
. . - . . -
""'···········-·-.. - ~ • .. • .. • ' l - ... _ - ·- - - - -

--- - -

USER'S MANUAL STATEMENT

This equipment generates and uses radio frequency energy. If it is not properly
installed and used in strict accordance with the manufacturer's instructions,
this equipment may interfere with radio and television reception : This machine
has been tested and found to comply with the limits for a Class B computing
device in accordance with the specifications in Subpart J of Part 15 of the FCC
rules, which are designed to provide reasonable protection against such inter
ference in a residential installation. If you suspect interference, you can test
this equipment by turning it off and on. If you determine that there is interfer
ence, with radio or television reception, try one or more of the following mea
sures to correct it:

• Reorient the receiving antenna

• Move the computer away from the receiver

• Change the relative positions of the ocmputer equipment and the
receiver

• Plug the computer into a different outlet so that the computer and the
receiver are on different branch circuits

If necessary, consult your Commodore dealer or an experienced radio/
television technician for additional suggestions. You may also wish to consult
the following booklet , which was prepared by the Federal Communications
Commission:

" How to Identify and Resolve Radio-TV Interference Problems".

This booklet is available from the U.S. Government Printing Office, Washing·
ton, D.C. 20402, Stock No. 004- 000- 00345-4 .

You should use only the cables, accessories, and peripherals recommended by
Commodore for your Commodore 64. All cables , including the cables for the
television hookup, serial port , video port, datassette, and joysticks, are spe·
cially shielded, in accordance with the regulations of the Federal Commu·
nications Commission. Failure to use the appropriate accessories and cables
will invalidate the FCC grant of certification , and may cause harmful radio
interference.

COMMODORE 64 K
USER'S GUIDE

Published by

Commodore Business Machines, Inc .

Joystjcks

Colar Monitor

COi
COi

iii INTRODUCTION

v HOW TO USE THIS GUIDE

MODORE 64 Commodore 64 1 UNPACKING AND SETTING UP 1 PUTER Equipment How to unpack and set up your Commodore 64 computer and
any accessory Commodore equipment you may have purchased

Interconnection with your computer

Diagram 17 THE C64 KEYBOARD 2 How to use the Commodore 64's Keyboard to enter information

Note 1 : Connections shown are and perform special functions

for Commodore equipment only.

3 Connection location or type may 25 USING SOFTWARE
be different for non-Commodore What software is and how to use it with the C64
equipment. See your equipment
manual for details.

BASIC-A PROGRAMMING LANGUAGE 4 33

Note 2: You can use either a TV
Introducing the BASIC language through some elementary corn-
mands and some simple programs

patassette
set or a monitor as your visual
display unit. Follow the diagram

5 for whichever type of display unit 51 PROGRAMMING IN BASIC

you are using. Additional BASIC commands and more sophisticated program-
ming techniques

Disk See Section 1 for more informa- 59 ADVANCED CONCEPTS 6 tion on connecting equipment to How to use even more powerful BASIC commands, statements,

your Commodore 64 computer. functions and programming techniques

73 GRAPHICS. COLOR AND SPRITES 7 Exploring the C64 's exceptional graphics, color and animation
capabilities

105 MUSIC AND SOUND 8 Introducing the C64 's versatile music and sound capabilities

115 APPENDICES

159 BASIC 2.0 ENCYCLOPEDIA
191 GLOSSARY
203 INDEX

Copyright© 1984 by Commodore Electronics Limited.

Th is manual is copyrighted and all rights are reserved by Commodore Elec
tronics Limited. This document may not, in whole or in part , be copied, photo
copied, reproduced, translated or reduced to any electronic medium or
machine readable form without prior consent, in writing , from Commodore
Electr.onics Ltd.

Commodore BASIC V2.0

Copyright© 1982 by Commodore Electronics Limited.
Copyright© 1977 by Microsoft, all rights reserved.

INTRODUCTION

THE COMMODORE 64

-YOUR KEY TO THE INFORMATION AGE
The Commodore 64 personal computer (more simply, the C64) is a power

ful , sophisticated yet easy to use information processing system. With the
C64, you can process almost any kind of information-business, personal ,
educational , recreational , scientific, financial and more. And with the C64
you can present this information in almost any form-words, numbers, pic
tures and sound.

With the wide-ranging capabilities of the C64 at your disposal , you can do
all this:

• Word Processing-Type a draft, make changes or correct mistakes
electronically, then print out a perfect final copy. Create form letters and
mailing lists. Save all your material in electronic files and recall it with a
few keystrokes.

• Business Calculations-Electronically create spreadsheets, do budg
eting and payrolls , create " what if " scenarios. do complex statistical
analysis, calculate tax and income data, and control your investment
portfolio. Do general ledgers, accounts receivable and accounts pay
able. Create full-color graphs and charts based on your numerical data.
Even use the C64 to balance your checkbook.

• Data Base and File Management-Create your own electronic files
and data bases. Store and control all the letters and documents you
write and all the numerical , statistical and financial data you generate.
Keep track of inventories and collections. Create and update status
reports. Even file recipes. (The C64 can electronically adjust a recipe
that serves, say, four to serve, say, a party of 10.) In short , save, delete,
change or combine any and all of your information at will.

• Telecommunications-Electronical ly " mail " almost any kind of infor
mation, almost anywhere. Access information services-like Compu
serve, The Source, Dow Jones and the New York Times-for detailed
information on almost any topic . Consult the World Book and other ency
clopedias electronically. Send and receive personal messages and other
information through computer bullet in boards. Even receive newspapers
on your TV or monitor.

iii

• Education-Learn a language and improve your spelling . Help your
children learn math , science, English, music and other subjects, at both
elementary and advanced levels. Use light pens, drawing tablets and
speech synthesizers. Visit the stars through your own planetarium.
Learn how to program. And note that with the C64 , YOU control the pace
of learning , so you can go as fast or as slow as you like.

• Entertainment-Play hundreds of act ion games and mind games.
Draw pictures, make music, pursue evil villains and save fair damsels.
Do all this in the comfort of your home-you never have to wait in line or
pay to park the car.

• Sound/Color/Graphics-Control a versatile 3-voice, 9-octave sound
synthesizer. Mix and match 16 colors. Create animated figures and dis
plays. Incorporate all these features in your own programs.

• Programming Languages-Learn to use the powerful BASIC pro
gramming language built into the C64. Use other programming lan
guages such as C, COBOL, COMAL, FORTH , FORTRAN , LOGO, PILOT
and PASCAL. as well as machine language

• Interfacing with Other Equipment-Interface with prin ters, disk
drives, tape recorders, communications modems, video monitors, televi
sion sets, stereo equipment, video recorders, Joysticks, paddle control
lers, telephones, light pens, drawing tablets , numeric keypads, music
synthesizers and many other types of equipment-including a robot
servant!

In doing all these things, you can use the C64 in two ways:

• You can select from many prepackaged programs (software) available
on cartridge, disk or tape.

• Or you can create and run your own programs.

Whatever your level of expertise, this User 's Guide is designed to help you
begin using your C64 quickly and easily.

iv

• HOW TO USE THIS GUIDE
To start using your Commodore 64, follow this procedure:

• Read Section 1, UNPACKING AND SETUP Then unpack all the equip
ment and set it up. Follow the directions given in Section 1 and in the
overall interconnection diagram found just inside the front cover of this

Guide
• Read Section 2, THE C64 KEYBOARD. This section introduces you to

the C64 keyboard, including special keys and functions .
• Read Section 3, USING SOFTWARE. This section tells you how to use

software that is packaged in any of the three standard formats
cartridge, tape and disk. When you have completed this section, you will
be ready to use almost any of the many commercially available software
packages. In other words, you can start computing right away-even
without reading the rest of this Guide.

• If you are interested in programming the Commodore 64 yourself, you
will want to read Section 4, BASIC-A PROGRAMMING LANGUAGE, Sec
tion 5 PROGRAMMING IN BASIC, and Section 6, ADVANCED CON
CEPTS. These sections describe the Commodore 64 's computational
capabilities and introduce the advanced BASIC programming langu~ge
that is built into the Commodore 64. The sophisticated color, graphics,
sound and music capabilities of the Commodore 64 are described in
Sections 7 and 8. For complete details on all of these features , consult
the Commodore 64 Programmer 's Guide, available from your dealer and

at most bookstores.
• Refer to the Appendices for a wide range of information on the C64,

including a list of error messages and recommended responses;
detailed technical data on color, graphics and sound; definitions of all
C64 BASIC commands, statements and functions; a glossary of comput
ing terms; a list of software available for the C64, and a list of publica
tions on various aspects of the C64.

You can begin using your Commodore 64 as soon as you have set up an.d
connected the equipment. How far and how fast you progress after this
beginning is up to you. YOU are in control.

v

UNPACKING AND
SETTING UP

This section tells how to unpack and set up
your Commodore 64 Computer and any

accessory Commodore equipment you may
have purchased with your computer

Unpacking __________________ 3

Checking What You Received 3
Setting Up 4

Picking a Spot For Your Computer 5

Connecting Your Computer to a Television
Set or Monitor _________________ 5

-Connection to a Television Set 5
-Connection to a Monitor 7

Connecting Your Computer to Electrical Power 7

Turning On The Computer For The First Time 7

If You Have a Problem . . . 8
Connecting Accessory Equipment 11

-Cassette Recorder 11
-Disk Drives 11
-Printers 12
-Chaining Disk Drives and Printers 13
-Modems 13
-Controllers 13

Typical Arrangement of Accessory Equipment
andtheC64 _________________ 14

About RAM and ROM 14

•UNPACKING
Since you are reading this Guide, you have probably already opened the

box containing your Commodore 64 computer.
IMPORTANT!-Don 't try to connect one piece of equipment to another,
and don' t plug anything into an electrical outlet until you have read the
instructions 1n this section.

• CHECKING WHAT YOU RECEIVED
The first thing you should do 1s MAKE SURE that you received the follow

ing items in the computer box (in addition to this Guide):

The Commodore 64 Computer-The computer is light tan 1n color, about
18 inches long , and comes equipped with a typewriter-style keyboard. On the
back and right side of the computer there are several types of sockets and
plugs that you use to connect other equipment.

Power Supply-This is a black piece of equipment about 6 inches long, 3
inches wide and 3 inches high . There are two cords connected to the power
supply. One cord goes to a 3-prong electrical outlet. The other cord is a
special cable that plugs into the side of the computer.

3

TV Switch Box-This is a small black and silver piece of equipment that is
about the size of a pack of cigarettes. There is a short strip of flat TV antenna
wire attached to the side of the switch box.

TV Connector Cable-This is a black cord about 10 feet long , with a male
type RCA phono plug on each end.

Warranty Card-This is a prepaid, preaddressed postcard. You should fill
out and mail this card promptly to ensure that your computer is protected
under the terms of the Commodore warranty.

NOTE: If any of the items listed above is missing , contact your
dealer immediately. Save the boxes your equipment comes in .
They will provide protection for the equipment if you move it or
return it for service.

•SETTING UP

NOTE: When you are setting up and connecting your C64, refer to
the large, fo lded interconnection diagram located just inside the
front cover of this Guide. This diag ram illustrates how to connect
typical Commodore accessory equipment to the C64 computer.

4

PICKING A SPOT FOR YOUR COMPUTER

When you set up your computer equipment, pick a spot away from heat,
dust, smoke or electrical interference. If possible, plug your equipment into
its own separate circuit.

CONNECTING YOUR COMPUTER TO A TELEVISION SET OR MONI
TOR

You can connect either a standard television set (color or black and white)
or a video monitor to display your computer information. (A Commodore
monitor gives a sharper picture.)

Follow the illustrations in the large interconnection diagram and the
instructions in the following paragraphs in making these connections.

CAUTION: Before making any connections, turn off the computer
and the televison set or monitor.

Connection To A Television Set

How you connect the C64 to your TV depends on what type of antenna
connection your TV has. There are two basic types of antenna connections:

• Flat 300-ohm wire
• Round 75-ohm coaxial cable

The following procedure assumes that your television set uses the flat
300-ohm wire connections. If your set uses 75-ohm connections, see the
Notes following Step 6 of the procedure.

1. Disconnect the VHF antenna wires from the VHF terminal of
the TV.

2. Insert these wires under the screws at the bottom of the
switch box, marked CONNECT TO ANTENNA.

3. Connect the short wire , coming from the side of the switch
box and marked TV VHF, to the VHF terminal of the TV.

4. Slide the selector switch on the switch box to the position
marked COMPUTER.

5. Plug one end of the TV connector cable (the 10-foot long black
cable with the phono plug at each end) into the TV jack on the
back of the C64.

6. Plug the other end of the TV connector cable into the jack
marked COMPUTER at the top of the switch box.

5

NOTE-Step 2: If your antenna
cable is the round 75-ohm type, you
will need to use a 75-ohm to 300-
ohm adapter (not supplied) to attach
your VHF antenna cable to the
scre·ws at the bottom of the switch
box. See diagram at right.

NOTE-Step 3: If your television
set's antenna terminals are also
round 75-ohm types, you will need to
use a 300-ohm to 75-ohm adapter to
attach the switch box to your set 's
VHF terminals . See the diagram at
right.

6

75 OHM TO
300 OHM
ADAPTER

{a~~]
/

TO VHF ANT

Connection To A Monitor

You connect a monitor to your C64 through the audio/video connector on
the back of the computer. The kind of cable you use depends on the type of
monitor you have and the type of audio/video connector your C64 has . The
inte(connection diagram at the front of the Guide shows a Commodore moni
tor connected to the C64 . If you have a monitor, consult your user's manual
for full installation and operation instructions.

CONNECTING YOUR COMPUTER TO ELECTRICAL POWER

To connect your computer to electrical power, plug the end of the round
power supply cable into the computer power socket (the back connection on
the right side of the computer). Make sure the computer power switch
(located on the right side of the computer. next to the power socket) is set to
OFF.

Next, insert the 3-prong plug from the power supply into a 3-hole electr ical
outlet.

TURNING ON THE COMPUTER FOR THE FIRST TIME

Make sure that you have connected the computer properly to a televison
set or monitor. Turn on the television set or monitor. If you are using a televi
sion set , set the channel selector switch on the back of the computer to
either channel 3 or channel 4-whichever is not used in your area. (If you are
using a monitor, you don 't need to set this switch, since it does not affect the
monitor.) Then set the computer power switch (located on the right side of
the computer) to ON. The smal l red light on the top right side of the computer
should come on.

7

Initial Screen Display

Shortly after you turn on your computer, you should see a display like this
on your television set or monitor:

The screen has a 25-line display and up to 40 characters can be displayed
on each screen line.

The Cursor

Notice the small flashing rectangle at the upper left part of the sc reen ,
just be low the word READY. This rectangle is ca lled the cursor. The cursor
marks your position on the screen . When you type in something or when the
computer responds to something you have typed in , the cursor moves
accordingly.

IF YOU HAVE A PROBLEM .. .

If the screen display is not clear, adjust the controls on your television set
of monitor. If you don 't get a picture at all , check all your connections. Use
the troubleshooting chart on the next page as a guide.

8

Symptom

Indicator Light
not " On"

No picture

Random pattern
on TV with car
tridge in place

Picture without
col or

Picture with
poor color

Sound with
excess back
ground noise

Cause

Computer not " On"

Power cable not
plugged in

Power supply not
pluggeli in

Bad fuse in computer

TV on wrong channel

Incorrect hookup

Video cable not
plugged in

Computer set for
wrong channel

Cartridge not prop
erly inser ted

Poorly tuned TV

Bad color adjustment
on TV

TV volume too high

9

Remedy

Make sure power
switch is in " On"
position

Check power socket
for loose or discon
nected power cable

Check connection
with wall outlet

Take system to au
thorized dealer for
replacement of fuse

Check other channel
for picture (3 or 4)

Computer hooks up
to VHF antenna
terminals

Check TV output
cable connection

Set computer for
same channel as TV
(3or 4)

Reinsert cartridge
af ter turning off
power

Retune TV

Adjust color/hue/
brightness controls
on TV

Adjust volume of TV

Symptom

Picture OK, but
no sound

Computer stuck;
cursor not flash
ing

Computer dis
plays garbled
symbols on the
screen

Cause

TV volume too low

Aux. output not prop
erly connected

Computer inadver
tently received
instructions to dis
able keyboard ; or the
printer, cassette or
disk drive is in listen
ing mode

Overheating

10

Remedy

Adjust volume of TV

Connect sound jack
to aux . input on ampli
fier and select aux.
input

While depressing the
RUN/STOP key press
RESTORE key twice;
or reset the accesso
ries by turning off and
on ; or reset the com
puter off and on .

Pull plug on power
supply whe!l not
using computer for
extended periods
(overnight).

• CONNECTING ACCESSORY EQUIPMENT

In addition to the television set or video monitor used for the display, you
can connect various types of accessory equipment (known as peripheral
equipment, or simply peripherals) to your C64. Some commonly used periph
erals are described in the following paragraphs.

NOTE: Refer to the large interconnection drawing for illustrations
of how to connect peripheral equipment.

CASSETTE RECORDER

A special Commodore cassette recorder called a Datassette provides an
easy and inexpensive way to save information entered in the computer, or to
supply information to the computer. In the interconnection diagram, notice
that you connect the Datassette recorder to the C64 through the cassette
port on the back of the computer. (Note: To avoid conditions that could
adversely affect Datassette performance, always make sure that the
recorder is at least two feet from the television set or monitor, or any other
equipment-such as stereo components and speakers-that can generate
electromagnetic interference.)

If you have a Datassette, consult your user 's manual for full installation
and operation instructions.

DISK DRIVES

A disk drive is another, faster way to save information entered in the com
puter or to supply information to the computer. The information is saved or
stored on 5-inch disks (sometimes called " floppies"). A typical connection
between a Commodore 1541 disk drive and the C64 is shown in the intercon-

11

nection diagram. Note that you connect the disk drive to the C64 through the
serial port on the back of the computer. If you have a disk dr ive, consult your
user's manual for full installation and operation instructions.

PRINTERS

A printer can provide a printed copy (" hard copy") of information that is in
the computer or stored on disks or tapes. A connect i 9tween a Commo
dore MPS-802 printer and the C64 computer is shown in the interconnection
diagram. Note that in this example the printer is connected to the C64
through the serial port on the back of the disk drive. This type of multiple
connection, called "daisy chaining ," is described in the next paragraph. You
can also connect a printer directly to the C64 by using the serial port on the
back of the computer console. If you have a printer, consult your user 's man
ual for full installation and operation instructions.

'
--- - ·

12

CHAINING DISK DRIVES AND PRINTERS

You can use the " daisy chaining " (or simply " chaining") technique to con
nect up to five disk drives or printers to the C64 computer at one time. In this
technique, you connect a cable from one serial port of a printer or disk drive
to a serial port of another disk drive or printer. Note that a disk drive must be
the item of equipment that is directly connected to the C64 's serial port.

MODEMS

A modem allows you to use your C64 computer to communicate over
telephone lines with other computer users, as well as with information ser
vices and computerized bulletin boards. A connection between a Commo
dore modem and the Commodore 64 computer is shown in the interconnec
tion diagram. Note that you connect the modem to the C64 through the
parallel user port in the back of the computer. If you have a modem, consult
your user's manual for full installation and operation instructions.

CONTROLLERS

Controllers are devices that allow you to direct computer activities by
hand. Controllers include joysticks, paddles and trackballs. Although joy
sticks are generally associated with computer game activities, they are
being used more and more in business and especially educational software
programs. Controllers are connected to the C64 through the two game ports
on the right side of the computer. Check your software instructions to see
which port you should be using.

13

• TYPICAL ARRANGEMENT OF ACCESSORY
EQUIPMENT AND THE C64

Shown connected to the C64 in the accompanying diagram is a grouping
of some of the popular Commodore peripheral equipment. This equipment
includes a Commodore color monitor, a single disk drive, a Datassette
recorder, an AUTOMODEM , a serial printer and a pair of joysticks.

-· .. •••T• • • W•-"•
': 7-.'' ."" _ _, ... • -- .. · _ - -· _;_ =-------

• ABOUT RAM AND ROM
You have probably read or heard the terms RAM (Random Access Mem

ory) and ROM (Read Only Memory). These are the two types of memory used
by a computer in processing information. The C64 has 64 kilobytes of RAM.
This means that the C64 can hold about 64 ,000 characters (bytes) of infor
mation in its memory. About 39,000 bytes are directly available for use by
you. The rest of RAM is used by the C64 in carrying out your instructions and
running your programs.

The Commodore 64 also has 20 kilobytes of ROM (Read Only Memory).
ROM can only be used by the computer itself to perform and control its
internal activities. This memory cannot be changed by you, although there
are methods that you can use to see what values are in ROM.

