odd spelling mistake is not important. as the player never gets to see these names · only the 
designer. As long as you know what they mean, there is no problem. In fact the list of names is 
del eted when you finally generate the game to run independently of TEXTURE. The Status 
markers are, still t here. but the computer converts the names to numbers to save space. This 
means there is more room for graphics etc. 

When you creat a new Status name, every object in the system automatica lly sets the 
corresponding marker set to 'false' . The 'Define Objects' option is used to change the setting if 
desired. Naturally, not all Status names wi ll be meaningful for all objects . You are not likely to 
'carry' a floor, for example. In fa ct you may decide to use another marker to indicate whether a 
marker is valid, e.g. you might have a 'carriable ' marker as well as a 'carri ed' marker. 

3 . LOCATION STATUS LIST 
Th is is si milar to the Object Status li st , but for locations. Each location will have its marker set 
'false' for each new name. Up to 24 markers ca n be defined. 

4 . DEFINE LOCATIONS 
This leads to an 8-option sub-menu. as follows:-

1. Select locat ion 

The purpose of this is to select th e location to work on. You will be asked to enter the location 
name, which will then be shown on the screen to confirm that t he compu ter has found it. 

If you want to create a new location, just press the ENTER key without typing a nam e. You will 
then be asked if you want to create the location, and if so for its name. l ocation names can be 
more than one word. although it is best to keep them reasonablv short otherwise the computer 
may not have room on the screen for them dur ing the game. 

You can rename locations (option 6), so there is no problem about correcting errors. or even 
totally changing the loca tions to a new one. 

2. Set Status 

This opt ion allows you to set a ll Status markers for the se lected location to t ru e or false . These 
will be the initial states, i.e. the states at the start of a game. They may well change during the 

game. 

3, 4 and 5. Standard Messages 

In these options you wi ll be asked for message numbers for the corresponding purpose (Help 
message etc.). The message number must exist, otherwise TEXTURE wi ll simply ask again. You 
can get out of trouble by pressing CTRl O. 

These messages are not printed automat ica lly, except for the ' Illegal Command' message. It is 
up to the designer to incorporate them into Actions for printing - i.e. i nto the Actions linked to . 
Help and Move commands. 

6. Rename 

You will just be asked for the new name. 

7, 8 . Location Pictures 
As previously explained, there are up to two picture/ sound blocks attached to each location. Of 
course the actual blocks are created later w ith the graphics utili ty. Each block has a number, 
and these options allow you to defin e the two block numbers for the selected location . The 
numbers must be in the rangeO to 249, and it is as well to keep a note of which numbers you use 
for each location. 

13 

6. DEFINE OBJECTS 

In this case, a 4 -option sub-menu is called up:-

1. Select object 

This is to select the object name you wish to work on. You must have selected an object before 
the other options can be used. 

To create a new object, just press ENTER without a name when asked for the object name, You 
will then be asked if you want to create a new object. and if so for the name of the new object, 
which should be typed carefully as for the various reasons it is impossible to change it once you 
press ENTER and the computer accepts it (though you can put in alternative names forthe same 
object - option 4). Prior to pressing ENTER, you can of course use the DEL key to correct 
mistakes, 

3. New Status Set 

Status Sets in effect 'create' an object at a particular location, complete with its own set of 
Status markers. The object created is given the name of the object selected by option 1. You will 
be asked for the location name, and also for the 'true' or 'false' state of each Status marker, 

It is possible to define an object as being at 'ALL' locations, by using a (*)characterin place ofa 
location name. For example, a roof or wall might be present everywhere, and avoids the need to 
specify it separately for each location. However, you may also want to, say. have a special wall 
at a particular location, as well as the 'general' wall at all locations. This would allow a different 
Action to be called up at the one special location, for example 'take wall' might be possible at 
one location but silly at others. 

Amazingly, TEXTURE allows this kind of thing with no problem . The rule is that, where there is 
an object specified at 'All' locations and a separate object created at a specific location, the 
specific one takes precedence at that location. Thus at that location 'take wall' would set the 
'carried ' Status of the specific object to 'true ', rather than that of the object ~pecified as being at 
'Al'l'~tocat;ons: If the 'carried' status of this 'general' object did get set. of course, it would mean 
that you w ould be carrying the walls at every loeationl Very strange I 

It is important at this point to stress the difference between the initial status and location of 
objects, and their values during the game. Clearly they will change in response to the players' 
commands. What we are setting up under these options are the initial states. These are stored 
separately in TEXTURE so that they can be restored to restart a game without reloading. 

2. Modify/ Delete Status Set 

Although object na mes can not be changed once entered. Status Sets can be deleted or modified 
as required. The computer first has to find the object you want, so you will be asked for its 
location. If it finds one at the location specified, you will be given thl! option to delete it. or to 
modify it s location and status. 

4 . Alternate Names 

You can put in here as many alternate names for the object as you like. 

DEFINE COMMANDS 

Commands are the things which the player uses to play the game, and form the fundamental 
link between objects, locations, and Actions (described later) . Thus in general a Command can 
be made spec if ic to a location and an object, and be linked to a specific Action. In fact, the same 
Command w ord(s) can be attached to many different locations and / or objects, calling up a 
different Action for each different location and/ or object combination. As explained'earl ier, this 
is done through the use of 'Object Sequences'. 

The Define Command option calls up a 4-option sub-menu as follows:-

14 



1. Select Command 

Again this selects the Command to work on. and you must select one before using the other 
oPtions. 

To create a new Command. press ENTER alone as usual. You will then be asked if you want to 
create a new Command, and if so for the number of objects attached to the Command. and the 
Command name(s). 

As shown in Fig. 4 and previously explained, Commands may have no objects (look, inv etc.). 
one object (e.g. take something). or 2 objects (e.g. hit something with something else). 
Command names must be single words - spaces are not allowed within the name. 

2. Enter Object Sequence 

Each Command type may have any number of 'Object Sequences ' which allow the same 
Command to call up different Actions at different locations and l or for different objects. In fact 
there must be at least one Object Sequence if the Command is to do anything useful . 

For each Object Sequence created. you will have to specify a location (which may be ALL), 0 , , 
or 2 objects (which may be ANY), and an Action number. The Action number, of course. 
determines which Action to carry out if the Command is used at the specified location with the 
specified obJect(s). 

The object names must exist. though of course there doesn 't necessarily have to·be one at the 
location specified. as one might be moved there during the game. Similarly, the location must 
ex ist. CTRL 0 can be used to get out of trouble. 

As you can specify for example an Object Sequence to apply to ALL loeations, and another one 
for a specific location, both for the same Command, TEXTURE resolves the conflict by giving 
priority to the one with the specific locat ion (providing the player is at that location). Similarlyfor 
objects. if there is a Sequence app lying to ANY object as well as one for a specific object. 

3. Delete Object Sequence 

To delete an Object Sequence. you wi ll have to tell TEXTURE which one to delete by supplying 
its location. obJect(s), and Action number. 

4 . Select Default Messages 

Each Command can potentially havea different message when (1 )the player uses an undefined 
object or (2) uses an object for which there is no corresponding Object Sequence. Thus a wide 
variety of responses can be aChieved for these 'default' conditions. The selected messages are 
printed automatically in the right Circumstances - you do not need an Action to print these. 

DEFINE ACTIONS 

How Actions are finked to Commands has already been described. In general, each Object 
Sequence has its own Action number. and th is calls up' an Action which does all the work of 
printing messages, altering Status markers. etc. This arrangement gives TEXTURE outstanding 
flexibility to cope w ith virtually anything the designer wishes to dQ. though each individual 
Action can be quite simple in itself . We give some examples later. 

When you use this option. you will be asked for an Action number. Actions are numbered 
sequen t ia lly start ing from zero. and tocreate a new one you simply enter the next number in the 
sequence. It is wise to make note of each Action number and its purpose as you go. 

The TEXTURE Editor is used to enter and modify Actions , though you must stick to a few rules 
when typing them in . The following example illustrates most of them. Remember that Act ions 
are made up of Condit ions, Variables. and ·Operators. Use CTRL '0 ' to ex it. 

15 

1 
J 

1 

Example 1 - An Action for an ' Inventory' Command 

MSG<0;1>: 
OBlOOP: 

[OBST(carried)!l01 VPRINT «AI>:SPC:VPRINT <DBJ>:NEWl: 
ElOOP: 
FINISH: 

The first line means print message (0) -' assumed to be something like 'You are carrying:' - at 
priority 1. Message priorities are explained later. They allow messages to be printed in the right 
order. 

Line 2 is an Operation to loop through all objects at all locations. The loop extends down to the 
ELOOP Instruction. All Operations etc. between OBLOOP and ELOOP wi ll be repeated for all 
objects. Thus line 3 tests every object to see whether the 'carried ' status is true (Le. not equal (£) 
to zero), and if so prints some stuff. 

VPRINT«A»prints the word 'A', followed by a space(SPC). Then VPR1NT<IOBJ)";)'printsthe 
object name, as OBJ is a variable used within loops to get the current object . Finally a new line 
(NEWL) is printed. 

Format Rules 

Refer back to Example 1 as you read through the following:-

1. 

Every Operator must be terminated by a colon (:) 

2. 

Conditions are enc losed in square brackets. You may have more than one Condition in a line, 
but they must all be at the start of the line. e.g.: -

[OBST(carr ied).Ol [OBlCII=PlOCl VPRINT <OBJ> :NEWl: 
would be valid, but not:-
[OBST(carriedl'~lIVPRINT<OBJ> : [OBlCO=PlOCl NEWl: 
If there is more than one, they must all be true to carry out the Operations following on the same 
line. In this context ' line' means a line terminated by a newline (I.e. ENTER) character. If you 
simply carryon typing across the edge of the screen, this will sti ll be on the same 'Iine' even 
though it appears on the next line of the screen. 

3 . 

Any parameters or Variables associated with an Operator are enc losed in angle brackets 
E.g. MSG<0;1> : 

4 . 

If there is more than one variable inside the angle brackets they are separated by semi-co lons 
( ; I.e .g . <~; l> 

5. 

Any parameters associated w ith a Variable are enclosed in round brackets, e.g . OBST(carr ied). 
If there is more than one parameter . they must be separated by commas. 

Example 1 shows how easy it is to create Actions in TEXTURE. This one is practically all you 
need for any inventor.y command. Obviously you will have to learn the Variables and Operators 
which can be used. but there are not many of these as you migh t think. The ones that are 
provided have been sublect to a great deal of thought and hopefully we have ach ieved the 
minimum set needed to give you total flex ibil ity. Before looking ilt more examples, we w ill look 
at all of them in some detail. 