The computer keeps track of how much RAM you have used and how
much you have left. The computer also keeps track of the contents and sta-

14

tus of ROM . So, unless you are interested in creating your own programs, you
generally need not be concerned about RAM and ROM .

You should now be able to set up, plug in and turn on all your equipment.
Check the equipment connections you make against the overall interconnec
tion diagram in the front of this Guide. This diagram shows a typical setup for
an all-Commodore equipment package. You should also refer to the manuals
included with any peripheral equipment you may have purchased .

The next section of this Guide describes the Commodore keyboard , telling
you how to use some special keys that make the C64 's keyboard slightly
different-and far more poyverful-than that of a standard typewriter.

15

THE C64 KEYBOARD
This section tells how to use the Commodore

64 's keyboard to enter information and to
perform special functions

What the Keyboard Is Used For 19
Keyboard Modes 20
Functions of the Special Keys 20

-RETURN 20
-SHIFT 20
-SHIFT LOCK 21
-CRSR 21
-INST/DEL 21
-CTRL 22
-RUN/STOP 22
-RESTORE 23
-CLRHOME 23
-COMMODORE KEY (C ..) 23

Printing Graphic Characters 24
Programmable Function Keys 24

17

• WHAT THE KEYBOARD IS USED FOR
Using the keyboard to enter information is probably the most important

method of communicating with your Commodore 64 computer. You use the
keys to tell the computer what you want it to do, and to reply to any mes
sages or questions the computer displays on the screen . (These messages
and questions are sometimes called " screen prompts " or simply
" prompts".)

Most of the letter, number and punctuation keys on the Commodore 64 's
keyboard look and work like the corresponding key on a standard typewriter.
In addition, many of these keys can produce special graphic symbols , which
are indicated on the front of the keys. There are also special keys that let the
Commodore 64 computer do much more than a typewriter can do. The key
board illustration shown below points out these special keys. The following
paragraphs tell how to use the keys.

Feel free to experiment at the keyboard. There 1s little chance that any
thing you do at the keyboard can cause harm and you will benefit from the
" hands on " experience.

19

• KEYBOARD MODES
The C64 keyboard has two typing modes:

• Upper case/graphic mode
• Upper/lower case mode

When you turn on the C64, the keyboard is in the upper case/graphic
mode, which means that everything you type is in capital letters. To switch
back and forth between modes, you must press the SHIFT Key and the

C• Key (the COMMODORE key) at the same time.
You do not have to be an accomplished typist to use the C64 effectively.

You only need to know the general keyboard layout , including the location
and function of the special keys described in this section.

• FUNCTIONS OF THE SPECIAL KEYS

RETURN

Pressing the RETURN key sends what you type into the Commodore 64
computer's memory. Pressing the RETURN key also moves the cursor (the
small flashing rectangle that marks where you are on the screen) to the next
line.

SHIFT

The SHIFT key works like the shift key on a regular typewriter: that is,
when the SHIFT key is held down, it lets you print capital letters or the top
characters on double character keys. The SHIFT key is also used with some
other special function keys.

When the keyboard is in the upper case/graphic mode, you can use the
SHIFT key to print the graphic symbols or characters that appear on the
fronts of certain keys. To do this, you hold down the SHIFT key while you
press the key with the graphic character you want to print or display. (Note:
You can only print the graphic character on the right side of the key when you
are in the upper case/graphic mode.)

When you are using the four large keys at the right side of the keyboard
(marked f1, f3, f5 and f7 on the top), you must hold down the SHIFT key to
activate the functions associated with the markings on the front of the keys
(f2, f4, f6 and f8).

20

SHIFT LOCK

This key locks the SHIFT key in the ON position.

CRSR

There are two keys that let you move the cursor:
t

CRSR moves the cursor up and down
+

CRSR -- moves the cursor left and right

You don't have to keep tapping a CRSR key to get it to move more than one
space. Just hold the CRSR key down and the cursor will continue to move
until it reaches the position you want it to be in. Remember that you also
must hold down the SHIFT key at the same time if you are moving up or to
the left.

INST/DEL

This is a dual purpose key. INST stands for INSerT, and DEL stands for
DELete.

Inserting Characters

You must use the SHIFT key with the INST/DEL key when you want to
insert characters in a line. If you 've left some characters out of a line, use the
CRSR keys to move the cursor back to the error, like this:

WHILE U WERE OUT
WHILE I WERE OUT

Then , while you hold down the SHIFT key, press the INST/DEL key until you
have enough space to add the missing characters. INST doesn 't move the
cursor; it adds space between the cursor and the character to its right , like
this:

WHILE • U WERE OUT
WHILE YOU WERE OUT

21

Deleting Characters

When you press the DEL key, the cursor moves back a space and erases
the character that is there, like this:

PRINT " ERROR" # •
PRINT " ERROR" I

When you DELete in the middle of a line, move the cursor just to the right
of the character you want to DELete, like th is:

FIX IT AGAINS • SAM
FIX IT AGAIN • SAM

Then press the DEL key. The characters to the right automatica lly move
over one space to the left to close up the space and you get the correct
wording , like this:

FIX IT AGAIN , SAM

Using INSerT and DELete Together

You can use the INSerT and DELete functions together to fix wrong char
acters. Just move the cursor to the incorrect characters and press the INST/
DEL key by itself to delete the characters. Then press the SHIFT
key and INST/DEL key together to add any necessary space. Then type in the
corrections.

CTRL

The ConTRoL key is used with other keys to let you do special tasks called
control functions . To perform a control function , you hold down the CTRL key
while you press some other key. Control functions are commonly used in
prepackaged software such as a word processing system.

One control function that is used often is setting colors. To set a color, you
hold down the CTRL key while you press the numbered key (1 thorugh 8) that
controls the color you want. (You can get additional colors by using the C•
key in the same way.)

RUN/STOP

This is another dual purpose key.
Under certain conditions you can halt a program that is running or a print

out that is in progress by pressing the RUN/STOP key. In using the STOP
function, you need only press the RUN/STOP key by itself. Most prepackaged
software programs disable the STOP Function of the RUN/STOP key. This

22

avoids the problem of a program being stopped accidentally, with a possible
loss of much valuable data.

When you want to use the RUN function of the RUN/STOP key, you must
also use the SHIFT key. For instance, you can RUN a program automatically
from a cassette recorder by pressing the RUN/STOP and SHIFT keys at the
same time.

RESTORE

The RESTORE key is used with the RUN/STOP key to return the computer
to its normal conditions (also known as the default conditions). For example,
the normal or default screen color is blue. Suppose you have colored letters
on the screen (which you can get by using the SHIFT or C• keys and the
number keys from 1 through 8). If you then press the RESTORE and RUN/
STOP keys together, the screen is cleared and returned to its normal blue
color, and the READY message is displayed

Most prepackaged software programs also disable the RESTORE key
along with the RUN/STOP key. Again , this eliminates the problem of a pro
gram being accidentally stopped and then perhaps restarted 1n such a way
as to garble or destroy important information .

CLR HOME

CLR stands for CLeaR. HOME refers to the upper left corner of the screen,
which is called the HOME position . When you use the SHIFT key with the
CLR HOME key, the screen CLeaRs and the cursor returns to the HOME
position . When you use CLR HOME key by itself, the cursor returns to the
HOME position , but the screen is not CLeaRed.

COMMODORE KEY (C•)

The C• key (known as the COMMODORE key) has two functions:

1. It lets you switch back and forth between the upper/lower case display
mode (the letters and characters on the tops of the keys) and the upper
case/g raphic display mode (capital letters and the graphics on the
fronts of the keys). To switch modes, press the C• key and the SHIFT
key at the same time.

2. The C• key also lets you use a second set of eight colors . To get these
colors, hold down the C• key while you press one of the number keys,
(1-8) in the top row for the color you want.

23

• PRINTING GRAPHIC CHARACTERS
To print the graphic symbol on the right side of a key, hold down the SHIFT

key while you press the key that has the graphic character you want to print.
Remember that you can only print the right side graphic characters when
you are in the upper case/graphic mode .
. To print the graphic character on the left side of a key, hold down the C•
key while you press the key that has the graphic character you want to pr int.
You can print the left side graphic in either mode.

• PROGRAMMABLE FUNCTION KEYS
The four large keys on the right side of the keyboard marked f1 , f3, f5 and

f7 on the tops and f2 , f4 , f6 and f8 on the fronts , are function keys that can be
programmed to perform a variety of tasks. See the discussion of the GET
command in Sections 5 and 6 for details.

Now that you have successfully connected your C64 equipment and can
find your way around the keyboard, you are probably ready and anxious to
begin using your computer. The next section tells how to use various types of
peripheral equipment to load and run prepackaged software programs.

24

USING SOFTWARE
This section tells what software is and how to

use it with your Commodore 64 Computer

What Software Is _______________ 27

Software Package Formats 27
-Cartridge 27
-Tape 27
-Disk 27

What 's in a Software Package 27

Loading and Running Software 28
-Loading Cartridge Software 28
-Loading Prepackaged Cassette Tape Software 28
-Loading Your Own Tape Programs 29
-Disks and Disk Drives 30
-Loading Disk Software 30

Hints on Selecting Software 32

For More Information 32

25

• WHAT SOFTWARE IS
Software is a set of instructions (also called a program) that tells your

computer just what you want it to do.
There are many thousands of prepackaged or " canned" software pro

grams available to you today. This software is what lets you do all those
processing activities mentioned in the INTRODUCTION to this Guide.

Most software comes from commercial software companies. There are
also many software programs available in computer magazines or from com
puter user groups. You can even create your own software by using a pro
gramming language like BASIC, as described in Sections 4, 5 and 6 of this
Guide.

• SOFTWARE PACKAGE FORMATS
Software is packaged in three formats:

Cartridge-This is a package about the size of a deck of cards.
The cartridge format is used for many games and for a considera
ble amount of business and educational software. The cartridge is
easily inserted into a special cartridge slot on the computer.
Tape-This is a standard size audio cassette using either standard
audio tape or special computer digital tape. The cassette is used
with a special cassette recorder.
Disk-This is a 5-1 /4 inch disk resembling a 45 rpm record, and
enclosed in a square protective envelope. The disk is inserted in a
device called a disk drive.

• WHAT'S IN A SOFTWARE PACKAGE
A typical software package consists of the computer program, contained

on a cartridge, tape or disk, along with printed instructions that tell you such
things as what the program does, how to load and run it, how to enter infor
mation, and what displays, reports or other output the program produces.
The amount of instructions supplied with the software package depends on
the complexity of the program. These instructions can range from a few
pages to a complete manual.

Most commercial software is "protected" by special techniques to pre
vent unauthorized copying.

27

• LOADING AND RUNNING SOFTWARE

LOADING CARTRIDGE SOFTWARE

A cartridge is easily inserted into the cartridge port in the back of the C64.
This port has a special slotted arrangement that accepts a cartridge only
one way-with the title up. Insert the cartridge firmly but do not force it. The
cartridge should click into place when properly inserted.

Follow these steps to load cartridges:

1. Turn OFF your computer.

YOU MUST TURN OFF YOUR C64 COMPUTER BEFORE YOU INSERT
OR REMOVE CARTRIDGES. IF YOU DON 'T, YOU MAY DAMAGE THE
CARTRIDGE AND THE COMPUTER.

2. Insert the cartridge in the slot on the back of your computer.
3. Turn on your computer.

(Your cartridge will load automatically at this point.)
4. Follow the directions given on the screen or in the printed instructions

for the cartridge.

LOADING PREPACKAGED CASSETTE TAPE SOFTWARE

NOTE: If you are using a Datassette tape recorder, remember to
keep it at least two feet away from any equipment that could cause
electrical interference.

Fol low these steps to load prepackaged cassette tapes:

1. Make sure that the Datassette is plugged into the cassette port on the
back of the C64.

2. Insert the tape cassette into the Datassette and close the tape com
partment door.

3. Rewind the tape to the beginning of the first side, if necessary.
4. Type:

LOAD

The computer responds by telling you to:

PRESS PLAY ON TAPE

28

5. At this point , the screen goes blank until the computer finds the pro
gram. Wheri the program is found, the computer displays this message:

FOUND PROGRAM NAME

6. Press the C• key. Your prepackaged program is LOADED into the
computer.
(If for some reason you want to stop the program from LOADing , press
the RUN/STOP '<ey.)

7. The program will either start to run by itself, or you will be instructed to
type RUN and press RETURN to start program operation .

NOTE: Many prepackaged cassette programs may take 10 to 15
minutes to load. You will know that loading is complete when you
see either a blinking cursor or program instructions on the screen .

LOADING YOUR OWN TAPE PROGRAMS

The procedure for loading tape programs that you have saved on tape
yourself is essentially the same as the procedure for loading prepackaged
tape software. The major difference is that you may have to specify the
name of your tape program. You do this by entering:

LOAD " PROGRAM NAME"

Here, PROGRAM NAME is the name of your program. Notice that you
must enclose your program name in quotation marks.

The computer searches the tape for the program named. When the pro·
gram is located, the computer screen displays the message:

FOUND PROGRAM NAME
LOADING

When loading is completed, the screen displays the message:

READY.

AT the cursor position , you type:

RUN

and press RETURN . The C64 then runs your program.

NOTE: If the entire tape runs to the end without the FOUND mes
sage being displayed, rewind the tape and try again.

29

DISKS AND DISK DRIVES

Disks (also known as diskettes, floppy disks or simply " floppies ") are fast ,
easy-to-use data storage devices. Disks must be inserted into a device
known as a disk drive in order to store or provide information .

When using a disk drive , you should make sure that the drive's power cord
is plugged into an electrical socket , and that the cable connecting the disk
drive to the C64 is plugged into the serial port on the back of the computer.
As with the Datassette tape recorder, you should keep the disk drive at least
two feet away from any possible sources of electrical interference.

There are two small indicator lights on the front of the disk drive.

• The green light is the power light , indicating whether the disk drive is on
or off.

• The red light tells you two things:

1. When a program is being LOADed or SAVEd, the red light is lit while
the disk is spinning in the drive. When the red light goes of f, the LOAD
or SAVE is complete.

2. If there is a problem with the disk or drive, the red light flashes on and
off, even after the disk stops spinning in the drive.

You can also use disks to store prog rams that you write yoursel f, and these
disks can then be used to load the program back into your C64 whenever you
want to run them. See Sect ion 4 for additional commands that you can use if
you plan to create, save and run your own programs.

LOADING PREPACKAGED DISK SOFTWARE

Whether you are loading preprogrammed disks or disks that you have pro
grammed yourself, the steps are basically as follows:

1. Insert a disk into your disk drive, as shown in the diagram. Make sure
the label on the disk is facing up. Put the disk in so that the labeled end
goes in last. Look for a little notch on the disk (it might be covered with
a little piece of tape). This notch must be on the left side as you put in
the disk, assuming that you 're facing your computer. Be sure the disk is
all the way in .

30

2. Close the protective gate on the disk drive after you insert the disk. Just
push down the lever.

3. Type the following :

LOAD " PROGRAM NAME'',8

Here, the number 8 tells the computer that you 're loading a disk.

NOTE: You can LOAD the first program on the disk by using the *
sign in place of the program name, as follows :

LOAD " * ",8

4. Press the RETURN key. The disk will spin and your screen wil l display
this message:

SEARCHING FOR PROGRAM NAME
LOADING

5. Type RUN when the screen says READY and the cursor appears. Your
software is ready to use.

In some cases, prepackaged software may have its own special format for
the LOAD command. Also, some commercial software may have an auto
matic RUN function built into the program. Check the software instructions
carefully, especially if you have any problems.

31

• HINTS ON SELECTING SOFTWARE
Because of the great number of software products available, and because

of the variety of claims made for those products, selecting the right software
can be a difficult task. Here are a few tips on choosing software:

• Analyze your needs. Try to find software that meets those needs. Avoid
frills.

• If possible, talk to someone who has used the software you are
considering .

• Purchase the software from a reputable dealer.
• Try ou t the package on an equipment setup identical or similar to your

own.

One way to ensure compatibi lity between your C64 and the software you
buy is to select from the wide variety of software produced by Commodore.
A list of cu rrently avai lable Commodore software is given in Appendix B.

• FOR MORE INFORMATION ...
The information supplied to this point in this Guide will allow you to load

and run prepackaged software in cartridges, tape and disk formats . How
ever, if you would like more information on LOADing , SAVEing and RUNning
sof tware packages, refer to the instructions contained in the individual soft
ware packages and to the information in your equipment manuals. You
should also read the next section of this Guide and consult the Commodore
64 Prog rammer 's Reference Guide, available from your dealer or at most
bookstores.

You should now be able to run a wide variety of prepackaged software,
using your C64 computer and peripheral equipment. You will find that you
can derive great benefit and enjoyment from using these products.

The remaining sections of this GUIDE are addressed to those newcomers
to computing who are interested in learning to create their own programs,
and to those experienced programmers who want to explore further the con
siderable capabilities of the Commodore 64 personal computer.

32

BASIC
A PROGRAMMING

LANGUAGE
This section introduces the BASIC language

through some elementary commands and
some sim le r rams

The Basic Programming Language _ _______ __ ,35

Typing Basic Programs 35

The PRINT Command 36

Order of Operations 37

Printing Text 38

Direct Mode Functions 39

Mathematical Functions 40
Program Mode 41

Constants, Variables and Strings 42
IF · THEN 45

Editing Tips 46

Storing and Reusing Your Program 47

Formatting a Disk 47

The SAVE Command 4 7

The LOAD Command 48
Displaying Your Program 49

Other Disk-Related Commands 49

Sample Program 50

33

-
Your Commodore 64 computer 1s a powerful tool , with many capab1l1tles. It

can perform computations in a fraction of a second It has the ability to make
dec1s1ons and repeat commands according to your instructions. It can print
text on a screen or printer. Up to 1 OOO characters can be printed on a single
screen , which 1s 40 characters wide by 25 lines high.

• THE BASIC PROGRAMMING LANGUAGE
BASIC is a language with its own vocabularly (called commands, state

ments and functions) and its own rules of structure (called syntax). A set of
instructions in BASIC is called a program. Each instruction 1n a program is
identified by a line number. You can use the BASIC programming language to
instruct your computer to perform many functions. Using BASIC, you can
communicate with your computer in two ways: in the DIRECT mode, or in the
indirect or PROGRAM mode.

Your Commodore 64 is ready to accept BASIC commands in DIRECT
mode as soon as you turn it on . In the DIRECT mode, you type commands on
the keyboard and enter them into the computer by pressing the RETURN key.
The computer executes all commands 1n DIRECT mode immediately after
you press the RETURN key. As you will see, your Commodore 64 can be used
as a sophisticated calculator 1n DIRECT mode.

• TYPING BASIC PROGRAMS
You can type and use BASIC programs without knowing BASIC. However,

you must type carefully, because a typing error may cause the computer to
reject your information. The following hints will help minimize typing errors
when typing or copying a program listing:

1. Spacing between words is not critical ; e.g ., typing FORT= 1T010 is the
same as typing FOR T = 1 TO 10. However, a BASIC word itself must
not be broken up by spaces. (See the BASIC Encyclopedia in the back
of this Guide for a list of BASIC words.)

2. Any characters can be typed in quotes. Reverse graphic characters
within quotes have special control functions.

3. Be careful with punctuation marks. Commas, colons and semicolons
also have special functions.

4. Always press the RETURN key (indicated in this Guide by the symbol
:REHJRN=) after completing a line. Never exceed 80 characters in a
line (two screen lines).

5. Distinguish clearly between I and 1 and between(/) and 0 .

35

6. The computer ignores anything following the letters REM on a program
line. REM stands for REMARK. You can use the REM statement to put
descriptive comments in your program.

Concentrate on typing short programs until you are familiar with BASIC.

• THE P.RINT COMMAND
The PRINT command tells the computer to display information on the
screen. You can print numbers or letters, but the grammatical rules are dif
ferent for each. To print numbers, simply use the PRINT command, followed
by the number(s) you want to print. Try typing this on your computer:

PRINT5 @Fl™
PRINT 5,6mAfiM%

Notice the numbers did not display on your screen until you pressed
RETURN . The comma in the second PRINT command tells the computer you
want to print more than one number. When the computer encounters a
comma in a string of numbers in a PRINT statement, the computer prints
each succeeding number (in this case, the 6) ten spaces to the right of the
preceding number (in this case, the 5). If you don't want all these extra
spaces, use a semicolon (;) instead. The semicolon causes the computer to
print numbers in a PRINT command three spaces apart. You can print as
many numbers as you can fit into two lines on your screen (that is, up to 80
characters). Try typing:

PRINT5;6§.liii W
PRINT 100;200;300;400;500 &Efflf™T

You can use the PRINT command the same way to perform calculations
like addition and subtraction. Just type the calculation after the PRINT com
mand. Try some of these:

PR I NT 6 + 4 ¥¥ I 4¥
PRINT50-20=ut I

PRINT10+15 5
PRINT75-1004 E
PRINT 30 + 40,55 25
PRINT 30 + 40; 55 25

Notice the fourth calculation resulted in a negative number. Also notice
that you can tell the computer to make more than one calculation with a
single PRINT command. And as was noted previously, you can use either a

36

-
comma or a semicolon in your command, depending on whether or not you
want your results spread out.

Find the asterisk key (*) on the right side of your keyboard. This is the
symbol for multiplication. Use the(/} located next to the right SHIFT key for
division . Type.

PRINT5*3~==E
PRINT 100/2 X

The up arrow key (i) located next to the asterisk key on your keyboard is
used to indicate exponentiation. If you want to raise a number to a power, use
the PRINT command followed by a number, the up arrow, and the exponent
indicating the power, in that order. For example, to find out what 3 squared is,
type:

PRINT 3i2 iliRE

TIP: You can use a question mark (?) instead of typing the word
PRINT. The remaining examples in this section use the question
mark symbol in place of the word PRINT. (Symbols and abbrevia
tions for all BASIC commands can be found in the appendix of this
manual.}

• ORDER OF OPERATIONS
You have seen how you can combine addition and subtraction in the same

PRINT command. If you combine multiplication or division with other opera
tions, you may not get the result you expect. For example, type:

?4 +612 x

If you assumed you were dividing 10 by 2, you were probably surprised
when the computer responded with 7. You got this result because multiplica
tion and division are performed by the computer before addition or subtrac
tion , no matter in what order you type the command. Multiplication and divi
sion are said to take precedence over addition and subtraction.
Exponentiation takes precedence over all of the other four operations. If you
type:

? 16/4i2A ¥

The computer responds with 1 because it squared the 4 before it divided
16 by it.

You can tell the computer which operations you want performed first by
using parentheses() in the PRINT command. For instance, in the first exam-

37

pie above, if you want to tell the computer to add before dividing , you would
type:

?(4 + 6)/24 6¥

This gives you the correct answer, 5.
If you want the computer to divide before squaring in the second example,

you would type:

?(16/4)i2BillB

Now you have the correct answer, 16.
If you don 't use parentheses, the computer wi ll perform the calculat ions

according to the basic precedence rules. When all operat ions in a calcula
tion have equal precedence. they are per formed from left to right . For exam
ple:

?4*5/10*6BRB

The operations are performed in order from left to right , so the resu lt is 12.
If you want to divide 4 *5 by 10*6 you would type:

?(4*5)/(10*6) E

The answer is now 0.333333333.

• PRINTING TEXT
Now that you know how to print numbers and make calculat ions, it 's time

to learn how to print text. It's actually very simple-there are far fewer rules
for printing text than making calculations. You just type the PRINT command
followed by whatever you want put on the screen in quotation marks (" ").
You can get the quotes by pressing the SHIFT key and the numeral "2" key.
Try the following examples.

?" COMMODORE 64 " ¥
?"4*5"BillE

Notice that when you press RETURN , what was in the quotes is displayed
on the screen exactly as you typed it. Also note the difference between the
second example and

?4*5® 55

You can PRINT anything you want on the screen by using the PRINT com
mand. You can combine text and calculations in a PRINT command.

?"4*5 = "4*541 f\1¥

38

--
See how the computer PRINTS what you put in quotes, makes the calcula

tion and PRINTS the result. It doesn 't matter whether the text or calculation
comes first. In fact , you can use both several times in one PRINT command.

?4*(2 + 3) " is the same as " 4*5M!ll•EBE

Notice that even the spaces inside the quotation marks are printed on the
screen . Type

?" OVER HERE" M!IEEB

There are special keys on your keyboard that you can use in PRINT com
mands to tell the computer where to put the information on the screen. They
are the cursor control keys (CRSR) located below the RETURN key. The one
on the right is the cursor right/left key, the other one is the cursor down/up
key. Press these keys and note how the cursor moves on the screen. To move
the cursor up, press SHIFT while pressing the down/up key. To move the
cursor left , press SHI FT while pressing the right/left key.

When you type the cursor keys inside quotation marks, graphic characters
are shown on the screen to represent the keys. These characters will NOT be
printed on the screen when you press RETURN . Retype the example above,
using the cursor down key instead of the spaces inside the quotes. It should
look like th is:

?" 0000000000 OVER HERE" !IMB!liE

You can tell the computer to print anywhere on your screen by using the
cursor control keys inside quotation marks.

• DIRECT MODE FUNCTIONS
There are two BASIC funct ions that tell the computer where to print infor

mation on the screen. If you 've used a typewriter, you are familiar with the
TAB function . It tells the computer to print your information starting in the
specified column . For example, if you want to print something starting in the
10th column and something else in the 20th column , you would use the TAB
function like this:

? TAB(9)"HERE" TAB(19)" HERE" &Ell!E

The computer moves the cursor nine spaces to the right and then begins
to print the first "HERE" in the 10th column. If you want to print two pieces of
information with exactly 10 spaces between tt1e end of the first and the
beginning of the second, how could you do it? If you knew how many letters
were in the first item, you could figure out how many spaces to TAB from the

39

left side to PRINT the second item, but that isn't necessary. There 's another
function that makes this task much easier, the SPC (space) function . Now the
PRINT command would look like this:

? " HERE" SPC(10)" HERE" E3ITFfH"'H?

The second piece of information is printed on the screen 10 spaces to the
right of the end of the first piece, no matter how long the first piece is.

• MATHEMATICAL FUNCTIONS
Here are three other important functions that can be very helpful if you

want to do more advanced mathematical procedures like rounding off num
bers and finding square roots.

The first function is the square root function: SOR. If you want to find the
square root of 50, just type:

? SQR(50) ¥1 ¥

You can find the square root of any positive number in this way.
The second function is rounding off a number to the nearest integer. First ,

use the INT (integer) function. The INT function takes away everything after
the decimal point. Type:

? I NT(SQR(5il))a;·
? INT(4.25)
? INT(4.75)

If you want to round off to the nearest whole number, then the 1ast exam
ple should return a value of 5. In fact, you want to round off to the next
highest number any number with a decimal above 0.5. To do this , you have to
add 0.5 to the number when using the INT function, so numbers with deci
mals above 0.5 will be increased by 1 before being rounded down by the INT
function . Try this example:

? INT(4 .75 + 0.5).ii!iE

In this case the computer adds 0.5 to 4.75 before it executes the INT
function , so that 5.25 is rounded down to 5 for the result. If you want to round
off the result of a division calculation, you do this:

? I NT((X/Y) + 0.5) !W&!illl~

In this case you can substitute any values for the characters X and Yin the
inner parentheses.

40

What if you want to round off numbers to the nearest 0.01-such as dol
lars and cents? First , instead of adding 0.5 to your number, add 0.005 and
then multiply by 100. Let 's say you want to round 2.876 to the nearest 0.01 .
Using this method, you start with :

? (2.876 + 0.005)* 100 Mi

Now using the INT function to get rid of everything after the decimal point
(which moves two places to the right when you multiply by 100) so you are
left with :

? INT(((2.876 + 0.005)*100)¥ w

which gives you 288. All that's left to do is divide by 100 to give you 2.88-
which is what you want! You can round off calculations to the nearest 0.01
like this one:

?INT(((2.876 + 1.29 + 16.1-9.534) + .005)*100)/100 ¥

There is one more function which may come in handy when dealing with
negative numbers. It is the absolute value function: ABS. Using this function
gives you the positive value of the number regardless of whether it is a posi
tive or negative number.

?ABS(-10)mliE!R
? ABS(5) ;" IS EQUAL TO" ;ABS (-5)&BiaiE

• PROGRAM MODE
Now that you can communicate with your Commodore 64 in DIRECT

mode by typing BASIC commands, it's time to begin the next step: Writing a
program.

A program is just a series of BASIC commands that tell the computer what
to do. The commands are numbered so the computer will know in what order
you want them executed. In a BASIC program, the commands are called
statements or lines. Many of the commands you learned in DIRECT mode
can be easily made into program statements. For example, type:

10?" COMMODORE64" ;;;;;

The first thing you should notice is that the computer did not print COM
MODORE 64 when you hit RETURN. That is because the 10 before the PRINT
command tells the computer that you are writing a BASIC program that
begins at line number 10. Now type RUN and press RETURN.

Congratulations! You have just written and RUN your first BASIC program.

41

The line numbers in a program serve another purpose besides ordering
your commands for the computer. They serve as a reference for the com
puter in case you want to execute the command on that line later in your
program. We use the GOTO command to tell the computer to go to a line and
execute the command(s) in it . Now type:

20GOTO 10

When you press RETURN after typing that line, you add it to your program
in the computer 's memory. It is common practice to number your program
lines in increments of 10 in case you want to go back and add lines later on.
Type RUN and watch the PRINT message scroll down your
screen. When you have finished watching , press the RUN/STOP key on the
left side of your keyboard to stop ihe program. This is a simple two-line pro
gram that repeats itself endlessly because the second line keeps referring
the computer back to the first line. It would go on forever unless you stopped
it with the STOP key. Now type LIST #iU ;;u;;;_ The screen should say:

10 PRINT"COMMODORE 64"
20GOTO 10
READY

Your program is still in memory. You can RUN it again if you want to. This is
an important difference between PROGRAM mode and DIRECT mode. Once
a command is executed in DIRECT mode, it is no longer in the computer 's
memory.

Notice that if you used the? symbol in the PRINT statement, the computer
has converted it into the full command. This happens when you LIST any
command you have abbreviated in a program.

You can use any whole number from 0 to 63,999 for a line number. Don 't
be afraid to experiment with your computer, writing programs or just making
calculations in DIRECT mode. Nothing you type can damage the computer
permanently. Anytime you want to start again or erase a BASIC program in
the computer 's memory, just type NEW fu&J#1'ii'BI$. This command clears
out the computer 's BASIC memory, the area where programs are stored.

• CONSTANTS, VARIABLES AND STRINGS

CONSTANTS

There is a part of the computer 's BASIC memory reserved for the num
bers and letters you use in your program. Think of it as a number of boxes in

42

the computer that store information about your program. Type in this short
program:

10X = 5
20?X

Now RUN the program and see how the computer prints a 5 on your
screen. You told the computer in line 10 that the letter X will represent the
number 5 for the remainder of the program. We call this an assignment state
ment because now there is a box labeled X in the computer 's memory, and
the number 5 has been assigned to it. The = sign tells the computer that
whatever comes to the right of it will be assigned to a box (a memory loca
tion) labeled with the letter(s) to the left of it. The box name on the left of the
= sign can be either one or two letters, or one letter and one number (the
letter MUST come first). The names can be longer but the computer only
looks at the first two characters so the names PA and PART would refer to
the same box. Also, you cannot use BASIC commands (LOAD, RUN , LIST,
etc.) or keywords (INT, ABS, SOR, etc .) as names. Refer to the BASIC ency
clopedia in the back of this manual if you have any doubt about what is and
what is not a BASIC keyword.

In this case, X is called a constant because it always represents the num
ber 5. You can put calculations to the right of the = sign to assign the result
to a box. You can mix text with constants in a print statement to identify
them. Type NEW , then try this program:

10 A = 3*100
20 B = 3*200
30 ?"A IS EQUAL TO " A
40 ?" BIS EQUAL TO " B

Now there are two boxes labeled A and B in the computer 's memory,
containing the numbers 300 and 600 respectively. If, later in the program, you
want to change the value of a constant , just put another assignment state
ment in the program. Add these lines to the program above and RUN it again.

50A = SOR(121)
60 B = ABS(-15)
70GOT030

Once again , you 'll have to press the STOP key to break from the program.
LIST the program and trace the steps taken by the computer. First , it assigns
the value to the right of the = sign in line 10 to the letter A. It does the same
thing in line 20 for the letter B. Next, it prints the messages in lines 30 and 40
that give you the values of A and B. Finally, it assigns new values to A and B

43

in lines 50 and 60. The old values are destroyed and cannot be returned
unless the computer executes lines 10 and 20 again (which it does not in this
program). When the comput~r is sent to line 30 to begin printing the values of
A and B again , it prints the new values. Lines 50 and 60 reassign the same
values to A and B (this does no harm) and 1;ne 70 sends the computer back to
line 30. This is called an endless loop. It is not good programming practice.
Other methods of looping are discussed later 1n thi s and the following two
chapters.

VARIABLES

A variable is a value assigned to a box that changes during the course of
the program. Sometimes the value of a variable is not known at the beginning
of the program (i.e., its value will be the resu lt of a calculation to be made in
the program). Clear your computer's memory by typing NEW RETURf'.t and
type in the program below:

10 A = INT(100/9)
20 B = (3*4)t2
30 C = A*B
40 ?A " TIMES "B" EQUALS " C

Note that A and B are constants-they are expressed only in numeric
terms in the program. C. on the other hand, is expressed in terms of A and B.
making it a variable. The value in a variable box in memory often changes
during a program.

STRINGS

A string is a character or group of characters enclosed in quotes. These
characters are stored in the computer's memory in much the same way
numeric variables are. You can also use names to represent strings as you
use them to represent numbers. Use the $ after the string name to tell the
computer it is a string variable and not a numeric variable. Clear your corn·
puter's memory and type in the program below:

10A$ = "COMMODORE"
20 x = (200/25)t2
30 B$ ="COMPUTER'
40 Y = INT(4 *0.35)
50 ?"THE "A$;X;B$" IS NUMBER " Y

See how you can print numeric and string variables in the same state·
ment? Try experimenting with variables in your own short programs. Notice

44

that you can print the value of a variable from a program in DIRECT mode
once the program has been RUN. Type ?A$;X;B;$ after running the program
above and see that those three boxes are still in the computer's memory. If
you want to clear this area of BASIC memory but still leave your program
intact, use the CLR (clear) command. Just type CLR ~ and all con·
stants, variables and strings are wiped out. But when you type LIST, you can
see that the program is stil l in memory. The NEW command discussed ear·
lier erases both the program and the variables in it.

•IF-THEN
Now that you can change the values of variables easily, the next step is to

have the computer make decisions based on these updated values. we do
this with the IF-THEN statement. We tell the computer to execute a corn·
mand only IF a condition is true (i.e., IF X = 5). The command we want the
computer to execute when the condition is true comes after the THEN part
1n the statement. Clear your computer 's memory and type in this program.

10J = 0
20 ?J, "COMMODORE 64 "
30 J = J + 1
40 IF J = 5 THEN GOTO 60
50GOTO 20
60 END

At last, we no longer have to press the STOP key to break out of a looping
program. The IF-THEN statement tells the computer to keep printing " COM·
MODORE 64" and incrementing J until (J = 5) is true. When the IF condition
is false, the computer just jumps to the next line of the program no matter
what .comes after the THEN . Notice the END command in line 60. It is good
practice to put an END statement at the end of your programs. It tells the
computer where to stop executing statements.

Following is a list of symbols that may be used in the IF condition and
their meanings: '

SYMBOL

>
<

<>
>=
<=

MEANING

EQUALS
GREATER THAN
LESS THAN
NOT EQUAL TO
GREATER THAN OR EQUAL TO
LESS THAN OR EQUAL TO

45

• EDITING TIPS
At this point, you know enough to begin programming in BASIC. You have

learned how to make calculations in both DIRECT and PROGRAM modes.
You have seen how to print text or characters on the screen . You also know
how to tell the computer to repeat commands and make decisions. There are
more advanced ways of telling the computer to do these things (which you'll
see later in this Guide), but you have all you need to get started. The following
paragraphs provide some tips on typing in your programs and making correc
tions and additions to them.

To begin with, type in the program from the IF-THEN example just dis
cussed. Now type 1 O ± -4@. You just erased line 10 from the program.
LIST your program and see for yourself. If the old line 10 is still on the screen,
move the cursor up so that it is blinking anywhere on that line. Now, if you
press RETURN, line 10 is back in the computer 's memory. Hold down the
SHIFT and press the CLR/HOME key on the upper right of your keyboard to
clear your screen. Now LIST your program and notice that line 10 is back
again. Move the cursor up again so it is blinking on the 0 in 10. Now type a 5
and press RETURN . You have just duplicated line 10 with a new line at 15.
Clear your screen and list the program. You can cursor up and make any
changes to any line of the program you want to. Just remember to press
RETURN after you make changes, or the computer will not recognize them.
Also, you can retype a whole line and press RETURN-the old version of the
statement wil be erased when you press RETURN.

Now clear your memory and type:

10 ?" I ADORE MY 64"

Let 's say you want to add a word in the middle of that string (for example,
the word COMMODORE). Just move the cursor so it is blinking on the letter
that is one space after the spot where you want to insert the word. In this
case, the cursor should be blinking on the 6. Hold down the SHIFT while
pressing the INST/DEL key in the upper right corner of your keyboard and
watch the 64" move to the right until you release the INST/DEL key. Then
type COMMODORE and move the cursor to the 6. In you held down the
INSERT key for a long time, then you have some blank spaces to get rid of.
Hold down the DEL key until the 64" is in the correct posi tion. Now press
RETURN and LIST your program to see if your change is registered in mem
ory.

46

• STORING AND REUSING YOUR PROGRAM
Once you have edited your program, you may want to store it permanently

so that you will be able to recall and use it later. To do this you'll need either
the Commodore Datassette recorder or a Commodore disk drive.

• FORMATTING A DISK
To store programs on a new (or blank) disk, you must first prepare the disk

to receive data This is called "formatting " the disk. Make sure that you turn
on the disk drive before inserting any disk.

To format a blank disk, type t111s command.

OPEN 15,8, 15: PRINT# 15, " N :A$, B$ " ~i:i~

In place of A$, type a disk name of your choice: you can use up to 16
characters to identify the disk. In place of 8$, type a two-character code of
your choice (such as W2).

The cursor disappears for a second or so. When the cursor blinks again,
seal the disk with the following command·

CLOSE15m~

The entire format ting process takes about 80 seconds.

• THE SAVE COMMAND
You use the SAVE command to store your program on cassette tape or

disk .

SAVEing ON CASSETTE TAPE

If you are using a Datassette to store your program, insert a blank tape in
the recorder, rewind the tape (if necessa ry) and type:

The PROGRAM NAME can be anything you want it to be. You can use
letters, numbers and/or symbols-up to 16 characters in all. Note that you
must enc lose the PROGRAM NAME in quotation marks. The screen on your
computer goes blank while the program is being SAVEd. but it returns to
normal when the process is completed.

47

SAVEing ON A DISK

If you have a Commodore single disk drive, you can store your program on
disk by typing:

SAVE "PROGRAM NAME", 8 ¥

The 8 indicates to the computer that you are using a disk drive to store
your program.

The same rules apply for the PROGRAM NAME whether you are using
tape or disk. Note that you cannot put two programs with the same name
onto the same disk.

• THE LOAD COMMAND
Once a program has been SAVEd, you can LOAD it back into the comput

er 's memory and RUN it anytime you wish.

LOADing FROM CASSETTE TAPE

To LOAD your program from cassette tape, type:

l_OAD " PROGRAM NAME" #BAR

If you do not know the name of the program, you can type:

LOAD ___ ""'

and the next program on the tape will be retrieved.
You can use the counter on the Datassette to identify the starting position

of programs. Then, when you want to retrieve a program, simply wind the
tape forward from OOO to the programs's start location , and type:

LOAD IJ!ll'§

In this case you don 't have to specify the PROGRAM NAME; your program
will load automatically because it is the next program on the tape.

NOTE: During the LOAD process, programs are not erased from
the tape; they are simply copied into the computer. However,
LOADing a program automatically erases any BASIC program that
may have been in the computer 's memory.

LOADing FROM A DISK

To load your program from a disk, type:

LOAD " PROGRAM NAME" , 8 1!¥'11• lii!B

48

Again, the 8 indicates to the computer that you are working with a disk
drive.

To see your program once it has been loaded from either tape or disk,
type:

LIST I 'PW

Your entire program will then be displayed.

"""~- • OTHER DISK-RELATED COMMANDS

REPLACING A PROGRAM

To replace a program with a corrected copy, type:

SAVE"@O:PROGRAM NAME" , 8 BRiii!

VERIFYING A PROGRAM

To verify that a program has been correctly saved or loaded, type:

VERIFY"PROGRAM NAME",8filZF?E

If the program in the computer is identical to the one on the disk, the
screen display will respond with the letters "OK".