16 



Variabl •• 

These are all the things you need to refer to within Actions to design your Adventure. such as 
Status markers. Object and player locations. etc, 

OBST - the Object Status Variable 

There are various forms of this Variable. all of which refer to the status marker of a particular 
object. 
Firstly there is the:-
OBST (status. object. location) 
form, Obviously, to identify the correct object. TEXTURE needs to know both its name and 
location. In this form of the 'Variable these are contained as parameters within the round 
brackets. 'status' is any name from the Object Status List. 

Often you will want to use the player location instead of specifying it explicitly. This is done 
using the form:-
OBST(status,object) 
which simply leaves out the location. 

In the third form. both the object name and location are omitted:
OBST(status) 
This form was met in Example 1, It is used within object loops (OBlOOP - ElOOP) to get the 
status of the current object , In effect it will refer to the status for every object. one by one. 

The two remaining forms are:-
OBST(status),OB1) or :-
OBST(status,OB2) 
Here the player location is used since it is not specified. and the object name is taken as that 
specified in the actual Command, For 2-object commands, OBl represents the first object, and 
OB2 the second. For example in 'take torch', OBl would be 'torch' and OB2 undefined, In 'hit 
wall with hammer', OBl would be the wall. OB2 the hammer. 

LeST - the location Statu. Variable 

There are just three forms of this:-
lCST(status.location) 
refers to the status at a specific location. 
lCST(status, PlOC) 
indicates the stat~~c\U!ent player location. whilst: -
lCST(status) • 
is used within location loops, Just as for objects, it is possible to loop through all locations using 
(lClOOP - ElOOP), This second form effectively refers to the status of all locations one by one, 
when used inside a location loop. 

OBle - the Object Location Variable 

You will need to be able to change and test the locations of objecls in Y.cwrA..ctions. Again there 
are various forms as follows:-

OBlC(object.location) 
Just as for the Object Status variable, the desired object must be specified by its name and 
location, In this form. these are specifically named. Of course, if you can specify its location you 
might think that OBlC is redundant, asyou already know its location . However. this form would 
be only useful for writing a new location to the object. when the location specified would be its 
old location . 

OBLC(object) 
If the location is not specified, the player location replaces it. Here TEXTURE has another clever 
trick up its sleeve, for if there is no such object at the player location, it effectively chooses the 
first object it finds in its list of objects at different locations. This means that you can refer to 
objects which are elsewhere and move them around as if by magicl 

17 

OBLCII 
This form specifies neither the object nor its location . It is used with in Object loops (OBlOOP· 
ElOOP) to refer to the location of every object. one by one. 

OBLCIOB1) or OBLC(OB2) 
By now you should havea good idea of what these mean. Instead of a specific object. these refer 
to the object specified in the players ' command. Again OBl and OB2 indicate either the first or 
second object . The location is taken as the player locat ion, just as in the OBlC(object) form. and 
the same trick is employed if there is no such object at the player location . 

OB1. 082 - Player-defined Object Names 

These two variables refer to the names of the objects specified by the player in a Command, as 
previously mentioned. Mainly they are used as parameters in DBlC or 08ST, but you could use 
them for any other purpose. For example you could pr int them using VPRINT<OBl >etc. Thus 
instead of responding ' It's not here ' for an object not at that location, you could replace the " It 's" 
by the object name. 

PLOe - the Player Location Variable 

This is simply the player location . You can use it anywhere appropriate, for example to tast 
whether a particular object is present at the player location. If you VPRINT it . the location name 
will be printed . 

OBJ - the Object loop Name 

This variable is the current object name in object loops, and only meaningful within such a loop. 
If printed. it will give name of the current object. 

LOe - the location Loop Name 

This has a similar function , but for location loops. 

M(1) to M(50) - the Marker/ counter Variables 

These variables can be put to any use thedesignerwishes. Theycan store numbers in the range 
-32767 to 32768, and be incremented and decremented. For example, a Marker/ counter 
variable might be used to count how long a torch had been on, or keep track of time. 

SejO) to Se(9) - the Score Variables 

These ten variables can hold numbers between Oand32767, and are used for scoring . Virtually 
any scoring system you like can be implemented, involving for example which locations have 
been visited. or particular commands used . Further details on scoring are given in the section 
which dissects the free Adventure provided with the package. 

Constants 

Two types of constants can be used in actions, numbers or text constants . Numbers must be in 
the range 0 to 32767, 
Text constants are normally enclosed in round brackets, e.g.:
VPRINT<IStr ike» : 
would print the word 'Strike ', Spaces are not sign ificant, and might be removed by TEXTURE. 
In some cases. text constants are converted to the equivalent location or object. where the 
name matches. For example:-
COPY«Swots Acre);PlOC>: 
would move the player to Swots Acre, provided it existed. The space is not significant , in fact:
COPY<ISwotsAcrel:PLOC>: 
would do just as well. 

18 



Operators 

Finally in this section we look at Operators. 

The MSG Operator 

Printing messages is an obvious necessity. and to do so we must specify a message number. 
and a priority. The reason for having a priority is that during an Action you may wish to prim 
several messages. but not always in the order they occur within the Action. As the Action 
proceeds, each message is added to a list of messages to be printed when the Action is 
complete. together with its priority. Then all the messages are printed, beginning with the 
highest priority ones .. Messages of equal priority are pr inted in the same order as they are added 
to the list. 
The simplest form of the Operator is :
MSG<nl,n2>: 
where n1 is the message number. n2 the priority (~to 49), The message number must exist. 
otherwise you will get a Syntax error when you exit from editing the Action. 
The second form is :-
MSG<PLOC;nl ;n2> : 
This is used to get one of the three messages which are attached to each location, namely the 
Help message, the Description message, and the 'Illegal command ' message. PLOC,indicates 
that these message numbers are to be taken from the players ' location. 
In this form. n2 is again the priority . but nl can onlytakevaluesof0, l ,or 2corresponding tothe 
three 'attached ' messages. 
A little thought will show why this second form is needed - if it wasn 't there the only way to 
select. say. a description message when the player moves wou ld be to test individually whether 
the player was at each location. a very inefficient method. 

The VPRINT Operator 

Often you will need to print actual variables, such as the names of objects etc, This is done 
using:-
VPRINT<variable> : 
for example:-
VPAINT<OBJ> : 
would print an object name. VPRINT has a priority of 24, and all VPRINT operators in an Action 
are joined together for printing as a single message. You cannot interspace MSG ou tput and 
VPRINT output. • 
For example:-
VPAINT < OBJ) : MSG<ll~4-> :VPAINT< LOC >: 
would in fact first print both an object name followed by a location name, followed by message 
(0). The message would not appear between the object and the location names, even though the 
MSG priority is 24, as al l VPRINTS effectively generate a sing le message. 

The Copy Operator 

This is used to write a value from one variable to another, e.g.: 
COpy «Swots Acr.);OBLC(OB 1» : 
would move the object referred to by the player, 081 , to Swots Acre. 
The general form is:-
COpy < from;t9 >: 

19 

The FINISH Operator 

This is used to terminate the Action at that point. 

The OSLOOP Operator 

OBLOOP is used in conjunction with ELOOP to loop through every object. You cannot ever 
nest loops inside each other. be they Object loops or Location Loops. 

The LCLOOP Operator 

This loops through all locations in turn. ELOOP is used to indicate the extremity of the loop. 

The ELOOP Operator 

Used in conjunction with OSlOOP and lClOOP. 

The Plcr Operator 

This is used to call up Graphics / sound blocks and has two forms similar to the MSG Operator. 
The simple form:-
PICT<nl ;n2> : 
will activate picture/ sound block n1 , in window n2. As for messages. each picture request is 
added to a list and only displayed after the action is complete. 

The second form;. 
P)CT<PLOC;nl ;n2>: 
selects one of the two picture/ sound blocks attached to each location. In this case. n 1 must be () 
or 1 only. (See Fig. 1 and the 'Define l occttlons ' option. 

The CANCEL Operator 

Sometimes you will want to cancel all the messages requested so far during the Action. This is 
done with:-
CANCEL: 

The PCANCEL Operator 

This cancels all picture/ sound blocks so far. 

The NEWL and SPC Operators 

These are used to put in spaces and new-lines to the VPRINT message. 

The RESTART Operator 

Th is Is used to 'kill' the player. a VERY powerful Operator I After it the player will on ly have 
options to restart the game. or resurrect himself. 

The INC and DEC Operators 

You can only use these with the 50 M -type variables, to increment or decrement them by one. 
For example:-
INC<M(1» : 
OEC<M(2» : 
etc. 

The 00 Operator 

You can jump from one Action to another by using the DO Operator. For example:-
00<5> : 
would effectively finish the current Action, and start Action number 5, This is very useful. 
Examples will be given later. 

The CAll Operator 

20 



This is similar to DO, butthe current Action, is not finished, merely suspended. When the Ca lled 
Action finishes, the original Action will recommence where it left off. Calls may be nested to a 
maximum depth of 50 . i.e. an Action can call an Action which itself ca lls another Action ... etc. 
to a depth of 50. If the depth exceeds this, any further Calls are ignored. An example would be;. 
CALL<6> :MSG<IA;1> : 
Action 6 would be done, then message" printed. If the CALL were a DO, of course, message" 
would not be printed as the original Action would terminate at that point . 

This completes the description of Operators. If you have read and tried these out, you should by 
now be fairly proficient in the use ofTEXTUAE. Any problems and questions which you have will 
hopefully be cleared up by re·reading the previously explained examples from the free game. 

8 . The TEST Option 

The final option on the main menu is Test. As you might expect, this allows you to test the game 
so far, though of course you will not see any of the graphics or sound. 

In the Test mode, you will first be asked which location you want to start at . Type in the exact 
name, though spaces wilJ.be jgnored. If you have loaded the example game files, look at 
Appendix 1 to find thp nameS-of the locations. 

You can now play the game just as though you were the player, though you will haveto use the 
exact command, ego STake Vid file$S . This ensures that the game design is correct. When the 
game is finally generated via CLONEA, things are more relaxed. The player could then just as 
well say $ Take the 1$111 Vrd flle$$, with the same effect. 

Usting Commands 

As well as the game commands, there are some specia l commands you can use . You can list 
locations, objects, and commands using :· 

$1C Object name $$ (to list the location and status of the object) 
$1L Location name $$ (to list the locat ion status) 
$lC Command name $$ (to list the Object Sequences for the command) 

For example, try :· 

$?O Vid file $$ 
S1L Outer Office S$ 
s lC Get 55 

w ith the example game. 

Please note that the command letters MUST be capital letters, both for list ing and the other 
commands described next. 