DISPLAYING YOUR DISK DIRECTORY

To see a list of the programs on your disk, type:

LOAD"$",8&!liilli

The cursor disappears during this process. When the cursor reappears,
type:

LIST ~Wl!&llli

A list of the programs on your disk will then be displayed.

49

DELETING A PROGRAM

To delete a program from the disk (also known as " scratching" a program),

type:

OPEN 1,8, 15, " SO: PROGRAM NAME" !EBBEllE
·CLOSE 1 &Biiii!

INITIALIZING A DISK DRIVE

If the disk drive 's red light is blinking , it indicates a disk error. You can
restore the disk drive to tile condition it was in before the error occurred by
using a procedure called " initializing ." To initialize a drive, type:

OPEN 1,8,15, " l":CLOSE 1 W

If the red light is still blinking, remove the disk and turn the drive off, then
on .

For further information on SAVEing and LOADing your programs, refer to
your Datassette or disk drive manual.

•SAMPLE PROGRAM
Here is a sample program incorporating many of the techniques and com

mands discussed in this section.
This program calculates the average of three variables {X, Y and Z) and

prints their values and their average on the screen. You can edit the program
and change the calculations in lines 10 - 30 to change the values of the
variables. Line 40 adds the variables and divides by 3 to get the average.
Note the use of parentheses in line 40 to tell the computer to add the num
bers before it divides them.

TIP: Whenever you are using more than one set of parentheses in
a statement, it's a good idea to count the number of left parenthe
ses and right parentheses to make sure they are matched.

1 OX= INT (SQR(45))
20 Y = INT ((25/{7.5))l2)
30 Z = ABS(-16-9)
40 A= (X + Y + Z)/3
50 ?"THE AVERAGE OF" ;X;Y;"AND" ;Z"IS" ;A
60END

You now know something about the BASIC language and some elemen
tary programming concepts. The next section builds on these concepts,
introducing new commands and functions that let you interact directly with
the computer.

50

FOR-NEXT

INPUT

GET

STOP and CONT

Sample Program

PROGRAMMING
IN BASIC

This section describes additional BASIC
commands and more sophisticated

programming techniques

53
54
55
56
56

51

This section gives you additional information on BASIC that will allow you
to create and run more sophisticated BASIC programs. New commands and
statements like FOR-NEXT, INPUT, GET and STOP are introduced and used
in sample programs. The structure and operation of these sample programs
are analyzed and illustrated.

•FOR-NEXT
Remember the sample program in the IF-THEN example in Section 4? We

got the computer to print COMMODORE 64 five times by telling it to incre
ment the variable J by units of one until it equalled five, then ended the
program.There is a simpler way to do this in BASIC. We use a FOR-NEXT
loop in the following way:

10 FORJ = 1 TO 5
20 ?" COMMODORE 64 "
30 NEXT J
40 END

RUN this program and compare the result with the result of the IF-THEN
program-they are the same I In fact , the steps taken by the computer are
almost identical for the two programs. The FOR-NEXT loop is a very power
ful set of commands. You can tell the computer to do many things without
having to type them all in your program. Let 's trace the computer's steps for
the program above.

First , the computer assigns a value of 1 to the variable J. The 5 in the FOR
statement tells the computer to execute all statements between the FOR
statement and the NEXT statement , in this case just the PRINT statement,
until J is equal to 5. After the computer assigns a value of 1 to J, it compares
1 to 5 to see if J = 5 is true-much in the same way as the IF sta tement.
Since J = 5 is not true yet , the computer continues with the program. It exe
cutes the PR INT statement. The NEXT J statement tells it to go back to the
FOR statement , add 1 to J, compare J to 5 and continue if J = 5 is still false.
After five executions of this loop, J will equal 5. At this point. the computer
drops down to the statement that comes immediately after the NEXT state
ment and continues from there.

You can tell the computer to increment your counter by units of 10, 0.5 or
any other number. You do this with the STEP command in the FOR state
ment. For example, if you want the computer to count by tens to 100, type:

10 FORX = 0 TO 1 OOSTEP 10
20?X
30 NEXT

53

Notice that you do not need the X in the NEXT statement if you are only
executing one loop at a time-this is discussed in the chapter on advanced
concepts. Also, you do not have to increment your counter-you can decre
ment it.

Edit line 10 in the program to read:

10FORX=100TO 0 STEP-10

The computer will count backwards in units of 10 from 100 to 0. If you
don 't use the STEP command, the computer will increment the counter by
units of 1. An important thing to remember when you use the FOR-NEXT
loop is that you can use a variable in place of any of the numbers in the FOR
statement. As we introduce more of the BASIC commands, you will see what
a powerful device this can be. Clear the computer's memory and RUN this
program.

10K=10
20 FOR I = 1 TO K
30 ?"COMMODORE 64"
40 NEXT

• INPUT
You can change the value of Kin line 10 to make the computer execute the

loop as many times as you want it to. What if you wanted to be able to tell the
computer how many times to execute the loop at the time the program is
RUN?

You want to be able to change the value of K each time you run the pro
gram without having to change the program itself. We call this the ability to
interact with the computer. You can have the computer ask you how many
times you want it to execute the loop. To do this, use the INPUT command .
Replace line 10 in the program above with :

10 INPUT K

Now when you RUN the program, the computer responds with a? to let
you know it is waiting for you to tell it what you want the value of K to be. Type
15 and press RETURN . The computer will then execute the loop 15 times.
You can make the computer print a message in an INPUT statement to tell
you what variable it's waiting for. Replace line 10 with :

10 INPUT" PLEASE ENTER A VALUE FOR K" ;K

Remember to enclose your message to be printed (called a prompt) in
quotes. Also, you must use a semicolon between the prompt and the K. You

54

can put anything you want in your prompt , but it cannot be longer than 38
characters.

The INPUT statement can also be used with string variables. The same
rules that apply for numeri_c variables apply for strings-don't forget to use
the$ to 1dent1fy all your string variables. Clear your computer's memory and
type in this program.

10 INPUT" WHAT IS YOUR NAME"; N$
20 ?" HELLO " N$

Don 't forget to press RETURN after you type in your name. Once the value
of a variable (numeric or string) has been INPUT in a program, you can refer
to 1t by its variable name any time in the program. Type ?N$ x
your computer remembers your name!

•GET

. There is another BASIC command you can use in your program to interact
with the computer. It is the GET command and is similar to INPUT To see
how the GET statement works, clear the computer 's memory and type in this
program.

10 GET A$
20 IF A$= "" THEN GOTO 10
30?A$
40 END

When you type RUN+ 4A#, the computer doesn't appear to do any
thing . It is waiting for you to press a key on the keyboard. The GET command
tells the computer to fetch a character from the keyboard. The computer is
perfectly sat1sf1ed ""'.1th a null character-which is what it gets when no key is
being pressed. This 1s the reason for line 20, which tells the computer that if it
got a null character, (two double quotes with no space between them), it
should go back to line 10 and get another character. This loop continues until
you actually press a key. The computer then assigns the character on that
key to A$.

The GET command is very useful in BASIC because you can use it to
program a key on your keyboard. The example below programs the Q key to
print a message on the screen. Once you type it in and RUN it, press o and
see what happens.

10 ?"PRESS 0 TO VIEW MESSAGE"
20GET A$
30 IF A$ = "" THEN GOTO 20

55

40 IF A$ = " Q " THEN GOTO 60
50 GOT020
60 FOR I = 1 TO 25
70 ?" NOW I CAN USE THE GET STATEMENT"
80 NEXT
90 END

Notice that if you try to press any key other than the Q , the computer will
go back to line 20 to GET another character.

• STOP AND CONT
There is another way to interact with your computer. You can make it stop

running the program, then continue executing it when you are ready. The
STOP command must be in the program-you can put a STOP statement
anywhere you wan t to in a program. When the computer breaks from the
program, you can use direct mode commands to find out exactly what is
going on in the program (i .e., the value of a loop counter or other variable) .
This is a powerful device when you are debugging (fixing) your program.
Clear the computer's memory and type in the prograrr be low.

10 X = INT(SOR(630))
20 Y = (.025*80)T 2
30 Z = INT(X*Y)
40 STOP
50 FOR J = 0 TO Z STEP Y
60 ?" INTERACTION CAN BE FUN "
70 NEXT
80 END

Now RUN the program-the computer responds with "BREAK IN 40 ' . At
this point, the compu ter has calcu lated the values of X. Y and Z. If you want
to be able to figure out what the rest of the program is supposed to do, tell
the computer to PR INT X;Y:Z . ™lil'iH Often , when you are fixing a large
program (or a complex small one) , you'll want to know the value of a variable
at a certain point in the program. When you have all the information you
need, type CONT~- The computer continues with the program.
starting with the statement after the STOP command.

• SAMPLE PROGRAM
Remember the program from the previous section that calculated the

average of three numbers? Now that you know how to use the FOR-NEXT

56

loop and the INPUT command, you can make the program more powerful.
Clear the computer 's memory and type in the program below. By now, you
should recognize the graphic character in line 40 as the CRSR down key
inside quotes. Don 't worry that line 90 does not fit onto one line of your
screen. Remember, a p1ogram line can be up to two screen lines (80 charac
ters) long.

10T = O
20 INPUT" HOW MANY NUMBERS";N
30 FOR J = 1 TO N
40 INPUT" iPLEASE ENTER A NUMBER";X
50T = T+X
60 NEXT
70A = T/N
80 PRINT
90 ?" YOU HAVE";N" NUMBERS TOTALING";T
100 ?"AVERAGE = ";A
110 END

Here is a line-by-line explanation of what the program does.

Line 10 assigns an initial value of 0 to T, which will be the running total of
the numbers.

Line 20 lets you determine how many numbers to average.
Line 30 tells the computer to execute a loop that many times.
Line 40 lets you type in the actual numbers to be averaged.
Line 50 adds each number to the running total.
Line 60 tells the computer to go back to line 30, increment the counter (J)

and start the loop again.
Line 70 divides the total by the amount of numbers you typed in (N) after

the loop has been executed N times to calculate the average.
Line 80 prints a blank line on the screen.
Line 90 prints the message that gives you the amount of numbers and

their total.
Line 100 prints the average of the numbers.
Line 110 tells the computer that your program is finished.

Now you have the ability to tell the computer how many numbers you want
to average, and you can change the numbers every time you run the
program-without having to change the program.

You have extended your grasp of BASIC in this section . The next section
shows you how to fine-tune the commands, concepts and techniques you've
learned so far.

57

ADVANCED CONCEPTS
This section defines and shows how to use

even more powerful BASIC commands, statements,
functions and programming techniques

READ-DATA 61
RESTORE 62
Using Loops 64
Using the Colon 65
Dimensioning Arrays 65
GOSU B-RETU RN 67
ON GOTO/GOSUB 68
RAM/ROM Access 69
ASC and CHR$ 70
Function Keys 70
Converting Strings and Numbers 71
Random Numbers 72

This section introduces still more BASIC commands, statements, func
tions and programming techniques. New commands and functions include
READ-DATA. RESTORE, DIMENSION , GOSUB-RETURN, ON GOTO/GOSUB,
PEEK, POKE, ASC, CHA$ and STR$.

These commands and functions allow you to create repeated actions
through techniques called looping and nesting; handle tables of values;
branch or jump to another section of a program and also return from that
section ; assign varying values to a quantity-and more. The use of special
function keys (the four large keys to the right of the main keyboard) is also
explained. Again , sample programs are developed and analyzed to illustrate
just how these BASIC concepts work and interact.

•READ-DATA
There is another way to tell the computer what numbers or characters to

use in your program. You can use the READ statement in your program to tell
the computer to get a number or character(s) from the DATA statement. For
example, if you want the computer to find the average of five numbers, you
can use the READ and DATA statements this way:

10T=O
20 FOR J = 1 TO 5
30 READ X
40T=T +X
50 NEXT
60A=T/5
70 ?"AVERAGE =";A
80 END
90 DATA 5, 12, 1,34, 18

When you run the program, the computer will print AVERAGE = 14 on
your screen. Let 's trace the steps taken by the computer to arrive at this
number:

Line 10 assigns a value of zero to T-the running total.
Line 20 tells the computer to execute a loop five times.
Line 30 tells the computer to go to the DATA statement (line 90), get a

value and assign it to the variable X.
Line 40 adds the value of X to the running total.
Line 50 tells the computer to execute the loop again.
Line 60 divides the total by five when the loop is completed for the fifth

time.
Line 70 prints the average on the screen .

61

Line 80 tells the computer that it is done.
Line 90 is where the computer goes to get the values for X-this is dis

cussed further below.

You can put any number you want in a DATA statement, but you can ' t put
calculations in a DATA statement. The DATA statement can be anywhere you
want ir:i the program-even after the END statement. This is because the
computer never really executes the DATA statement, it just refers to it.

If you have more than one DATA statement in your program, the computer
will refer to the one that is closest to the read statement being executed at
the time. Be sure to separate your data items with commas. The computer
uses a pointer to remind itself which piece of data it read last. After the
computer reads the first number in the DATA statement, the pointer points to
the second number. When the computer comes to the READ statement
again , it assigns the value the pointer indicates to the variable name in the
READ_ statement. You can use as many READ and DATA statements as you
need 1n a program, but make sure there is enough data in the DATA state
ments for the computer to read. Remove one of the numbers from the DATA
statement in the last program and run 1t again . The computer responds with
?OUT OF DATA ERROR IN 30. When the computer executes the loop for the
fifth time, there is no data for it to read. That is what the error messa\Je is
telling you.

•RESTORE
You can use the RESTORE command in a program to reset the data pointer

to the first piece of data if you need to . Replace the END statement (line 80)
in the program above with :

80 RESTORE

and add:

85 GOTO 10

Now the program can run continuously using the same DATA statement.
Putting too much into the DATA statement doesn't bother the computer at all .
If the computer gives you an OUT OF DATA ERROR message, it is because
you forgot to replace the number you removed from the DATA statement.

As mentioned earlier, you can put characters in a DATA statement to
assign values to string variables. The same rules apply as for numeric data .
Clear the computer's memory and type in the following program:

62

.........- -

1 0 FOR J = 1 TO 3
20 READ A$
30?A$
40 NEXT
50 END
60 DATA COMMODORE.64 ,COMPUTER

You can use numbers or characters in a DATA statement when you are
reading strings. You cannot use characters in a DATA statement when you
are reading numbers. When A$ is a number, you can print it-but you cannot
use 11 in mathematical calculations.

What if you want the computer to remember all the data 1n the DATA state
ment instead of replacing the value of a variable with the new data? What
if you want to be able to recall the third number or the second string of
characters?

Each time you assign a new value to a variable, (as the READ statement
does) the computer erases the old value in the variable 's box in memory and
stores the new value in its place. You can tell the computer to reserve a row
of boxes in memory and store every value that you assign to that variable in
your program. This row of boxes is called an array.

If the array contains all of the values assigned to the variable X in the
READ-DATA example, it would be called the X array. The first value assigned
to X in the program is named X{1} , the second value would be X(2}, and so on .
These are called subscripted variables. The numbers in the parentheses are
called subscripts. You can use a variable or a calculation as a subscript.
Below is an updated version of the average program using subscripted
variables.

5 DIM X(5)
10 T =O
20 FOR J = 1 TO 5
30 READ X(J)
40T=T + X(J)
50 NEXT
60A=T/5
70 ?"AVERAGE = " ;A
80 END
90 DATA 5, 12, 1,34, 18

Notice there are not many changes. Line 5 is the only new statement. It
tells the computer to set aside five boxes in memory for the X array. Line 30
has been changed so that each time the computer executes the loop, it

63

assigns a value from the DATA statement to the position in the X array that
corresponds to loop counter (J). Line 40 does the same thing it did before,
but you must use a subscripted variable to do it.

After you run the program, if you want to recall the third number, type ?X(3)
ll!Eli!E. The computer remembers every number in the array X. You can
create string arrays to store the characters in string variables the same way.
Try upaating the COMMODORE 64 COMPUTER program so the computer
will remember the elements in the A$ array. It should look like this:

5 DIM A$(3)
10 FOR J = 1 TO 3
20 READ A$(J)
30 ?A$(J)
40 NEXT
50END
60 DATA COMMODORE,64 ,COMPUTER

TIP: You do not need the DIM statement in your program unless
the array you use has more than 10 elements. See DIMENSION
ING ARRAYS.

• USING LOOPS
Before you proceed any further, you 'll need to understand more about

loops and the ways they are used to get the computer to do what you want.
You can use a loop to slow down the computer-by now you have witnessed
the amazing speed with which the computer executes commands. See if you
can predict what this program will do before you run it.

10 A$= "COMMODORE 64"
20 FOR J = 1 TO 10
30 PRINT
40 FORK= 1TO1500
50 NEXT K
60 PRINT A$
70 NEXT J
80 END

Did you get what you expected? The loop contained in lines 40-50 tells the
computer to count to 1500 before executing the remainder of the program.
This is known as a delay loop and may be useful to you in your programs.
Because it is inside the main loop of the program, it is called a nested loop.
We will come back to nested loops later in this chapter.

64

'W -

• USING THE COLON
Another useful tool in programming is the colon (:). You can use the colon

to separate two (or more) BASIC statements on the same line. This may save
time and space in your programs, and it may save some memory. Update the
above program by combining the statements in the delay loop on one line.
This is how it should now appear:

10 A$ = "COMMODORE 64 "
20 FOR J = 1 TO 20
30 PRINT
40 FORK = 1TO1500:NEXT
50 PRINT A$
60 NEXT
70END

Notice the program is one line shorter than before. Often the statements
in a delay loop are combined on one line, because they work together and
are executed in succession.

Statements after a colon on a line are executed in order, from left to right.
You can put as many statements as you can fit onto two screen lines (80
characters) in one line of your program. This provides an excellent opportu
nity to take advantage of the THEN part of the IF-THEN statement. You can
tell the computer to execute several commands when your IF condition is
true. Clear the computer 's memory and type in the following program:

10 INPUT"I ENTER ANY NUMBER";N
20 IF N<5.,.HEN PRINT" i LESSTHAN 5":GOTO 10
30 ?"iGREATER THAN OR EQUAL TO 5"
40END

See how you can tell the computer to execute more than one statement
when (N < 5) is true. You can put any statement(s) you want after the THEN
command, but none of them will be executed unless the IF condition is true.

• DIMENSIONING ARRAYS
Now that you know how to use a nested loop, you can have the computer

handle data in a more advanced way. What if you had a large table of num
bers on which you wanted to perform calculations? Picture a chart with 10
rows and 5 numbers in each row. Suppose you wanted to find the average of
the five numbers in each row (see chart next page). You could create 10

65

arrays and have the computer calculate the average of the five numbers in
each one. This is not necessary. You can put all of the numbers in a two
dimensional array. This array would have the same dimensions as the chart
of numbers you want to work with-10 rows by 5 columns. The DIM state
ment for th is array (we will call it array X) should be:

10 DIM X(10,5)

This tells the computer to reserve space in its memory for a two
dimensional array named X. The computer reserves enough space for 50
numbers. You. do not have to fill an array with as many numbers as you
DIMens1oned 1t for, but the computer stil l reserves space for all of the posi
tions in the array.

Now it becomes very easy to refer to any number in the chart by its
column and row position. Refer to the chart of numbers below. Find the third
element in the tenth row (1500). You would refer to this number as X(10,3) in
your program. The program on the following page reads the numbers from
the chart into a two-dimensional array (X) and calculates the average of the
numbers in each row.

Column

Row 2 3 4 5

1 1 3 5 7 9
2 2 4 6 8 10
3 5 10 15 20 25
4 10 20 30 40 50
5 20 40 60 80 100
6 30 60 90 120 150
7 40 80 120 160 200
8 50 100 150 200 250
9 100 200 300 400 500

10 500 1000 1500 2000 2500

66

10 DIMX(10,5),A(10)
20 FOR R = 1 TO 10
30T=0
40 FOR C = 1 TO 5
50 READX(R,C)
60 T = T + X(R,C)
70 NEXTC
80 A(R) = T/5
90 NEXTR

100 FOR R = 1 TO 10
110 PRINT "i!ROW #" ;R
120 FOR C = 1 TO 5
130 PRINTX(R ,C):NEXT C
140 PRINT"AVERAGE = ";A(R)
150 FORD= 1TO1000:NEXT
160 NEXT R
170 DATA 1,3,5,7,9
180 DATA2,4,6,8, 10
190 DATA 5, 10, 15,20,25
200 DATA 10,20,30,40,50
210 DATA 20,40,60,80, 100
220 DATA 30,60,90, 120, 150
230 DATA 40,80, 120, 160,200
240 DATA 50, 100, 150,200,250
250 DATA 100,200,300,400,500
260 DATA 500, 1OOO,1500,2000,2500

• GOSUB-RETURN
Until now, the only way you know to tell the computer to jump to another

part of your program is the GOTO statement. What if, at a certain point in the
program, you want the computer to jump to another part of the program,
execute the statements in it, then return to the point it left off and continue
executing the program from there? The part of the program that the com
puter jumps to and executes is called a subroutine. Clear your computer 's
memory and enter the program below.