Modification Commands 

As well as listing commands, you can use commands to create new Objects, etc. without 
leaving Test mode. All these commands a!e preceeded by the 'slash ' character S / $, as follows :-

Sl OSS to create a new object 
S/ MSS to mOdify an exisling object 
'$/ LSS 10 modify a location status 
S/ ASS 10 create or modify an act ion 

Due to the w ay that Texture works, all objects and locat ions are reset to the ir initial status 
before the command(s) are carried out, except for the Action command . If you have followed the 
appropriate sect ion in the reference chapter , you should have no trouble using these 
commands. The prompts etc. which come up are identical to those appear ing when using the 
menu options 10 do the same lob, The great advantage, of course. is that you can continue to 
play the game without exit ing from Test mode. 

21 

Control Commands 

There are three special commands as follows:· 

S.P Location name s$ 
This moves the player to any location. For example, try:· 

$.P DAM LON SPACEPORT $$ in the example game. 

Note that this does not change the locations of any carried objectsl Also be sure to remember 
the decimal point. 

$.R$$ 

This simply resets everything to the initial state, except for the player. 

Finallv, there is:· 

$ CTRL Q $ 
command. This exits from the Test mode back into the main menu. 

Special Note 

Although not strictly options, it is worth mentioning here three keys. for colour control of the 
Texture screen. These won't effect the final game in any way, they are lust there so that you can 
set the colour to your own taste . 

CTRL B • Changes the border colour 
CTAL I • Changes the ink colour 
CTRL P • Changes the paper colour 

22 



The DEPICTER Utility 

Hopefully. by the time you tryout Oepicter. you will have a good idea of the structure of Genesis 
Adventures and how Actions are used to activate picture blocks. Oepicter allows both pictures 
and sounds to be created, and the results stored on cassette for use by CLONEA. It is vital to 
ensure that every picture number activated by any Action actually exists. otherwise your game 
will not run correctly. For example, if you have an Operator PICT < 23;0>: in your Actions and 
there are only 20 pictures created under Depicter, you will have problems when you CLONE the 
game. 

Up to 250' pictures (where 'picture' is used in the general sense of a combined picture/ sound 
block) can be defined, numbered ~to 249. These are the same numbers that Texture uses in the 
PICT Operators. Oepicter is also used to position the two text w indows. and up to 20 graphics 
windows. (A window is simply a rectangular section of the screen). Pictures can be drawn in any 
window, though normally you would not attempt to draw into a smaller window. Windows can 
overlap each other. so you can merge smaller pictures into larger ones. for example. 

The Initial Menu . Screen Modes and Colours 

Depicter is the second program on Side 1. and you should know by now roughly where it starts. 
Forward w ind to this point. and enter:-

S RUN " DEPICTER" ' SS 

After loading. you will have a 3-option menu on the screen. allowing you to set Screen Modes, 
Set Colours. or continue. Pressing keys $1 $ to $3$ selects the desired option. 

1 . Screen Modes 

Genesis allows you to se lect the screen mode independently for the top and bottom of the 
screen. The mode changes in the middle of lines 12 or 13 (line 1 is the top line). It is best to set 
your text and graphics windows to avoid these lines when using different modes. 

23 

If you select different modes, you will not see the effect until you actually come to draw a 
picture. Depicter itself always uses screen mode 1. As you should be aware from the Amstrad 
User Guide, the screen modes are:-

Mode" - 16 colours, 20-column text 
Mode 1 - 4 colours. 40-column text 
Mode 2 - 2 colours, S0-column text 

Ink Colours 

Option 2 allows you to set 16different ink colours from the 27 available. These inks are common 
to all pictures and text. Tlle standard setting is:-

INK COLOUR INK COLOUR 

~ BLUE 4 BRIGHT WHITE 

1 BRIGHT YELLOW 5 BLACK 

2 BRIGHT CYAN 6 BRIGHT BLUE 

3 BRIGHT RED 7 BRIGHT MAGENTA 

INK COLOUR INK COLOUR 

8 CYAN 12 BRIGHT GREEN 

9 YELLOW 13 PASTEL GREEN 

1~ PASTEL BLUE 14 ORANGE 

11 PINK 15 SKY BLUE 

Only on Mode 0can all16 inksbe used. Ifthewindow ison a Mode 1 part of the screen. only inks 
"to 3 are valid. For Mode 2. only inks 0 and 1. However, all 16 inks are set uP. though if you are 
not using Mode 0 you can simply set inks 4 to 15 to the same colour. 

The inks are set up in order. starting with ink0. Press the SPACE key until thecoJouryouwant is 
on the border. Then press ENTER to set the current ink and progress to the next one. 

Continue 

Option 3 simply takes you on to the first of the Picture / Sound creation menus. To get back to 
this initial menu at any time. simply press CTRL O. 

The General Options Menu 

This menu allows you to: -

1. Crea te a Pict / Sound block' 
2. Set Screen Windows 
3. Set Sound Envelopes 
4. Save / Load 

Option 1 

This takes you into the Create Picture menu. described later. 

24 



Option 2 

This brings up options to position the text or graphics windows. The two possible text windows 
~re la~lled O.and 1. Window ° is used to display the Location name, and would normally occupy 
Just a single hne of the display. The location names will be automatically centred in the window 
when printed. Window 1 is used for the main text of the Adventure. The procedure for setting 
the windows is identical , whether it is a graphics or text window. You will be asked first for the 
window number, then for values for the left and right edges and the top and bottom edges, all of 
which are specified as character positions. Remember that character line 1 is the top line. In all 
screen modes, there are always 25 lines from top to bottom . However, the screen mode does 
affect the number of columns left to right, (20 for Mode 0, etc.). For example, entering $10$$ 
and $11 $$ for the left and right edges would place the w indow in the cel")tre of the screen in 
Mode~, but in the left quarter for Mode 1. Where a dual-mode screen has been asked for. the 
mode for any window is assumed to be that of the top line of the window. In other words, if the 
top line is less than 12. the mode is that for the top of the screen. Normally. on a dual-mode 
screen. none of your windows would straddle line 12. 