10 A$ = " SUBROUTINE":B$ ="PROGRAM "
20 FOR J = 1 TO 5
30 INPUT''ENTER A NUMBER";X
40GOSUB 100
50 PRINT B$:PRINT

67

60 NEXT
70END

100 PRINT A$:PRINT
110 Z = Xt2:PRINT Z
120 RETURN

This p·rogram takes the five numbers you type in, squares them, and prints
the result. The other print messages tell you when the computer is executing
the subroutine or the main program. Line 40 tells the computer to jump to
line 100, execute it and the statements following it until it sees a RETURN
statement. The RETURN statement tells the computer to go back in the pro
gram to the line immediately followiny tile GOSUB statement and continue
executing. The subroutine can be anywhere in the program-including after
the END statement. Also, remember that the GOSUB and RETURN com
mands must always be used together in a program (like FOR and NEXT & IF
and THEN), otherwise the computer will give you an error message.

• ON GOTO/GOSUB
There is an even more powerful way to make the computer jump to

another section of your program (we call that branching). By using the ON
statement, you can have the computer decide what part of the program to
branch to based on a calculation or keyboard input. The ON statement is
used with either the GOTO or GOSUB-RETURN commands, depending on
what you need the program to do. A variable or calculation should be after
the ON command. After the GOTO or GOSUB command, there should be a
list of line numbers. Type in the program below to see how the ON command
works.

10 ?"ENTER A NUMBER BETWEEN ONE AND FIVE"
20 INPUTX
30 ON X GOSUB 100,200,300,400,500
40END

100 ?"YOUR NUMBER WAS 1 ":RETURN
200 ?"YOUR NUMBER WAS 2":RETURN
300 ?"YOUR NUMBER WAS 3":RETURN
400 ?"YOUR NUMBER WAS 4":RETURN
500 ?"YOUR NUMBER WAS 5":RETURN

When the value of X is 1, the computer branches to the first line number in
the list (100). When X is 2, the computer branches to the second number in
the list (200), and so on.

68

• RAM/ROM ACCESS-PEEK AND POKE
The Commodore 64 's memory is composed of RAM (Random Access

Memory) and ROM (Read Only Memory). In all , there are over 64,000 mem
ory locations in the computer. Each area of the computer's memory has a
special function. For instance, there is a very large area to store your pro
grams and the variables associated with them. This is the part of memory
that gets cleared when you use the NEW command.

Other areas are not as large , but they have very specialized functions. For
instance, there is an area of memory that controls the music features of the
computer. There are some memory locations that have special functions of
their own . There are two BASIC commands you can use to access and
manipulate the computer 's memory.

This can be a powerful programming device because the contents of the
computer's memory locations determine exactly what the computer should
be doing at the time. The PEEK command can be used to make the computer
tell you what value is being stored in a memory location (a memory location
can store any value between 0 and 255). You can PEEK the value of any
memory location (RAM or ROM) in direct or program mode. Type:

P = PEEK(650) llRE
?PE-II!
The computer assigns the value in memory location 650 to the variable P

when you press RETURN after the first line. Then it prints the value when you
press RETURN after the PRINT command. Memory location 650 determines
whether or not keys like the SPACEBAR and CRSR repeat when you hold
them down. A 0 in location 650 tells the computer to repeat these keys when
you hold them down. Hold down the SPACEBAR and watch the cursor move
across the screen.

To change the value stored in a RAM location, use the POKE command.
Type:

POKE 650,96 !llRB
The computer stores the value after the comma (96) in the memory loca

tion before the comma (650). A 96 in memory location 650 tells the computer
101 to repeat keys like the SPACEBAR and CRSR keys when you hold them
jown. Now hold down the SPACEBAR and watch the cursor-almost nothing
iappens! The cursor moves one position to the right , but it does not repeat.
ro return to its normal state, type:

POKE 650,0 Bmi!B

69

You cannot alter the value of all the memory locations in the computer-
the locations in ROM (57344-65535) can be read, but not changed.

NOTE: As mentioned before, there are many memory locations
(65,536) in the Commodore 64. Refer to the Commodore 64 Pro
grammer's Reference Guide for a complete memory map of the
computer.

• ASC AND CHR$

Every character the Commodore 64 can print (including graphic charac
ters) has a number assigned to it. This number is called a character string
code (CHR$) and there are 255 of them in the Commodore 64. There are two
functions associated with this concept that should prove to be very usefu l.
The first is the ASC function . Type:

?ASC(" Q") 3&&

The computer responds with 81. 81 is the character string code for the Q
key. Substitute any key for 0 in the command above to find out the code
number for any key.

The second function is the CHR$ function . Type:

?CHR$(81) F5

The computer responds with 0 . of course! CHR$ is the opposite of ASC.
They both refer to the table of character string codes in the computer 's mem
ory. See the appendix of this guide for a full listing of ASC and CHR$ codes.

• FUNCTION KEYS

By this time, you have probably noticed there are four large keys on the far
right side of your keyboard. These are your function keys. They are no differ
ent than any other key on your keyboard except they do not have a printed
character assigned to them. They do, however, have CHR$ codes. In fact,
each of them has two CHR$ codes-one for when you press the key, and one
for when you press the key while holding down the SHIFT key. The CHR$
codes for the F1-F8 keys are 133-140. However, they are not numbered in
order. The list below shows the keys and their corresponding CHR$ codes.

F1 CHR$(133)
F2 CHR$(137)
F3 CHR$(134)
F4 CHR$(138)

70

F5 CHR$(135}
F6 CH R$(139)
F7 CHR$(136)
F8 CHR$(140)

To get the even-numbered function keys, hold down the SHIFT key while
pressing the key. For example, to get F2, hold down SHIFT and press F1 .

You can use the function keys in your programs in many ways. To do this,
you 'll need to use the GET statement. Refer to Section 5 if you need a
refresher course on GET. The prog ram below prepares the F1 key to print a
message on the screen.

10 ?" PRESS F1 TO CONTINUE"
20 GET A$:1 F A$= ""THEN 20
30 IF A$OCHR$(1 33) THEN 20
40 ?"YOU HAVE PRESSED F 1"

Lines 20 and 30 do most of the work in this program. Line 20 makes the
computer wait until a key 1s pressed before executing any more of the pro
gram. Note that when the command immediately after THEN 1s a GOTO com
mand, only the line number is necessary. Also note that a GOTO command

an GOTO the same line it is on . Line 30 tells the computer to go back and
wait for another key to be pressed unless the F1 key has been pressed.

• CONVERTING STRINGS AND NUMBERS
Sometimes you may have the need to perform calculations on numeric

characters that are stored as string variables in your program. Other times,
you may want to perform string operations on numbers. There are two BASIC
funct ions you can use to convert your variables between numeric and string
type. The VAL function returns a numeric value for a string variable. Type in
the short program below.

10A$= " 64 "
20 A = VAL (A$)
30? " THE VALUE OF "; A$" IS";A

At this point you should know the program does not have to be ended with
an END statement.

The STR$ function converts numeric variables into string variables. Clear
the computer's memory and type in this program.

10A=64
20 A$ = STR$ (A)
30 ?A" IS THE VALUE OF";A$

71

• RANDOM NUMBERS
There is one final function before you learn to apply the concepts pre

sented in Sections 4, 5 and 6 to things like graphics and music. The RND
function tel ls the computer to generate a random number. All generated
numbers are nine digits in decimal form between 0.00000000 1 and
0.999999999. Type:

?RN D(O)M MW

That number is generated by a free-running time clock inside the com
puterl You can add some calculations to this function to make the computer
generate random numbers between one and six-as if a die was being
rolled. Type:

?INT(RND(0)*6)+ 1 BR&

Without the + 1 at the end of this command, the computer generates a
random number between zero and five . To simulate a pair of dice rolling ,
type:

?(INT(RND(0)*6) + 1} + (INT(RND(0}*6) + 1}

This section and the preceding two sections have been designed to famil
iarize you with the BASIC computer programming language and its capabili
ties. In the next two sections you will enter a world of ad11anced program
ming in graphics and sound. Remember that more information on every
command discussed in this Guide can be found in the Commodore 64 Pro
grammer's Reference Guide.

72

GRAPHICS,
COLOR AND SPRITES

This section introduces the Commodore 64's
exceptional graphics, color and animation capabilities

Printing in Different Colors ____________ _

Color Character String Codes (CHR$) _______ _

Color Registers-Changing Screen,

75
76

Border and Character Colors ___________ 77
Screen Memory ________________ 80

Color Memory 82

Animation 83

Sprite Graphics 87
- Sprite Concepts 87
- Designing a Sprite Image 88
-Converting Your Spr ite Image Into Data 88
-Controlling Sprites 94
- Animating Your Sprites 97
-Tying Your Sprite Program Together 100

Graphics Modes 102

73

Your Commodore 64 gives you exceptional graphics capabilities. The Com
modore 64 offers sixteen colors, five graphics modes and programmable
animated objects called sprites . This section elaborates on the several pow
erful graphics features built into the Commodore 64 and how they are used.

• PRINTING IN DIFFERENT COLORS
The Commodore 64 is capable of displaying 16 different colors on the

screen. When you first turn on your Commodore 64, the screen background
color is dark blue and the letters in the foreground are light blue. You can
change those colors easily. All you do is hold down the CTRL key and press a
numbered key between zero and eight. Notice that the cursor changes color
according to the numbered key you pressed. All the succeeding characters
are displayed in the color you selected. Hold down the Commodore key C•
and press a numbered key between zero and eight, and eight additional col
ors are displayed on the screen . You can use this method of changing colors
only in direct mode-that is, outside of a program.

To select color within a program, the same principle applies. For a pro
gram, you must include the color selection information within a PRINT state
ment. For example, type the following and leave spaces between each letter:

10 PRINT" S P E C T R U M" !lilm!E

Now type line 10 again but this time hold down the CTRL key and press the
1 key directly after the open quotation mark. Release the CTRL key and type
the "S" . Now hold down the CTRL again and press the 2 key. Release the
CTRL key and type the "P". Next hold down the CTRL key again and press
the 3 key. Continue this process until you have typed all the letters in the
word SPECTRUM and selected a color between each letter. Type a closed
quotation mark and press the RETURN key. Now type RUN and press the
RETURN key. The C64 displays the word SPECTRUM with each letter in a
different color. lfow type LIST and press the RETURN key. Notice the graphic
characters that appear in the PRINT statement in line 10. These characters
tell the C64 what color you want for each printed letter. Note that these
graphic characters do not appear when the Commodore 64 PRINTs the word
SPECTRUM in different colors.

The color selection characters , known as control characters, in the PRINT
statement in line 10 tell the Commodore 64 to change colors. The computer
then prints the characters that follow in the new color until another color
selection character is encountered. While characters enclosed in quotation
marks are usually PRINTed exactly as they appear, control characters are
only displayed within a program LISTing.

75

Table 7-1 lists the colors available on the C64. The table also shows the key
used to specify a given color, and the resulting control character that
appears in quotes in a PRINT statement.

Table 7-1. C64 Colors

KEYBOARD CO LOR DISPLAY KEYBOARD COLOR ~ SPLAY

mma BLACK • ~· ORANGE
,......
1...i

&1111 WHITE ~ ~· BROWN • &1111 RED tall ~El LT. RED ~

&1111 CYAN iii;:]
~· GRAY 1 ~ -· • ~·

11'.11
PURPLE GRAY 2

&1111 GREEN D ~· LT. GREEN II
mma BLUE = ~· LT . BLUE 0
ma m

~·
•• YELLOW GRAY 3 ••

• COLOR CHARACTER STRING CODES (CHR$)
· Each character on the Commodore 64 keyboard has a number associated

with it. When you press a key, the computer scans the keyboard and under
stands exactly which character is typed. A character code value is entered
into memory each time a key is pressed. These codes are referred to as
character string codes. Appendix E lists al l the character string codes the
Commodore 64 understands.

Within a prog ram, you can select colors using character string codes
instead of holding down the CTRL key and pressing a numbered key. For
instance, enter the fo llowing sample program:

10 PRINTCHR$(5)5ft f
20 PRINT "WHITE" l!i§

NOTE: In the remainder of this section, the W · 11M symbol is
shown only after DIRECT mode statements, not after program
lines.

When you RUN this program, the character color changes from blue to
white and the word " WHITE" is displayed. The other 15 colors also have a
charac ter string code assigned to them. The fo llowing is a list of all the colors
available on the Commodore 64 and the coresponding character string
codes:

76

Col or CHR$ Code Col or CHR$ Code
White CHR$(5) Dk. Gray CHR$(151)
Red CHR$(28) Gray CHR$(152)
Green CHR$(30) Lt . Green CHR$(153)
Blue CHR$(31) Lt . Blue CHR$(154)
Orange CHR$(129) Lt. Gray CHR$(155)
Black CHR$(144) Purple CHR$(156)
Brown CHR$(149) Yellow CHR$(158)
Lt . Red CHR$(150) Cyan CHR$(159)

To select any of the Commodore 64 colors , PRINT the above character
string codes according to the colors you want to display on the screen. The
following program illustrates how to select colors within a program.

10 PRINTCHR$(5)
15 PRINT "WHITE"
20 PRINTCHR$(28)
25 PRINT "RED "
30 PRINTCHR$(30)
35 PRINT " GREEN "
40 PRINTCHR$(31)
45 PRINT " BLUE "
47 PRINTCHR$(129)
48 PRINT "ORANGE "
50 PRINTCHR$(144)
55 PRINT"BLACK "
60 PRINTCHR$(149)
65 PRINT " BROWN"
70 PRINTCHR$(150)
75 PRINT "LT . RED"
80 PRINTCHR$(151)
85 PRINT " DK . GRAY"
90 PRINTCHR$(152)
95 PRINT " GRAY "
100 PRINTCHR$(153)
llO PRINT "LT . GREEN"
120 PRINTCHR$(154)
130 PRINT "LT . BLUE "
140 PRINTCHR$(155)
150 PRINT "LT . GRAY "
200 PRINTCHR$(156)
210 PRINT " PURPLE "
220 PRINTCHR$(158)
230 PRINT "YELLOW "
240 PRINTCHR$(159)
250 PRINT " CYAN "

77

• COLOR REGISTERS-CHANGING SCREEN,
BORDER AND CHARACTER COLORS

Your Commodore 64 computer has 64K of memory. This means the C64
holds 64 limes 1024 (65536) bytes of information. Think of the internal struc
ture of your computer as 65536 storage compartments piled one on top of
the other. They are labeled starting from the bottom at location zero (0) and
continue upward to location 65535 on top. You can also refer to each byte as
a register, so your Commodore 64 has 65536 registers.

Each byte inside your computer is used for a specific purpose. For
instance, you have 38911 bytes available to program in BASIC. Your Commo
dore 64 tells you this as soon as you turn on the computer and read the
opening screen. You may ask, what are all the rest of the bytes used for?
They control the computer 's brain , known as the operating system. The oper
ating system registers control all the features of your Commodore 64.

A portion of the operating system controls graphics and color. You can
select different colors by changing the contents of the Commodore 64 color
registers . There are three color registers which control the colors of the bor·
der, ihe background and the characters When you first turn on your Commo
dore 64 , the background color is dark blue and the character and border
colors are light blue. You can change the background, border and character
color registers with the BASIC POKE statement.

The POKE command modifies the contents of the specified location and
places the newly specified value 1n that location. The format of the POKE
command is:

POKE memory location , value

For example, type the following POKE command:

POKE 53280,0 &m!E

Did you notice what happened? The border color changed from light blue
to black. Location 53280 is the border color register. Location 53281 is the
background color register and location 646 is the character color register.
Now change the background color from dark blue to black with the following
command:

POKE 53281 ,0 !;!W&E1!i

Now all you need to know is how to change the character color with a
POKE command. You already learned the two other methods to change the
character color in the last section, first with the CTRL key and second with

78

character string codes (CHR$). The following POKE changes the character
color from light blue to white:

POKE646,1 M

Note that the character color changes to white , but the characters already
on the screen remain the same color as before. All the characters you type
from now on are displayed in white unless you change the character color
again .

You 're probably wondering what the values that are POKEd into the color
registers mean. These values are the color information codes for the 16
colors available on the Commodore 64. The following list contains all the
Commodore 64 colors and the corresponding color codes:

0 Black 8 Orange
1 White 9 Brown
2 Red 10 Light Red

11 Dark Gray
12 Gray

3 Cyan
4 Purple
5 Green 13 Light Green
6 Blue 14 Light Blue
7 Yellow 15 Light Gray

Try the following program. It uses FOR .. . NEXT loops, which you learned
in the last chapter.

5 PRINT "[J" : REM Use shifted CLR/HOME key to produce heart symbol
shown in parentheses

10 FORI=OT015
15 POKE53280 , I
16 FORJ=lT0500 : NEXT
18 NEXT
19 POKE53280 , 0
20 FORI=OT015
25 POKE53281 , I
26 FORJ=lT0500:NEXT
28 NEXT
29 POKE53281 , 0
30 FORI=OT015
35 POKE646 , I
36 PRINT " COLOR"
37 FORJ=lT0500 : NEXT
38 NEXT
39 POKE646 , 14
50 POKE53280 , 14 : POKE646 , 14 : POKE53281 , 6

79

This program changes the color code value of each of the color registers
using a FOR .. . NEXT loop. Lines 10 through 18 POKE each color va lue from
o (black) to 15 (light gray) into the border color register and displays each
border color on the screen . Lines 20 through 28 POKE each color value into
the background color register and display each background color on the
screen. Lines 30 through 38 POKE each color value into the character color
register and display each character color on the screen.

Lines 16, 26 and 37 are FOR ... NEXT loops that slow down the program.
They are empty FOR . .. NEXT loops that delay program execution so you
can notice the color changes on the screen . Try the program without the
delay loops and see how fast the Commodore 64 runs. Line 40 restores the
original border, screen and character color registers .

• SCREEN MEMORY
Since graphics is one of the Commodore 64 's strongest features, the

sc reen is an important part of the computer. The Commodore 64 screen has
1000 character positions-40 columns by 25 rows. Each character position
uses one byte of memory, so the Commodore 64 needs 1 OOO bytes to store
the information you see on the screen .

In the Color Register section, we referred to the memory of the Commo
dore 64 as 65536 storage compartments piled one on top of the other.
Screen memory uses part of those storage compartments starting at loca·
tion 1024 and ending at location 2023. The screen appears as a grid having
40 X (horizontal) positions and 25 Y (vertical) positions. In memory, however
the character positions are actually stored sequentially.

The top left character posit ion on the screen , referred to as the HOME
position , is stored at location 1024. The character position directly to the
right of HOME is stored at location 1025 and so on. The character position at
the top right corner of the screen is stored at location 1063, 40 locations past
the beginning of screen memory. The last character position , located at the
bottom right corner of the screen, is stored at location 2023, the end of
screen memory. Examine Figure 7-1 to understand the correspondence
between the way the screen looks and the way information is sequentially
stored in memory.

80

FIGURE 7-1. SCREEN MEMORY MAP

1024-
1064
1104
1144
1184
1224
1264
1304
1344
1384
1424
1464
1504
1544
1584
1624
1664
1704
1744
1784
1824
1864
1904
1944
1984

I I '
" I

r-++ I
~I I

• I I :

~~ ' I
'

I

I

10

I

COLUMN
20 30

I

I

I

39

1063
~

10 ~

20

24

Remember when you learned about character string codes in the Color
Character String Code section? The Commodore 64 has a separate set of
codes used only by screen memory to display characters on the screen.
Instead of outputting characters to the screen in PRINT statements, you
POKE a screen code value directly into a specific screen memory location.
For example, enter the following line:

POKE 1024,1@4±H¥

Did you notice what happened? The letter "A" is displayed in the upper left
corner of the screen. Appendix D contains a list of the screen codes used in
POKE statements to display characters on the screen. Notice that the screen
codes in Appendix D and the character string codes in Appendix E are differ
ent. Appendix D contains screen codes that can only be POKEd directly into
screen memory. Appendix E contains character string codes that are used
more universally for inputting from and outputting to the screen, printer, disk
drive and Datassette.

81

You can POKE any of the values in Appendix D into any of the screen
locations between 1024 and 2023. Experiment with different characters and
try displaying messages on the screen by POKEing a series of screen codes
into consecutive screen memory locations. You can create character
graphic images by POKEing different screen code graphic symbols in pat
terns.that form picture images.

• COLOR MEMORY

Now that you have grasped the concept of screen memory, you need to
know how to control the color of each character position on the screen . The
Commodore 64 has a separate section of memory called COLOR MEMORY,
that controls the color of information on the screen . The Commodore 64 uses
1 OOO bytes to store the color information for the 1 OOO character positions on
the screen. Each screen memory location has a corresponding color mem
ory location assigned to it. Compare Figure 7-1 with Figure 7-2, to under
stand the correspondence between screen memory and color memory and
the way screen and color information are stored sequentially.

FIGURE 7-2. COLOR MEMORY MAP

10
COLUMN

20 30 39

55335
~

55296-~.W.-l-J.-l-ll-l-l-l-++-H+·l-+-+++t-+-H-++++-+-H-T-t-r-t-t-ttti
55336
55376
55416
55456
55496
55536
55576
55616
55656
55696
55736
55776
55816
55856
55896
55936
55976
56016
56056
56096
56136
56176
56216
56256

82

t
56295

10 ~

20

24

Location 1024 in screen memory corresponds to location 55296 in color
mem_ory. Location 1063 corresponds to location 55335. Screen memory
location 2023 corresponds to color memory location 56295 Remember
each screen location has a one to one correspondence to a c.olor memor;
location that controls its color.

In the screen memory example you POKEd a 1 into location 1024 as fol
lows:

POKE 1024, 1 ==ett'f9RW

This places the letter "A" in the HOME position on the screen. Now
change the color of the letter "A" in the HOME position with the following
POKE:

POKE 55296, 1 a!A&!!llE

Did you notice the difference? The letter "A" in the HOME position
changed from light blue to white. At this point you may wonder what the " 1"
means in POKE 55296, 1. This time the "1 " is not a screen code that repre
sents a character. Instead it is the color code for white. Refer to the Color
Registers section for the list of Commodore 64 colors and the corresponding
color codes.

Remember, if you want to POKE a character to the screen, you actually
need two POKEs. First. POKE a screen code into screen memory to display a
character. Second, POKE a color code into color memory to display the color
of the character.

•ANIMATION

Your Commodore 64 is capable of animating objects on the screen. The
idea behind computer animation is to display an image on the screen and
simulate its motion through computer instructions.
. Remember when you POKEd a character into screen memory and it was

displayed on the screen? That's what you are going to do to animate a
graphic character. To animate a graphic character on the screen, POKE its
screen code into a screen memory location. Next, POKE the screen code for
a blank (32) into the same screen location. Then POKE the graphic character
screen_ code in_to a screen location next to the original one. Repeat the pro
cess w1th _a series of adjacent screen memory locations. Since the computer
is d1splay1ng and blanking out. the graphic character in successive screen
locations _so quickly, the image appears to be moving. For example, type in
the following program and RUN it.

83

10 PRINT"C "
20 FOR 1=1024 TO 2023 STEP41
30 POKEI,81
35 POKE54272+I,7
40 FOR J=lT045:NEXT
45 .POKE I, 32
50 NEXT
100 FOR I=2009T01450 STEP-39
110 POKEI,81
120 POKE54272+I,7
130 FOR J=lT045 :NEXT
140 POKEI,32
150 NEXT
160 GOT020

This is your first taste of animation . You have just made a yellow ball
bounce on the screen. Although the bouncing ball program is a simple exam
ple of animation, you are now on your way to programming sophisticated,
animated graphics.

Here 's an explanation of the program:

• Line 10 clears the screen. Loop 1, lines 10 through 50, displays and
moves the ball from the top of the screen to the bottom. Line 20 begins a
loop at the start of screen memory. Notice the FOR ... NEXT statement
has the words STEP 41. This tells the computer to increment the index
variable I, by 41 locations at a time, starting at location 1024 and ending
at location 2023. When STEP is not specified in a FOR . .. NEXT loop,
your computer cycles through each index variable one at a time.

• Line 30 POKEs screen code value 81 into the screen location according
to the index variable I. The value 81 represents the screen code for the
ball character that bounces on the screen. The first cycle of the loop
POKEs screen code 81 into location 1024. The second cycle POKEs
screen code 81 into screen location 1065 (1024 + 41). The third cycle
POKEs screen code 81 into screen location 1106 (1065 + 41) and so on.
Each cycle through the loop skips 40 screen locations and POKEs the
ball 41 locations past the previous screen location.

84

• Line 35 POKES color code 7 (yellow} into the color memory location
corresponding to the screen location that is POKED with the ball charac
ter. Remember, when you POKE a screen code value in to screen mem
ory, you also have to POKE a color code value into the corresponding
color memory location . See Figure 7-1 and 7-2 to understand how each
screen memory location corresponds to its own color memory location.

• In line 35, location 54272 + I is the beginning of color memory during
the first cycle of the loop (54727 + 1024 = 55296). The loop incre
ments the color memory location the same way as screen memory. The
second cycle of the loop inc rements the index variable I, so the POKE
statement in line 35 POKEs the color code value into location 55337
(55296 + 41). Colar location 55337 corresponds to screen location
1065. As you can see, the loop takes care of POKEing the screen loca
tion and corresponding color location so that the ball is always displayed
correctly in yellow.

• Line 40 is an empty FOR ... NEXT loop. It acts as a lime delay to slow
down the program so the animation appears smooth. Try the program
without line 40. You ' ll notice the program becomes choppy.

• Line 45 POKEs screen code value 32, the blank character, into the same
screen location that was POKEd with screen code 81 in line 30. Th is
turns off the ball character. The ball character is turned on and off so
quickly, it looks as though the ball is always on the screen .

• Line 50 is a NEXT sta tement. It updates the index variable I. The loop
then cycles until the index variable equals 2023. At that point the pro
gram executes loop 2.

• Loop 2 bounces the ball upward and off the right side of the screen .
Loops 1 and 2 both have the same statements, except different screen
memory locations are decremented in line 100 instead of incremented
as in line 20. The GOTO statement in line 60 tells the computer to go
back to line 20 and execute everything again . The GOTO statement gives
you a way to RUN your programs continuously. Stop the program by
pressing the RUN/STOP key.

Here 's another animation program that bounces the yellow ball off all four
" walls " of the screen. This program is based on program three, but it has five
loops instead of three. Each of the five loops is just like the two loops in the
preceding program, except that the last three loops use different screen
locat ions to control the three additional bounces of the bal l.

85

10 PRINT"rl"
20 FOR I=l024 TO 2023 STEP41
30 POKEI,81
35 POKE54272+I,7
40 FOR J=lT045 : NEXT
45· POKEI,32
50 NEXT
100 FOR I=2009T01450 STEP-39
110 POKEI,81
120 POKE54272+I , 7
130 FOR J=lT045 : NEXT
140 POKEI,32
150 NEXT
200 FOR I=l423T01044 STEP-41
210 POKEI,81
220 POKE54272+I , 7
230 FOR J=lT045 : NEXT
240 POKEI,32
250 NEXT
300 FOR I=l050T01554 STEP38
31 0 POKEI , 81
320 POKE542 72+I,7
330 FOR J=lT045 : NEXT
340 POKEI , 32
350 NEXT
400 FOR I= l 544T02009 STEP42
410 POKEI , 8 1
420 POKE54272+I ,7
430 FOR J=lT045 : NEXT
440 POKEI , 32
450 NEXT
490 GOTOlOO

Now that you can animate a simple graphic character, it's time to learn a
much more sophisticated method called sprite animation.

86

• SPRITE GRAPHICS

SPRITE CONCEPTS

You 've learned how to control color with the CTRL key, with PRINT state
ments, and with character string codes. You now know how to PRINT alpha
numeric and graphic characters on the screen within quotes, as character
strings, and by POKEing val11es directly into screen memory. Animating exist
ing character images, as described in the last section , has certain limita
tion£. For true graphic animation , you need a way to create your own images,
color those images and control their movement on the screen . That 's where
sprites come in.

Sprites are programmable movable objects. They are animated, high reso-
1ution images you can create into any shape. You can move these images
anywhere on the screen and color them 1n 16 colors The Commodore 64 has
a set of sprite registers that control the color, movement and shape of the
sprite. Sprites on the C64 provide you with true an1mat1on and soph1st1cated
graphics capab1lit1es like no other home computer. You 'll soon amaze your
self once you program spri tes and control their movement on the screer.

A special chip inside the Commodore 64 . called the VIC (Video lntuface
Controller (6566)) ch1P. controls graphics modes and sorites. Border and
screen color registers as well as the sprite registers are all part of the VIC
chip The VIC chip normally can control 8 spr ites at once Through advanced
programming you can control more than eight sprites. The VIC chip can even
determine if a sprite has moved in front of or behind another sprite. The size
of each sprite can also be expanded both vertically and horizontally. You can
use sprites in any mode: standard character, mult1-color, standard and multi
color bit map and extended color modes. See the discussion of Graphics
Modes later in this section for more information.

Let's begin by examining the properties of characters first, and then relate
them to sprites. A character on the screen 1s an 8 by 8 dot grid. Since there
are 40 columns by 25 lines on the screen . the entire screen has 320 (40 x 8
dots per character width) dots across times 200 (25 lines x 8 dots per charac
ter height) tall , which equals 64.000 total dots.

Each character pattern requires 8 bytes of storage in character memory.
Each of the eight rows of dots in the 8 by 8 character grid require a byte of
memory storage. In other words. each screen dot requires a bit of memory,
so an 8 by 8 dot grid consists of 64 square dots and requires 64 bits (8 bytes)
of memory.

Each dot on the screen is ca lled a pixel. Pixel is a computer term for
picture element. A sprite is made up of a 24 by 21 pixel grid, compared to a

87

character which is an 8 by 8 pixel grid. The width of a sprite is 24 pixels.
which is equal to the width of three screen characters (bytes). Since a sprite
is 21 rows of three bytes wide, a sprite requires 63 bytes (21 rows x 3 bytes
per row) of storage. Figure 7-3 illustrates the layout and storage require
ments of a sprite.

DESIGNING A SPRITE IMAGE

The first step in programming a sprite is designing the sprite image. For a
beginner, the best way to design a sprite is on a piece of graph paper. Draw a
box 24 blocks across by 21 blocks tall , just like Figure 7-3. The box you have
just drawn is 504 (21 x 24) square blocks. Each block represents a bit in
memory. If you divide 504 by 8 bits per byte, you 'll see that the sprite uses up
63 bytes of memory.

You can now start designing your sprite image. Keep in mind that each
block within the box you have drawn represents one bit in the Commodore
64's memory. As you probably know by now, a bit can take on one of two
values, zero or one. That is why a bit is called a binary digit , since the root
"bi" means two. A zero (0) means that a bit is " off " and a one (1) means that
a bit is turned " on ".

When you are designing your sprite on a piece of graph paper. darken a
block if you want that bit to be on , and leave a block blank if you want that bit
off. The combination of darkened blocks and blank blocks forms your sprite
image. That is, if you want to turn on a dot in the sprite image, you must turn
on a corresponding bit in memory where the sprite DATA is stored.

Refer to Figure 7-4 as an example of designing a sprite on a piece of graph
paper. Remember, the darkened blocks are " on " bits and the blank blocks
are " off " bits. The sprite image in Figure 7-4 represents a smiling face. Use
the blank spri te-making grid in Figure 7-5 to create your own sprite images.

CONVERTING YOUR SPRITE IMAGE INTO DATA

The next step in programming a sprite is coding the sprite image into data
the computer can understand. On your sheet of graph paper. label the top of
each column the same as in Figure 7-6.

Label the first eight columns as follows: 128, 64, 32, 16, 8, 4, 2, 1. Label
the second and third set of eight columns the same way.

You now have three sub-sets (bytes) of eight columns (bits) per row, each
labeled from 128 on the left to 1 on the right. Each 8 column sub-set repre
sents 8 pixels that correspond to a byte of memory. Again , since there are 21
rows wi th three bytes each, the total amount of memory the sprite requires is
63 bytes.

88

FIGURE 7-3. SPRITE GRID

SPRITE GRID

24 BITS<DOTS)IU=3 BVTES PER ROW

1------------------------1
ROW

1 I • • • • • • • • I • •••••••
2 .

I. • • • • • • • • • • • • • • • •••••••••
3 l •••••••• I • • • • • • • •
4 I • • • • • .•• I• • • • • • • •
5 a a a a a I a e I • • • • • •• • I ••••• I • '

6 •••••••• I • •• I •••• I • •••••• I

7 I • •••. • • • I • • • • • • • •
8 •••••••• I I ••••••• I. • • • • . • •
9 I I a a a a a a I • • • • • • • • '
10 • • • • • • • • r •••••••• • •••••••
11 • • • • • • • • I • • • • • • • • ••••••••
12 •••••••• I • • • • • • • • a a a I a a a a

13 I • • • • • • • • ••••••••
14 •••••••• I ••••••• I a a a a I a a I

1 :5 • • • • • • • • I •• I ••••• ••••••••
16 • • • • • • • • I • •• • • • • •
17 • • • • • • • • I • • • • • • • •
18 • • • • • • • • I • • • • • • •
19 • • • • • • • • I • • • • • • • • ••••••••
20 I. • .. • • . • ••••••••
21 • • • • • • • • I• • • • • • • • ••••••••

24 BITS<DOTS) X 21 BITS<DOTS) = 504 DOTS
504 BITS/8 BITS PER BYTE = 63 BYTES

OR

21 ROWS X 3 BYTES PER ROW = 63 BYTES

<DIAGRAM 6-3)

89

FIGURE 7·4. SPRITE-MAKING GRID
FIGURE 7·5. SPRITE-MAKING GRID

90
91

FIGURE 7-6. SPRITE-MAKING GRID.

Now you have a way to convert the graph paper image to computer data.
For each darkened square within an eight column sub-set (byte) add up the
number at the top of the column. Do this for each of the three 8 column sub
sets per row or a total of 63 times. Do not add column values in which individ
ual squares are blank since these represent " off" pixels. Only add up the
column values for the darkened squares. Once you calculate all the byte
values for each eight column sub-set , you have 63 pieces of data to def ine
your sprite. These values must be READ by the C64 and stored in DATA
statements within a program. Study Figure 7-7 to grasp the concept of con
verting a sprite picture on graph paper to data used by the C64.

92

FIGURE 7·7. SPRITE-MAKING GRID

100 DATA 0 , 0 , 0
110 DATA 0 , 126 , 0
120 DATA 1 , 129 , 128
130 DATA 2 , 0,64
140 DATA 12 , 0 , 48
150 DATA 8 , 0 , 16
160 DATA 19 , 197,200
170 DATA 16,0,8
180 DATA 32 , 195,4
190 DATA 32 , 195 , 4
200 DATA 32,24,4
210 DATA 32,24 , 4
220 DATA 32 , 24,4
230 DATA 16 , 126 , 8
240 DATA 17 , 60 , 136
250 DATA 8 , 129 , 16
260 DATA 8 , 126 , 16
270 DATA 4 , 0 , 32
280 DATA 2,0 , 64
290 DATA 1,129,128
300 DATA 0 , 126 , 0

93

In the program shown in Figure 7-7 , the DATA values in line 100 corres
pond to the three sub-sets of the first row of the sprite grid. All three pieces
of DATA equal zero since all three sub-sets of the first row of the sprite grid
are blank (off). Line 11 O corresponds to the second row of the sprite grid.
The first DATA value in line 11 O equals zero, because again , no pixels are
turned on in that sub-set. The second piece of DATA in line 110 equals 126,
since the squares in the column positions labeled 64, 32, 16, 8, 4 and 2 in the
middle sub-set are all turned on.

Again the third DATA value in line 110 is zero because none of the pixels in
that 8 column sub-set is turned on. The DATA in line 120 represents the pixel
values for the third row of the sprite grid, line 130 represents the values in the
fourth row of the sprite grid, and so on . Line 300 corresponds to the last row
of the sprite grid.

Now that you know how to design a sprite on a sheet of graph paper and
code it into DATA that the Commodore 64 can understand, you are almost
ready to write your first sprite program. But first let's examine the sprite
registers and how they work.

CONTROLLING SPRITES

Special memory locations within the video chip. known as sprite registers ,
are set aside to control sprites. Each sprite register is assigned a specific
task. The first register you need to set is the sprite enable register at location
53269. As the name implies, the sprite enable register turns on a sprite. You
must POKE a value into the sprite enable register, depending on which
sprite(s) you want to turn on. Here 's a list of the POKE values that enable
each sprite:

Sprite No. POKE Value
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128

94

You may have noticed the POKE value for each sprite is equal to two,
raised to the sprite number. For example, the POKE value for sprite seven is
two raised to the seventh power, which equals 128. Figure 7-8 illustrates this
concept.

FIGURE 7·8. SPRITE POKE VALUES

128 64 32

7 - 6 5

21 a I a I a

Decimal values of each
$prite number

16 8 4 2 l ___/ Sprite level Number

4 3 2 0

a I a I I a I a I =4

-----== Pu1 o 1 For The SPRITE You Wont

The POKE command to turn on sprite 7 is:

POKE 53269, 128

If you want to enable more than one sprite, add the POKE values of the
sprites you want to turn on, and POKE the sum into the sprite enable register.

Now you have to store the sprite DATA somewhere in the Commodore 64 's
memory. Although you already converted your sprite picture into DATA as in
lines 100 through 300 in Figure 7-7, you still have to READ that DATA and
POKE it into memory. Before you can do that, you must tell the C64 where to
store the DATA.

You point out where the DATA is stored using a sprite pointer. Each of the
eight sprites has its own pointer. The following is a list of the sprite pointer
memory locations:

95

Sprite No. Memory Location
0 2040
1 2041
2 2042
3 2043
4 2044
5 2045
6 2046
7 2047

Now that you know what location to POKE for each sprite pointer, you
need to know the value to POKE into these locations. Here's the formula:

1. Choose an available memory location that is not being used. For this
example, choose location 12288.

2. Divide the chosen location by 64: 12288/64 = 192
3. POKE the sprite pointer of the sprite you previously enabled with the

quotient from step 2. To continue our previous example, the following
POKE command uses the seventh sprite pointer to point to sprite DATA
starting at location 12288:

POKE2047, 192&E1IE
To determine other locations to store sprite DATA, consult The Commo
dore 64 Programmers Reference Guide.

As mentioned before, the sprite DATA must be READ and then POKEd into
memory once the sprite pointers tell the Commodore 64 where to store the
DATA. The sprite pointer was set with the previous POKE command. Now you
can READ the sprite DATA you converted from your sprite image and POKE it
into memory starting at location 12288. POKEing the DATA into memory
actually creates the sprite. The following program segment READs the DATA
and POKES it into memory starting at location 12288.

50 FOR N = 0 to 62
60 READ 0
70 POKE 12288 + N ,Q
80 NEXT

So far you have enabled the sprite, set the sprite pointer to tell the Com
modore 64 where to store the sprite DATA and POKEd the sprite into mem
ory. All you need to do now is to assign a sprite color and control the sprite 's
movement on the screen , and your sprite program will be finished.

Each sprite has its own sprite color register. The following is a list of sprite
color register locations:

96

Sprite No. Memory Location
0 53287
1 53288
2 53289
3 53290
4 53291
5 53292
6 53293
7 53294

To assign a sprite color, POKE a sprite color register with a color code
between 0 and 15. For example, if you enter:

POKE 53294,7 &HIE

sprite seven is colored yellow. (For a list of color codes, see the Color Regis
ter discussion given earlier in this section.)

ANIMATING YOUR SPRITES

Animation is the last step before your program can RUN. The key behind
animation is motion. Each of the eight sprites has two registers that control
movement on the screen. One register is the sprite X position, which controls
the horizontal sprite movement. The other is the sprite Y position, which
controls the sprite's vertical movement. The following is a list of the sprite X
and Y position registers for each sprite:

Sprite No.
0-Xpos
0-Ypos
1 -X pos
1 - Y pos
2-X pos
2-Ypos
3-X pos
3-Ypos
4-X pos
4-Ypos
5-Xpos
5-Ypos
6-X pos
6-Ypos
7-X pos
7-Y pos

97

Memory Location
53248
53249
53250
53251
53252
53253
53254
53255
53256
53257
53258
53259
53260
53261
53262
53263

The easiest way to control the vertical and horizontal coordinate values is
within a FOR . .. NEXT loop. Set up a loop and POKE the index variable from
the loop into the vertical and horizontal sprite position registers. For exam
ple, to move sprite 7 diagonally on the screen , use the following program
segment:

85 ·FOR Z = 0 TO 200: REM Set up loop; index variable = z
90 POKE 53262,Z : REM Poke sprite 7 x pos. with index variable z
95 POKE-53263,Z : REM Poke sprite 7 y pos. with index variable z
98 NEXT : REM Update index variable position

Notice that the FOR ... NEXT loop moves sprite 7 the maximum number
of vertical values (200), but only moves horizontally 200 out of the 320 possi
ble positions. That was done to keep the example program simple.