Option 3 

We do not propose to explain in detail what the sound envelopes are. The Amstrad User Guide 
covers this fairly well. and there have been many articles on the subject in the computing press. 
You are expected to have an understanding of what volume and tone envelopes are all about. 
This option brings up a sub-menu, allowing you to create Volume or Tone envelopes. and test 
the sound. The Exit option simply returns to the previous menu. 

In fact Depicter creates two initial envelopes for you automatically - one Volume and one Tone
with a piano-like sound. Thus you can create mu~ic without bothering to set up any envelopes. 
However, for special effects, it is well worth learning how to do this. 

Up to 15 different envelopes of each sort can be created, though the fewer you use, the less 
memory is used. 

1, Volume Envelopes 

You will f irst be asked for the envelope number, and be told the maximum number you can use. 
For example. the first time you enter the option there will be envelope number zero in the 
system, the one created byDepicter itself. You can se lect that one or type in $1 $$ instead. In the 
latter case. a new envelope is created, initially w ith the same shape as envelope number zero. 

Let us assume that you have chosen number 1. On the screen now should be a graph of the 
envelope, plus another menu to the right, and the legends SCALE, ENV. NO., and REPEAT. The 
REPEAT option is only used for tone envelopes so that it can be ignored at the moment. 

The graph scale vertically is -15 to +15, with zero in the middle. Horizontally, the graph 
represents time. Try pressing keys $2$ and $3$ to see how the scale changes. The scalefactor 
is given in thousands of a second. so 160f,D means a scale of 1.6 seconds. 

Next. let us try setting up a simple envelope which increases to 15 in 15stepsof 2 hundredths of 
a second. stays level !or 311 hundredths, then decays to zero in 15 steps of 7 hundredths. First 
press $1 $, and ~ou WIll be asked for the seament number. The envelope is always made up of 5 
segments, each of which is a 'ramp ' up or down (or level). Enter SO$$ to select the first segment. 
then type in:-

$15$$ (To number of steps) 
$1 $$ (To step size) 
$2$$ (To time step. This is hundredths of a second) 

25 

Similarly. enter the following for the other 4 segments:

Segment 1 $1$$,$06$,610$$ 
Segment 2 $1$$,$\&$$,$10$$ 
Segment 3 $1 $$ , $~$$, $10$$ 
Segment 4 $15$$ $- 1$$,$7$$ 

Make sure you understand how this creates the shape in the graph. 

We pass on 'to the NOISE option, key $4$. Th is allows noise in various band widths to be added 
to the sound, for specia l effects such as machine noises, footsteps, etc. Choosing a zero noise 
factor removes the noise. It is impossible to describe the effects of adding noise. you will just 
have to experiment. using the test sound option. 

The Exit option takes you back to the Set Envelopes menu. where we now look briefly at tone or 
frequency envelopes. 

2 . Tone Envelopes 

Setting these is virtually identical to setting up volume envelopes, as you will see from the 
display produced. However, whereas volume envelopes should not normally go less than zero 
or greater than 15, the tone envelopes are not restricted in this way. Also, the Repeat option is 
valid, allowing the envelope to be repeated during the sound if it is shorter in duration. On the 
other hand. the Noise option is not relevant. 

Again it is impossible to describe the effect using tone envelopes. Experimenting is great fun , 
and you mey discover just the sound you need to make that graveyard scene truly terrifyingl 

3 , Test Sound Option 

On selecting this, you will be asked for the volume and frequency envelope numbers. Then, a 
picture of a keyboard will appear. one we shall meet again when adding sounds to pictures. The 
letters over the keys show which Amstrad keys to press to get notes. As well as the letter keys. 
keys tI to 7 select the octave (key 0 is the lowest octave). 

Of course, you can only play one note at a time. though when adding sounds to pictures you will 
be able to have three synchronised tracks for playing harmonies. 

The test sound option is provided so that you can experiment with envelope shapes before using 
them in earnest. 

The Create Picture Menu 

This is a four -option menu as follows :-

1. Select picture number 
2. Draw picture 
3. Create sound 
4. Exit 

These options are used to define the sound and graphics for the selected picture, so option 1 
must be used first to select which picture to work on. You will be asked for the picture number, 
which can be an existing one (pictures are numbered from zero upwards) or the next unused 
picture number if you want to create a new picture. 

Option 2 

Selecting th is takes you into the draw graphics section. You will first·be asked which graphics 
window you wish to use. Of course, this is just for drawing the picture - you can draw the 
completed picture into any window of the same size as the one you will eventually use . 

Once you have selected the window, you will be in draw mode. w ith the selected w indow 
outlined by a frame. In the centre of the window will be a pixel cursor surrol.;'nded by four dots. 
You can change this to a full cross by pressing CTRLC, and back again. The cursor colour can be 
changed by hitting the SPACE key. so that you can always make it visible no matter what 
background it is displayed against. 

26 



When you use any of the draw commands below, the ink colour will be taken from the border. 
The border colour is changed by pressing the SPS key. 