The sprite Y position register can store any of the 200 possible verti cal
position values. The sprite X position register cannot store all of the 320
horizontal position values because the sprite position register, like all other
memory locations in the Commodore 64, can only represent a value up to
255.

How do you position a sprite past the 255th horizontal screen position?
The answer is, you have to borrow a bit from another register in order to
represent a va lue greater than 255.

An extra bit is already set aside in the Commodore 64 's memory in case
you want to move a sprite past the 255th horizontal locat ion. Location 53264
controls sprite movement past position 255 . Each of the 8 bi ts in 53264 con
trols a sprite. Bit 0 controls spri te 0, bit 1 controls sprite 1 and so on . For
example, if bit 7 is on, sprite 7 can move past the 255th horizontal position.

Each lime you want a sprite to move across the entire screen , turn on the
borrowed bit in location 53264 when the sprite reaches horizontal position
255. Once the sprite moves off the right edge of the screen , turn off the
borrowed bit so the sprite can move back onto the left edge of the screen .
The fol lowing POKE command allows sprite seven to move past the 255th
horizontal position :

POKE 53264, 128 E

The number 128 is the resulting value from turning on bit 7. You arrive at
this value by raising two to the seventh power. If you want to enable bit 5,
raise two to the fifth power, which of course equals 32. The general rule is to
ra ise two to the power of the sprite number that you want to move past the
255th horizontal screen position. Now you can borrow the extra bit you need
to move a sprite all the way across the screen . To allow the sprite to reappear
on the lef t side of the screen , turn off bit seven again, as fol lows:

98

POKE 53264,0 i"l!il!IE

Not all of the horizontal (X) and vertical (Y) positions are visible on the
screen. Only vertical positions 50 through 249 and horizontal positions 24
through 342 are visible . In the example, when you moved sprite 7 "on the
screen, you started the sprite moving at horizontal location zero and vertical
position zero. Location 0,0 is off the screen as is any horizontal location less
than 24 and greater than 343. Any vertical location less than 50 and greater
than 249 is also off the screen . The Commodore 64 OFF-SCREEN locations
are set aside so that an animated image can move smoothly onto and off of
the screen. Study Figure 7-9 to understand the layout of the visible horizontal
and vertical sprite positions.

FIGURE 7·9. VISIBLE SPRITE POSITIONS

0 IS~)
I
I

24 {$18)
I
I
I

I I

29 tStDJ---t-- 1

50 (532) ---
1

208 ($00)-

250 (SFA)-
1
I
I
I
I
I

488 (S1E8)

I
I
I

2 4 ($18)

VISIBLE VIEWING AREA

NTSC"
40 COLUMNS
25 ROWS

'Norin American telev1s1on ua,,sm1ss1on stane1a1os 101 you1 nome TV

99

2 9 6 (5128)
I

344 ($1581
I
I
1
- --- - - 8 (108)

. - 5 0 ($32)

- - - 229 !SES)

- - - 250 (SFA)

320 ($140) 3 4 4 {$1 581

TYING YOUR SPRITE PROGRAM TOGETHER

Now you are ready to tie all the sprite concepts together into a sprite
program. Let's review the entire procedure. In order to program a sprite, you
must:

1. Create the sprite image on a sheet of graph paper.
2. Convert the sprite image into DATA values the Commodore 64 can

understand.
3. Enable the sprite.
4. Use a pointer to tell the Commodore 64 where to store the sprite DATA.
5. READ the sprite DATA and POKE it into memory, starting at the loca-

tion indicated by the sprite pointer.
6. Color the sprite.
7. Control the sprite's movement on the screen.

The following program combines all the concepts, statements and pro
gram segments covered so far in this section. Type in the program, and press
•ma~ after each line. Once you 've typed in the complete program, type
RUN and press . You'll see a smiling face moving diagonally
across the screen.

10 PRINT"r;'"
20 POKE53269,128
30 POKE2047,192
50 FORN=OT062
60 READ Q
70 POKE12288+N,Q
80 NEXT
85 FOR Z=lT0200
90 POKE53262,Z
95 POKE53263,Z
98 NEXT
100 DATA 0,0,0
110 DATA 0,126,0
120 DATA 1,129,128
130 DATA 2,0,64
140 DATA 12,0,48
150 DATA 8,0,16
160 DATA 19,197,200
170 DATA 16,0,8
180 DATA 32,195,4

100

....

190 DATA 32,195,4
200 DATA 32,24,4
210 DATA 32,24,4
220 DATA 32,24,4
230 DATA 16,126,8
240 DATA 17,60,136
250 DATA 8,129,16
260 DATA 8,126,16
270 DATA 4,0,32
280 DATA 2,0,64
290 DATA 1,129,128
300 DATA 0,126,0
Now add the following lines and RUN the program again .

55 POKE 53271 , 128
57 POKE 53277, 128

Notice that the sprite now appears twice its original size. Location 53277
controls horizontal expansion and location 53271 controls vertical expansion
of the sprite. The value POKEd into these locations is calculated according to
which sprite you want to expand. The general rule is raise two to the power of
the sprite number. For example, to expand sprite 7, the value 128 in lines 55
and 57 is calculated as two raised to the seventh power, or 128.

You have successfully written your first sprite program. Use this program
as a basis and try adding other sprites to it. Notice lines 100 through 300 only
contain three pieces of DATA each. The program is written this way to illus
trate the correspondence between each DATA item and each eight column
byte in Figure 7-7. When you become more familiar with sprite concepts you
can shorten the program by including more DATA items in each DATA state
ment. Lines 100 through 300 are still stored as 80 character lines. The
spaces are stored in memory just as visible characters , but they use memory
needlessly. The process of shortening programs is called crunching. Later,
when you become a more advanced programmer, you will realize the value
of crunching your programs and using the Commodore 64 's memory more
efficiently.

Change line 20 of the program as follows:

20 POKE 53269,224 : REM Enable sprites 7, 6 and 5

Add the following lines to the program and RUN it again. The REM state
ments are optional. You don't have to type them in. They document the pro
gram so you can follow each program step.

101

15 POKE 53280, 1 : REM Change the border color to white
17 POKE 53281, 1 : REM Change the background color to white
35 POKE 2046, 192 : REM Set sprite 6 data pointer to 12288
37 POKE 2045, 192 : REM Set sprite 5 data pointer to 12288
43 POKE 53293,6: REM Coler sprite 6 blue (6)
45 POKE 53292,2: REM Coler sprite 5 red (2)
92 POKE 53260,Z : REM Set sprite 6 horizontal (X) position
94 POKE 53258, 100 : REM Set sprite 5 horizontal (X) position
96 POKE 53261 , 100: REM Set sprite 6 vertical (Y) position
97 POKE 53259,Z: REM Set sprite 5 vertical (Y) position
99 GOTO 85: REM Put the program into a continuous loop

Two more sprites appear on the screen, one from the left side of the
screen and one from the top. Notice in the program, both sprites 5 and 6 use
the same sprite DATA as sprite 7. That 's why all three sprites look the same.
If you want to change the way a sprite looks, design another sprite image on
a piece of graph paper just as you did before. Then add another complete set
of sprite DATA as in lines 100 through 300. In addition , READ the DATA and
POKE it into a section of memory other than locations 12288 through 12351,
since the other sprite DATA is already there. Finally, set the sprite DATA
pointer to the starting location where the sprite DATA is POKEd into memory.

All three sprites in the above program store their DATA starting at location
12288. That's why lines 30, 35 and 37 POKE the same value into each of the
three respective sprite DATA pointers. If all eight sprites were enabled, each
one could use the same DATA and you would have eight identical sprites on
the screen.

Lines 43 and 45 color sprite 6 blue and sprite 5 red . Lines 92 through 97
control the movement of sprites 5 and 6. Line 99 puts the program into a
continuous loop. If you want to stop it, press the RUN/STOP key. Notice the
sprite remains on the screen. To clear the screen completely, hold down the
RUN/STOP key and press the RESTORE key.

Up to now, you 've programmed three sprites on the screen. Try using all
eight. In a relatively short time you should be able to create your own sprites
in several colors and animate them on the screen. You can then move on to
explore the very sophisticated color, graphics and animation features avail
able on the C64. Consult the Commodore 64 Programmer 's Reference Guide
for more information on color graphics, sprites and animation .

• GRAPHICS MODES
The Commodore 64 can operate in five different graphics modes. They are

divided into two groups known as character display modes and bit map

102

modes. Character display modes, as the name implies, display an entire 8 x 8
dot character grid at a time. In character display modes, the smallest unit of
information you can display is an 8 x 8 pixel grid which equals one character.
Bit map modes allow you to display each pixel, one at a time. Bit map mode
gives you absolute control over the screen image. Graphics performed in bit
map mode are referred to as high resolution graphics.

Both groups of graphics modes can be divided into separate subdivisions.
Character display modes are separated into these three subdivisions:

1. Standard Character Mode
2. Multi-Coler Character Mode
3. Extended Background Color Mode

Bit map modes are separated into these two subdivisions:

1. Standard Bit Map Mode
2. Multi-Color Bit Map Mode

Each of the character display modes get character information from one
of two places in the Commodore 64 's memory. Normally, character informa
tion is taken from character memory stored in a separate chip called a ROM
(Read Only MemOfy). However, the Commodore 64 gives you the option of
designing your own characters and replacing the original Commodore 64
characters with your own. Your own programmable characters are stored in
a portion of the 64K of RAM (Random Access Memory) available to you in the
C64.

The Commodore 64 normally operates in standard character mode. When
you first turn on the Commodore 64, you are automatically in standard char
acter mode. When you write programs, the C64 is also in standard character
mode. Standard character mode displays characters in one of 16 colors on a
background of o.ne of 16 colors . All the information contained in this chapter
operates in standard character mode except sprites. Sprites are classified
separarely from character display modes and bit map modes.

Multi-color character mode gives you more control over color than the
standard graphics modes. Each screen dot within an 8 x 8 character grid can
have one of four colors , compared to the standard modes which can only
have one of two colors. Multi-color mode uses two additional background
color registers. The three background color registers and the character color
register together give you a choice of four colors for each dot within an 8 x 8
dot character grid.

Multi-color mode has one disadvantage. Each screen dot in multi-color
mode is twice as wide as a dot in standard character mode and standard bit
map mode. As a result, multi-color mode has only half the horizontal resolu-

103

tion (160 x 200) of the standard graphics modes. However, the increased
control of color more than compensates for the loss in horizontal resolution .

Extended background color mode allows you to control the background
color and foreground color of each character. Extended background color
mode uses all four background color registers. In extended color mode, how
ever, you can only use the first 64 characters of the screen code character
set. The second set of 64 characters is the same as the first , but they are
displayed in the color ·assigned to background color register 2. The same
holds true for the third set of 64 characters and background color register 3,
and the fourth set of 64 characters and background color register 4. The
character color is controlled by color memory. For example, in extended
color mode, you can display a purple character with a yellow background on
a black screen.

Standard bit map mode allows you to control each screen dot in one of two
colors. This gives you the ability to create detailed graphic images on the
screen . Bit mapping is a technique that stores a bit in memory for each dot
on the screen . If the bit in memory is turned off, the corresponding dot on the
screen becomes the color of the background. If the bit in memory is turned
on , the corresponding dot on the screen becomes the color of the foreground
image. The series of 64 ,000 dots on the screen and 64,000 corresponding
bits in memory control the image you see on the screen . Most of the finely
detailed computer graphics you see in demonstrations and video games are
bit mapped high resolution graphics.

Multi-color bit map mode is a combination of standard bit map mode and
mul ti-color character mode. You can display each screen dot in one of four
colors wi thin an 8 x 8 character grid . Again, as in multi-color character mode,
there is a tradeoff between the horizontal resolution and color control.

This section has described a variety of color and graphics techniques
based on advanced programming concepts. The full explanation of these
concepts is beyond the scope of this Guide. If you want more details on
graphics techniques and graphics programming, refer to the Commodore 64
Programmer's Reference Guide.

The next section completes your introduction to the Commodore 64 com
puter by outlining the varied sound and music capabilities available to you
through the C64.

104

MUSIC AND SOUND
This section introduces the Commodore 64's

versatile music and sound capabilities

The SID Microprocessor ____________ _ 107

Music 107
-Playing From Sheet Music 107
- Obtain ing the Data 108
-Writing the Program 110

Sound Effects 112
- Program Notes 114

105

-
• THE SID MICROPROCESSOR

A special microprocessor in the C64 known as the SID (Sound Interface
Device) provides the C64 with extraordinary capabilities in generating musi
cal tones and sound effects. This section introduces you to these capabili
ties. For more details, see Appendix G of this book and consult the Program
mer 's Reference Guide.

•MUSIC
The Commodore 64 is capable of producing musical tones over a large

range-a full nine octaves for up to three separate voices (musical instru
ments) simultaneously. You can teach your C64 to play anything from Happy
Birthday to Beethoven 's Fifth Symphony.

By controlling a series of internal registers in the SID, you can program
your C64 to play a variety of complex musical sounds. These sounds or notes
have the qualities of a particular musical instrument and vary in pitch and
duration.

PLAYING FROM SHEET MUSIC

In a musical score sheet you will find notes indicated by position and
appearance. Compare these with Figure 8-1 for the note name and Figure
8-2 for note duration.

FIGURE 8-1. NOTE NAMES

la:
I~ ...

G A B c D E F 0 A B c D E F G A B c D E F

c

107

FIGURE 8·2. NOTE DURATION

0= WHOLE Note d= HALF Note

~= QUARTER Note d = DOTTED HALF Note

To create these notes through the speakers of your monitor or TV, you
must turn ON several registers in the SID microprocessor. There are seven
registers for each of three voices. Each must be filled with a particular value.
See Table 8-1 for the values of registers 2 through 6. Registers 0 and 1 are for
sound frequency and are adjusted later in the program.

Table 8·1. Sound Register Values
Register number 2 3 4-0N 4-0FF 5 6

Musical
instruments:

Piano 225 0 65 64 9 0
Flute 0 0 17 16 96 0
Harpsichord 0 0 33 32 9 0
Xylophone 0 0 17 16 0 240
Accordian 0 0 17 16 102 0
Trumpet 0 0 33 32 96 0
Noise 0 0 129 128

OBTAINING THE DATA

To insert a musical score into your computer, follow each step in this
example, which incorporates the music of the song "Tom Dooley" :

108

,_CHORUS,

I J J j) j
Hang down your head, Tom Doo - ley,

07

;1 J J1 J :J I 0

Hang down your head and cry. ---

1;•
Arn c 07

J1 J J1 j j I rJ ,J
Hang down your head, Tom Doo-ley,

1@~
c G

J1 J
D

j jl J. ~ II
Poor boy, you're bound to die.

1. Select the musical instrument and determine the register values from
Table 8-1 .
Piano: register 2 is 255, reg ister 3 is O; register 4 is 65 for ON and 64 tor
OFF; register 5 is 9 and register 6 is 0.

2. Determine the name and value of each note; use Figures 8-1and8-2 as
guides. Tabulate the results .
Notes read: D (eighth) , D (quarter), D (eighth), E (quarter), G (quarter),
B (half), B (half), etc .

3. Convert each note into the proper register settings called N1 and N2
from the Note Table in Appendi x G and the duration (DR), based upon
the following note values:

Eighth note = 250
Quarter note = 500
Half note = 1 OOO
Whole note = 2000
A note with a dot = DR * 1.5

109

4.

Tabulated Data
Note Value N1 N2 DR

D 1/8 18 104 250

D 1/4 18 104 500

D 1/8 18 104 250

E 1/4 20 169 500

G 1/4 24 146 500

B 1/2 30 245 1000

B 1/2 30 245 1000

etc .

Write the program.

NOTE: Registers 2, 3, 4, 5 and 6 are set based on the musical
instrument. Registers 0 and 1 are based upon each note and will
vary. There is a register 24 . It is the volume for all instruments and
is always set to 15. The volume from your speaker is controlled by
the monitor's volume control.

WRITING THE PROGRAM

Playing music requires turning on the appropriate registers, reading the
notes and turning the sound on and off. All the registers can be turned on
early in the program except register 4, which is turned on only when the
music is needed.

Selecting a register is done by the BASIC term POKE, followed by the
register number plus 54272, a comma and the proper value.

1. Set all the registers to zero:

10 S=54272:FOR SW =S to S+ 24: POKE SW,O:NEXT SW

2. Set the volume to the maximum of 15:

20 POKES+ 24,15

3. Turn on registers 2, 3, 5 and 6, based upon the instrument you are
using (in this case, the piano):

30 POKES+ 2,255
40 POKES+ 3,0
50 POKES+ 5,9
60 POKES.+ 6,0

4. POKE a note into registers 1 and O from the table developed above.
Since it will vary, represent the value with variable names N1 and N2.

110

80 POKES+ 1,N1 :POKE S,N2

5. Activate the sound with register 4, using the value for the proper
instrument (65 for piano):

90 POKES+ 4,65

6. Keep the sound on for the required time based on the value of DR in
your table. Since this value is a variable , it is represented by its varia
ble name, DR:

100 FOR Z = 1 to DR: NEXT Z

7. Turn off the sound, using the proper value:

110 POKES +4,64

8. Keep the sound off for a very short time-about a tenth of a second.

120 FORT= 1to50: NEXTT

9. Continue steps 4 through 8 with successive notes by using a READ
statement and a loop.

70 READ N1, N2, DR
125 GOTO 70

10. Store the note information in DATA statements. For simplicity, each
DATA statement below represents one note:

130 DATA 18,104,250
132 DATA 18, 104,500
134 DATA 18, 104,250
136 DATA 20, 169,500
138 DATA 24, 146,500
140 DATA 30,245, 1 OOO
142 DATA 30,245, 1 OOO
etc.

11 . Include a means to stop the program:

75 IF N1=0 THEN END
200 DATA 0,0,0

Your sample program, when completed from sheet music, will look like
this:

5 REM CHORUS FROM TOM DOOLEY
10 S = 54272:FOR SW= S TO S + 24:POKE SW,O:NEXT

111

20 POKES+ 24 ,15
30 POKES+ 2,255
40 POKE S + 3,0
50 POKE S + 5,9
60 POKES+ 6,0
70 READ N1 ,N2,DR
75 IF N1 =OTHEN END
80 POKES+ 1,N1 :POKE S,N2
90 POKES+ 4,65

100 FOR Z = 1 TO DR: NEXT Z
110 POKES+ 4,64
120 FORT= 1 TO 50:NEXT T
125 GOTO 70
130 DATA 18, 104,250, 18, 104,500, 18, 104,250,20.169,500,24, 146,500
140 DATA 30,245, 1000,30,245, 1 OOO
150 DATA 18, 104,250, 18, 104,500, 18, 104,250,20.169,500,24, 146,500
160 DATA27,148,2000
170 DATA 18, 104,250, 18, 104 ,500.18, 104,250,20, 169,500,24, 146,500
180 DATA 27, 148,1000,27, 148, 1000
190 DATA 27, 148,250,27, 148,500,30,245,250,24, 146,500,

20, 169,500,24, 146, 1500
200 DATA 0,0,0

Be sure to raise the volume on your monitor when you run your program.
To double the tempo, change line 100:

100 FORT= 1 TO DR/2: NEXT T

To play a different song, change DATA statements to the appropr iate
values.

Now that you have created your first song , experiment with other instru
ments by varying the register values. You can also combine several voices to
represent chords or other instruments by adding 7 or 14 to each of the regis
ter numbers (except register 24). Thus, registers 7 through 13 can control the
second voice, and registers 14 through 20 the third voice.

• SOUND EFFECTS
Besides music , you can also create special sound effects by using the

noise registers and varying the sound characteristics known as ADSR
(Attack, Decay, Sustain and Release). These are combined in registers 5 and
6. A thorough explanation is provided in the Programmer 's Reference Guide.
Below are register values for sample sound effects.

112

Sound Effects Register Values
Registers 0 1 2 3 4-0N4-0FF 5 6 * 24
Variable
Names N2 N1 P2 P1 W1 W2 AD SR DR v
Sound effects:

Police Siren 85 36 0 0 33 32 136 129 350 15
Crash 251 5 0 0 129 128 129 65 50 0
Rocket Blast-
off 100 25 0 0 129 128 9 129 50 0
Machine Gun 75 34 0 0 129 128 8 1 50 15
Wailing N2 40 0 0 65 64 15 0 15
Shooting 200 40 0 0 129 128 15 15 0

*Not a register. Part of the timing loop.