Naturally, since the pictures drawn have to be packed into very few memory locations, you 
cannot expect to be able to draw highly detailed pictures at every location in the Adventure. You 
can use up to 250 user-defined graphics characters to build detailed pictures for a few 
locations, or use the simpler graphics produced by using linedrawing, infilling, etc. to illustrate 
every location, or even objects etc. We shall now look at all the command keys in detail. 
Remember that the cursor is moved using the arrow keys (use SHIFT tor faster motion). 

1 . Drawing Lines and Curves. Keys L. N. E. and C 

After setting the border to the colour required. place the cursor at the start otthe line and press 
key $LS . This causes a 'rubber band ' to be anchored at this position. Then move to the end of the 
line and Nail the band bypressing SNS. You can continue to 'Nail ' the band likelhis by moVing to 
a new spot and pressing SNS again. When finished with line drawing, press SES . 

After this you would have to press SLS again for another sequence of lines. 

Curves are just as easy. Instead of pressing SNS, press SCS key. You will then be asked for the 
angle you wish the curve to turn through. After entering this, watch carefullyandyou will see a 
smal! spot move around the curve, possible leaving a trail of dots. This is so you can judge the 
curve, and change it if need be. 

2 , Boxes Keys R. F and E 

Boxes may be drawn by pointing the cursor on one corner and pressing SAS. Then move to the 
opposite corner and press SES for an outline or SFS for a filled box. 

3. The I"fill Command Key I 

Infill is used in areas with colour . In Depicter, a simplified infil/ is used tor maximum speed, but 
one which can escape beyond the edges of concave shapes in some circumstances. This is no 
great problem, as you can always delete the infill command, and split the shape into two or more 
segments on which infill works correctly. It is always best to start the infill in the narrowest 
possible place on the shape. This is faster and should solve most 'escape ' problems. 

4. User Graphics Keys G and H 

Key SHS is used to set up shapes for up to 256 characters of 8 x 8 pixels each. Hopefully, the 
screen produced on pressing SHS is self-explanatory. The graphics are numbered from 0 
upwards. and you can skip through them by using the angle-bracket keys < and> . The arrow 
keys are used to move the large block cursor around the enlarged design area, to design the 
graphic. When complete, it can be transferred into the current graphic number by pressing SES. 
To return to drawing pictures, press ENTER. (See the SDS key below for how to re-draw the 
picture). 

Once you have set up some graphics, they can be placed in the picture by pressing SGS. This 
displays graphic 0 in the lOP left corner. You can move this around using the arrow keys, and 
cycle through the shapes using the angle bracket keys, "and> . When ready, press Enter to fix 
the graphic in place. 

5 . The Clear Window Command Key S7S 

This command puts a 'Clear Window' into the picture. You might use it to clear any previous 
picture before drawing the new one. Two pictures drawn into the same window during the 
game will be merged, unless the second has a 'Clear Window' as its first draw command. 

We look at some control commands. These do not aClually put commands into the picture, they 
are simply for the users' benefit . 

27 

6 , Deleting The last Draw Command Key SDElS 

This key deleles the last drawing command. so can be used 10 correct mistakes. Do not hold it 
down, as it auto-repeats. The picture is not affected directly. to see the effect you w ill have to 
clear the window and re-draw the picture. 

7. Clearing The Wil)dow Key SCLAS 

This key simply clears the window. Unlike the S2S key, it does not put a draw command into the 
picture. 

8 . Rs-drawing Key SDS 

This re-draws the whole picture. 

9. Finish Key CTAL a 
Pressing seTRl as exits back to the picture creation menu. 

Option 3 - Create Sound 

This leads to a further sub-menu with the following options:-

1. Enter Track 
2. Enter Rhythm 
3 . Play Tracks 
4. Exit 

Briefly, Option 1 is used to enter the sequence of notes, Option 2 to set up the rhythm for the 
note, and Option 3 to play the results. 

Option 1 

You will f irst be asked for the track number, followed by the envelope number. The screen that 
follows you will have seen before, in the Test Sound options. The piano-keyboard shows which 
letter keys to press to play notes, whilst number keys rJ to 7 are used to select the octave. 

Be a little cautious about pressing keys to play notes here, as each one you press may insert 
another entry into the list of notes. The option is used to simply enter the sequence of notes. 
Selting the rhythm is left to Option 2. You can edit the sequence of notes by ear, using the left 
and right arrow keys to play backwards and forwards through the sequence. Press the delete 
key to delete the note that was played last. Similarly, you can insert a note at the current 
position. Try these out to get the hangofit. Imagine that you aresplicing bits of tape into or out of 
an audio tape, and you should get the idea . 

If you are not positioned at the last note, any notes you play will simply re-writewhatwas there 
before, so you can insert space for a note, and then put in the correct note. Of course, if you are 
at the end, any new notes played will be added to the sequence. 

Option 2 

Using this, you can set the rhythm for any track, using another track as a backing track, or a 
standard beat. When asked for the keyboard speed (actually the speed of repeats if you hold the 
beat key down), a typical figure for normal music would be 15. Only if you want to playa 
sequence of notes very rapidly should you use smaller values, otherwise you will not be able to 
release the key fast enough to prevent several notes from playing each key press. 

The rhythm is set up simply by pressing a single key ($BS). As soon as you press the key first 
time, the first note sounds from the track (the backing track, of course, plays continuously). On 
the second press, the first note finishes and the next begins. Thus the length of the first note 
depends on the second key press. For this reason, you must press the key once more after the 
last note sounds, to finish setting the rhythm. Otherwise, the last note will last forever I You will 
be returned to the Sound Menu automatically after the final key press. 

28 



Option 3 

This option has a two-fold purpose. First it enables you to listen to the complete sound, with all 
tracks playing together if you have used more than one. Secondly, it is used to set the number of 
times the sound is to repeat itself in the game. A zero value means the sound will repeat until 
terminated by some other sound starting up. 

This completes the description of Depicter. Do not be afraid to experiment w ith the options, and 
do not worry if you do not understand all the features immediately. You do not need to be a 
complete Genesis expert to start building your games. Use the features you do understand and 
you will soon begin to understand the rea sons for having the more complex features. After that, 
you will wonder why it wasn 't obvious to start w ithl 

Appendix 1 

The Eumple Game 

1 . Action List 

ACTION PURPOSE ACTION PURPOSE 

\I LOOK 21 DEATH 
1 INV 22 EAT 
2 TAKE/ GET 23 KISS MILLY 
3 DROP 24 HIM/ HER 
4 SPECIAL VIDFILE TAKE 25 EAT HIM 
5 HELP 26 START-UP 
6 UNUSED 27 ON THE LIPS 
7 GO NORTH 28 GENERAL INJURY 
8 GO SOUTH 29 SPECIAL EAST 
9 GO EAST 3(6 UPDATE M(6) 

10 GO WEST 31 UNUSED 
11 GET KEY (OUTER OFFICE) 32 DISPLAY DIRECTIONS 
12 GEN ERAL MOVE 33 INSERT KEY 
13 KILL CHIEF 34 LIBRARY FILE 
14 lAM 35 TWIST HELIX 
15 I DON 'T 36 ASSOCIATED WITH 34 
16 YES 37 ASSOCIATED WITH 34 
17 NO 38 KILL SHICKLGRUBER 
18 GENERAL KILL 39 DISPLAY CARRIED 

OBJECTS 
19 GENERAL HIT/ KICK 4¢ DISPLAY PRESENT 

OBJECTS 
2Q SWEARING I I 41 DESCRIBE 

29 

2. M .. _ 

There are 72 messages, examine these using Texture. 

3 . Commands 

(This is not 8 complete list) 

GO. TAKE. GET. HAVE, RUN, WALK. EAT, KISS, HUG, KILL, I, ANSWER, SAY, UP, DOWN, 
LOOK, RUN. INV, DESCRIBE, DROP, HELP. YES. NO, NORTH. SOUTH. EAST. WEST. 

4 . ObjOCb 

(Not a complete list) 

WALL, DOOR, CHIEF, NORTH, SOUTH, EAST, WEST, HIM, HER, TASK, TRANSMAT, ROOF, 
CEILING, HELL, UP, DOWN, LEG, DINNER, MIRACLE. SECRETARY, MILLY, SOO, BOIL, CHEER, 
BUZZER. OFFICE. SMELL YVISION, CONTEST. JURY, PHONE. AM. LIPS. OUT, VIDFILE. FILE, 
TAPE. KEY, HELIX, GUN. F1 to F16. 

5. Object Status Markers 

CARRY. CARRIABLE. LKAB 

6. Location Statu. Markers 

NO (NORTH ). SO (SOUTH), EA (EAST), WE (WEST), VISIT (VISITED) 

7. Location. 

G.I.A. OFFICE, OUTER OFFICE, DRAUGHTY CORRIDOR. OUTSIDE THE LIBRARY, THE 
LIBRARY. VIDFILE READER, OUTSIDE THE G.I.A " YOUR OFFICE. THETRAVELSTAT, VERSAT 
SPACEPORT, DAM LON SPACEPORT. JUNKS HOP. HARMIES HI BAR. 

, 

30 



Appendix 2 

Hints for Advanced Users 

1. Saving memory 

In most adventures, it is messages which are likely to use the lion 's share of the memory. Large 
savings can be made by using sub-messages for phrases or even long words that are used more 
than once. Remember that including 'an extra MSG Operator in an Action only takes up three 
bytes, so separate messages for even quite short words wilt save space if they are used 
frequently. There are limits, however. Firstly, of course, you can only have a maximum of 250 
messages, but also Genesis can only queue up to 10 messages prior to printing them. Any 
more, and the last ones will be ignored. , 

You can also save space inActions, by copying long location names to one of the M -type general 
variables. Since locations (and objects for that matter) are given numbers as well as names, an ' 
operation such as:-
COPY<IOUTER OFFICEI;M(1 I> ; 
would load M(1 )withthe location number. SincethePLOCvariable is alsoa number, copying an 
M-type variable to PLOC is also quite poss ible. Examples of th is technique can be seen in 
actions 9 and lOaf the example game. 

By a similar technique as that used for messages, space can also be saved by constructing 
larger pictures from several smaller ones. Careful choice of graphics windows is needed, but 
large savings can be made. 

2 . Adding Loading Screens 

The CLONED game deliberately does nothing to the screen whilst loading. Thus it is quite easy 
to add your own leader program to create a loading screen. 

The program should end with a RUN"' " instruction. 

Technical Queries 

All technical queries should enclose a STAMPED, Self Addressed Envelope, and should besent 
to:-

CAMEL MICROS GENESIS QUERIES 

WELLPARK, 
WILLEYS AVENUE, 
EXETER 
EX288E 
Tel ; 103921 211892 

31 