The following program, called "Sound Effects" , incorporates all these var-
iables and can produce each of these sounds. The technique is identical to
creating music, except generally only one note is needed; hence there are no
data statements. For details, see the Programmer's Reference Guide.

10 CLR: REM** SOUND EFFECTS**
15 PRINT"WHICH SOUND EFFECT?" :PRINT " 1. WAILING" :PRINT "2.

SHOOTING" : PRINT "3. " ;
16 PRINT" SIREN " :PRINT"4. ROCKET" :PRINT"5. CRASH ":PRINT" 6.

MACHINE GUN"
17 INPUT x
20 S = 54272:FOR SW= S TO S + 24:POKESW,O:NEXT:

K= -1 :T1$= "000000"
21 ON x GOTO 23,24,25,26,27,28
23 V = 15:N1 = W1 = 65:W2 = 64:AD = 15:SR = O:DR = 1 :P1 = 9:P2 = 255:0 = 1:

GOT030:REM WAILING
24 N2 = 200:N1 = 40:W1 = 129:W2 = 128:AD = 15:SR = 15:DR = 1 ;GOT030:REM

SHOOTING
25 N2 = 85:N1=36:W1=33:W2 = 32:AD = 136:SR = 129:DR = 350:V= 15:0 = 2:

GOT030:REM SIREN
26N2=100:N1=25:W1=129:W2=128:AD =9:SR = 129:DR = 50:K =
25:GOT030:REM ROCKET
27 N2 = 251 :N1=5:W1=129:W2=128:AD = 129:SR = 65:DR = 50:

GOT030:REM CRASH
28 N2 =75:N1=34:W1=129:W2=128:AD =8:SR = 1:DR= 50:V= 15:REM

113

MACHINE GUN
30 POKES + 2,P2:POKE S + 3. P1 :REM PULSE
40 POKES + 5,AD:POKE S + 6,SR:REM ADSR
50 POKES + 1,N1 :POKE S,N2·REM NOTE
55 IF O= 2 THEN O = 3
56 WO= 2 THEN POKES+ 1,64:POKE S,188
60 POKES+ 4,W1 :REM ON SWITCH
63 IF 0< > 1 GOT070
65 FOR N2 = 200T05 STEP-1 :POKE S,N2: NEXTN2
68 FOR N2 = 150T05 STEP-1 :POKE S,N2:NEXTN2
70 FOR VL = 15 TO V STEP K:POKE S + 24 ,VL:REM VOLUME
80FORT = 1 TO DR:NEXTT:REM DURATION
90 NEXT VL

100 POKES+ 4,W2:REM SOUND OFF
110 IF TI$>= "000005 "THEN 10
115 IFQ = 3THENQ = 2:GOT056
120 GOT050

READY.

PROGRAM NOTES

The Sound Effects program contains six sound effects the user can pick
from . Lines 10 through 21 clear all the variables and request a selection . The
variable K in line 20 is necessary for the rocket sound. TI$ sets the built-in
timer to zero. Lines 23 through 28 establish the values of the register varia
bles for each sound. Lines 30 through 50 enter these values into the proper
registers . The variable Q in lines 55, 56 and 115 restricts those lines to the
siren . The variable Q in line 63 restricts lines 65 and 68 for wailing only. Line
70 allows for a variable volume; where none was required , V was set to 15.
Line 80 allows for a variable note duration; when not required , the variable
DR was set to 1. Lines 60 and 100 are the main registers. Line 11 O cuts off
the sound after five seconds. You can then select another effect.

Although by now you have experienced first hand the versatility and power
of the Commodore 64 computer. you probably realize that you have only
begun to tap the potential of this extraordinary computer. The appendices to
this Guide suggest many additional sources of information that you can use
to further explore the fascinating world of computing with the C64 .

114

A.

B.

C.

D.

E.

F.

G.

H.

I.

J.

K.

L.

APPENDICES

Help 117
-Error Messages 117
-Troubleshooting Chart 120
Peripherals and Software 123
-Commodore Connections for Peripherals 123
-Commodore Software 128
Screen and Colar Memory Maps 136
Screen Display Codes 138
ASCII And CH R$ Codes 141
Sprite Register Map 144
Music Note Table 147
Sound Control Settings 149
Derived Trigonometric Functions 151
Abbreviations of BASIC Keywords 152
BASIC Conversions 155
Recommended Reading List 157

115

APPENDIX A
•HELP

To help you with questions or problems about Commodore hardware, software or ser
vices, this appendix provides several sources of information.

•ERROR MESSAGES

MESSAGE

BAD DATA

BAD
SUBSCRIPT

BREAK

CAN 'T
CONTINUE

DEVICE NOT
PRESENT

DIVISION BY
ZERO

EXTRA
IGNORED

FILE NOT
FOUND

What the Problem Is

String data was received from
an open file , but the program
was expecting numeric data.

The program was trying to ref
erence an element of an array
whose number is outside the
range specified in the DIM
statement.

Program execution was
stopped because you hit the
STOP key.

The CONT command will not
work , either because the pro
gram was never RUN , there
has been an error, or a line has
been edited .

The required I/O device not
available for an OPEN , CLOSE,
CMD, PRINT#, INPUT# , or
GET#.

Division by zero is a mathemat
ical oddity and not allowed.

Too many items of data were
typed in response to an INPUT
statement. Only the first few
items were accepted .

No file with that name exists.

117

What to Do

Make sure data was saved with
a separator between each .

Verify you have dimensioned
the array properly. In direct
mode, have the C64 print the
value of the subscript as a
clue.

Use the CONT command
to proceed or reRUN the
program.

You probably made a correc
tion: reRUN the program.

Verify the per ipheral you are
calling for is on and proper
OPEN statement 1s used.

Command the C64 to print the
suspect variables to determine
which one became a zero.

Check your punctuation .

Verify you have the correct
tape or disk and you spelled
Jhe name correctly ; note espe
cially spacing and upper-case
characters.

MESSAGE What the Problem Is What to Do MESSAGE What the Problem Is What to Do

FILE NOT OPEN The file specified in a CLOSE, Open file . Verify you used OUT OF DATA A READ statement was exe- Verify data was not missed;
CMD, PRINT#, INPUT#, or proper file number. cuted but there is no data left add more data if necessary
GET#, must first be OPENed. unREAD in a DATA statement.

FILE OPEN An attempt was made to open Close file first or use new file OUT OF There is no more RAM avail- Reduce the quantity of
a file using the number of an number MEMORY able for program or variables. GOSUBs and FOR NEXT loops
already open file . This may a:.:;o occur when too operating at once. Reuse loop

FORMULA TOO The string expression being Use smaller strings. Reduce many FOR loops have been variables where possible to

COMPLEX evaluated should be split into the number of parentheses. nested, or when there are too prevent too many unfinished

at least two parts for the sys- many GOSUBs in effect. loops. Clean up the memory

tern to work with, or a formula using FRE(X) function.

has too many parentheses. OVERFLOW The result of a computation is Check your computation steps.

ILLEGAL DEVICE Occurs when you try to access Use correct device number. larger than the largest number

NUMBER a device illegally (e.g .. LOAD- allowed, which is

ING from keyboard , screen or 1.70141884E + 38.

RS-232C). REDIM'D ARRAY An array may only be DI Men- If the array was identified early

ILLEGAL The INPUT statement can only Use another command. sioned once. If an array varia- it was automatically dimen-

DIRECT be used within a program, and ble is used before that array is sioned to 10. Locate the DIM

not in direct mode. DIM 'd, an automatic DIM oper- statement before using the
ation is performed on that variable.

ILLEGAL A number used as the argu- Use direct mode to determine array setting the number of
QUANTITY ment of a function or state- the value of the variables at the elements to ten, and any sub-

ment is out of the allowable moment. Correct negative sub- sequent DI Ms will cause this
range . scripts. Verify dimensions are error.

large enough.
REDO FROM Character data was typed in Provide the proper INPUT

LOAD There is a problem with the Reload. START during an INPUT statement response.
program on disk. when numeric data was

MISSING FILE LOADS and SAVES from the Key in the file name. expected. Just re-type the

NAME serial port (e.g .. the disk) entry so that it is correct , and

require a file name to be sup- the program wil l continue by

plied. itself.

NEXT WITHOUT This is caused by either incor- Verify the loop has a starting RETURN A return statement was Verify the program ends before

FOR rectly nesting loops or having a and ending point. Do not jump WITHOUT encountered , and no GOSUB coming to subroutines tagged

variable name 1n a NEXT state- into the middle of a loop. GOSUB command has been issued. at program 's end.

ment that doesn't correspond STRING TOO A string can contain up to 255 Keep strings to 255 characters
with one in a FOR statement. LONG characters. and any single INPUT to 80

NOT INPUT An attempt was made to Correct the OPEN statement 's characters.

FILE INPUT or GET data from a file secondary address. ?SYNTAX A statement is unrecognizable Look for spelling or grammar
which specified to be for out- ERROR by the Commodore 64 . A miss- errors or words not in the
put only ing or extra parenthesis, m1s- BASIC vocabulary.

NOT OUTPUT An at tempt was made to Correct lhe OPEN statement 's spelled keywords, etc.

FILE PRINT data to a file which was secondary address. TYPE MIS- This error occurs when a num- Verily$ signs were typed
spec1f1ed as input only. MATCH ber is used in place of a string, where they belong .

or vice-versa .

118 119

MESSAGE What the Problem Is What to Do

UNDEF'D A user defined function was Define the function with DEF
FUNCTION referenced , but 1t has never within the program.

been defined using the DEFFN
statement.

UNDEF'D An attempt was made to GOTO Make sure line numbers exist.
STATEMENT or GOSUB or RUN a line num-

ber that doesn 't exist.

VERIFY The program on tape or disk Save the program again , under
does not match the program another name.
currently in memory.

NOTE: A common error is to type a 41-character line, not hit Ll 1 'P"'E
and type a second line as if it were a new line. A l\IWS will then
treat both lines as one. To find this type of error, list your program
and continue hitting ffll + l\IW. Watch the cursor jump to the
beginning of each instruction line. A skipped line means it was
tagged onto the line above it. Retype these lines.

• TROUBLESHOOTING CHART
For problems which appear to be hardware oriented use this troubleshoot

ing chart first :

Symptom

Indicator Light
not "On "

Cause

Computer not " On"

Power cable no\
plugged in

Power supply not
plugged in

Bad fuse in computer

120

Remedy

Make sure power
switch is in " On "
position

Check power socket
for loose or discon
nected power cable.

Check connection
with wall outlet

Take system lo au
thorized dealer for
replacement of fuse

Symptom

No Picture

Random pattern
on TV with car-
!ridge in place

Picture without
col or

Picture with
poor color

Sound with
excess back-
ground noise

Picture OK, but
no sound

Computer Stuck;
cursor not flash·
ing

Computer dis·
plays garbage
on the screen

Cause Remedy

TV on wrong channel Check other channel
for picture (3 or 4)

Incorrect hookup Computer hooks up
to VHF antenna
terminals

Video cable no\ Check TV output
plugged in cable connection

Computer set for Set computer for
wrong channel same channel as TV

(3or4)

Cartridge not prop- Reinsert cartridge
erly inserted after turning off

power

Poorly tuned TV Retune TV

Bad color adjustment Adjust color/hue/
on TV brightness controls

on TV

TV volume too high Adiust volume of TV

TV volume too low Adjust volume of TV

Aux. output not prop· Connect sound jack
er ly connected to aux. input on ampli·

fier and select aux.
input

Computer inadver· While depressing the
tently received RUN/STOP key press
instructions to dis- RESTORE key twice:
able keyboard; or the or reset the accesso-
printer, cassette or ries by turning off and
disk drive is in listen· on; or reset the corn·
ing mode puter off and on .

Overheating Pull plug on power
supply when not
using computer for
extended periods
(overnight).

121

Books

Many books have been published about the Commodore 64. For a sam
pling see Appendix L.

Magazines

Sub.scribe to " Commodore Microcomputers" and " Power/Play" for the
latest on Commodore hardware and software. For subscription information
call 800-345-8112 (In Pennsylvania call 800-662-2444).

User Groups

There are over 1,000 user groups (clubs) dedicated to helping Commodore
owners and sharing experiences. Find the address of the nearest user group
in the next issue of "Commodore Microcomputers" or " Power/Play." Or for
information on how to start a user group in your area write to:

Commodore User Groups
1200 Wilson Drive
West Chester, Pa. 19380

Commodore Information Network

Use your AUTOMODEM or VICMODEM to communicate directly with Com
modore or other C64 owners through CompuServe and use the Hotline or the
Special Interest Group Bulletin Boards. Information is provided with your
modem.

Customer Support Hotline

For assistance by telephone, call the customer support hotline:

215-436-4200

Hours: 9-8 Monday to Friday (Eastern Time)
10-4 Saturday

or write to
Commodore Customer Support
1200 Wilson Drive
West Chester, Pa. 19380

122

APPENDIX B
• PERIPHERALS AND SOFTWARE

• COMMODORE CONNECTIONS FOR
PERIPHERALS

<-Ch. 3 Ch . 4- >

CONTROL CONTROL
PORT 1 PORT 2

GAME POWER POWER
PORTS SWITCH SOCKET

II

CARTRIDGE CHANNEL TV AUDIO/VIDEO SERIAL CASSETTE USER
SLOT SELECTOR CO NNECTOR CO NNECTOR PORT INTERFACE PORT

Side Panel Connections

1. Power Socket-The free end of the cable from the power supply is
attached here.

123

2. Power Switch-Turns on power from the transformer.
3. Game Ports-There are two game ports, numbered 1 and 2. Each

game port can accept a joystick or game controller paddle. The light
pen can only be plugged into port 1. (Port 1 is the port closest to the
front of the computer). Use the ports as instructed with the software.

Control Port 1
Pin Type

1 JO YAO

2 JOYAi

3 JOYA2

4 JOYA3

5 POT AY

6 BUTTON A/LP

7 +5V

B GND

9 POT AX

Control Port 2
Pin Type

1 JOY BO

2 JOYBl

3 JOYB2

4 JOYB3

5 POT BY

6 BUTTON B

7 + 5V

B GND

9 POT BX

Rear Connections

Note

MAX . 50mA

Note

MAX. 50mA

1

0

0
6

2
0

0
7

3
0

0
8

4
0

0
9

5
0

4. Cartridge Slot-This rectangular slot is a parallel port that accepts
program or game cartridges, as well as special interfaces.

124

Cartridge Expansion Slot

Pin - ~
Pin Type

12 BA 1 GND

13 OMA 2 + 5V

14 07 3 + 5V

15 06 4 IRQ

16 05 5 R/W

17 04 6 Do• Clock

18 03 7 I/O 1

19 02 B GAME

20 Dl 9 EX ROM

21 DO

22 GND
L IO

I/O 2

11 ROML

Pin Type

N A9
p AB

Pin
Type l

A GND

B ROMH

R A7 c RESET

s A6 D NMI

T A5 E s 02

u A4 A15

v A3 H A14

w A2 J A13

x Al K A12
y AO

_____.!:_ GND

All

J M AlO

22 21201918 17 16 15,. 13 12 11 10 9 8 7 8 5 • 3 2 ,

I :::::::::::::::::::::: I
l V X W v U T SR P N "4 L K J HF E DC B A

5. Channel Selector-Use this switch to select which TV channel (3 or 4)
the computer 's picture will be displayed on.

125

6. TV Connector-This connector supplies both the picture and sound to
your television set.

7. Audio/Video Connector-This DIN pin connector supplies direct audio
and composite video signals. These can be connected to the Commo
dore monitor or used with separate components.

Pin Type Note

1 LUM/SYNC Luminance/SYNC output
2 GND
3 AUDIO OUT
4 VIDEO OUT Composite signal output
5 AUDIO IN
6 COLOROUT Chroma signal output
7 NC No connection
8 NC No connection

8. Serial Port-A Commodore serial printer or 1541 single disk drive can
be attached directly to the Commodore 64 through this port.

126

Serial I/O
Pin Type

l SERIAL SRQIN

2 GND

3 SERIAL ATN IN/OUT

4 SERIAL CLK IN/OUT

5 SERIAL DATA IN/OUT

6 RE5Er

9. Cassette Interface-A Datassette recorder can be attached here to
store programs and information.

Cassette

Pin Type
A-1 GND 12345 6

B-2 +sv
C-3 CASSETTE MOTOR ::::::
D-4 CASSETTE READ A B C 0 E F
E-5 CASSETTE WRITE

F-6 CASSETTE SENSE

10. User Port-Various interface cartridges can be attached here, includ
ing the Commodore AUTOMODEM and RS232 communication car
tridge. It is not recommended that this port support RS232-C printers.

127

User 1/0

Pin Type Note

l GND

2 +sv MAX . 100 mA

3 RESET

4 CNTl

5 SPl

6 CNT2

7 SP2
-

8 PC2

9 SER. ATN IN

10 9 VAC MAX . 100 mA

11 9 VAC MAX . 100 mA

12 GND

Pin Type Note

A GND --
B FLAG2

c PBO

D PBl

E PB2

F PB3

H PB4

J PBS

K PB6

L PB7

M PA2

N GND

1 2 3 4 5 6 7 8 9 10 11 12

::::::::::::
A B C D E F H J K L M N

• COMMODORE SOFTWARE

Commodore supports the C64 with a full range of software in cartridges,
disk and cassette including educational programs, financial software, pro
ductivity software, programming aids , business software, arcade games,
Bally Midway games, music and strategy adventure games as well as books
from the Commodore Library (See Appendix L).

Here is a list of Commodore software:

Productivity Sof tware

Micro Cookbook Computer age solution to menu planning . Manage your

recipes quickly and easily.

128

Easy Script 64 Our best word processor. Displays 764 lines by 40 charac
ters. Prints more than 130 columns. Global/local search/replace/hunt/find.
Super/subscripts. Insert/delete characters, lines, sentences, paragraphs _ ..
much more. Works with Easy Spell 64.

Easy Spell 64 Don't misspell it ... Easy Spell It ... with this automatic
spelling checker. Includes 20,000 word Master Dictionary plus your own
10,000 word vocabulary. Requires Easy Script.

Easy Cale 64 Electronic spreadsheet on convenient plug-in cartridge.
Color-bar graph feature. Display or print up to 254 rows by 63 columns. Cal
culates and edits entries automatically. Includes color-graphic capability. A
must for budgeting , forecasting and calculation.

The Manager Flexible, multi-purpose database manager lets you design
your own computerized reports and files for home or business. Address files,
mailing list, project status, investments ... 4 built-in applications, or design
your own. Powerful arithmetic capabilities.

Easy Mail 64 Easy-to-use mailing list program. Use with Commodore
printer to create address labels and lists for home or business purposes.
Club mailings, membership lists, Christmas lists, direct mail uses, more.

Word/Name Machine Beginner's word processor. Easy-to-follow menus
guide you through program operation. Form letters.

Financial Software

Easy Finance I Loan/Mortgage Computerize your loan and mortgage
calculations with 12 loan functions including amortization, financial forecast
ing, Rule of 78's interest, property investment, cost analysis. Bar graphs.

Easy Finance II Basic Investing Calculate investment alternatives and
current values of stock/bonds/annuities. 16 investment functions. Net
present values, future values. Bar graphs.

Easy Finance Ill Advanced Investing Calculate weighted cost of capital,
accrued interest on bonds, earnings per share, future uneven cash values,
rate of return, present value of a tax deduction. 16 functions. Bar graph.

Easy Finance IV Business Management 21 Business calculation func
tions: Lease/Purchase Analysis, breakeven analysis, compensation , lease/
purchase, optimal order quantities, business forecasting , much more. Bar
graphs.

Easy Finance V Statistics and Forecasting Assess present/future
sales, trends and other business parameters with 9 statistical and forecast
ing functions. Calculate average growth rate/expected values. Special help
menu.

Financial Advisor Designed for the High School or College finance stu
dent or the Loan Officer at the local bank. Computes loans/investments/
stocks/bonds with amazing speed and accuracy.

129

Business Software

General Ledger 8 general ledger options. 1500 transactions. 150 chart
of-accounts. Posting integrated with other accounting modules. Custom
income statement, trial balances, full reports.

Accounts Receivable/billing 11 billing functions . 150 invoices. 75 cus
tomers. 40 transactions/file. Billing , credit , receivables . Printed statements.

Accounts Payable/Checkwriting Combines tracking of vendor payables
with integrated checkwriting system. Interfaced with other accounting
modules.

Payroll For Business with 50 employees or less. 24 different payroll func
tions. Payroll checks include federal/state/other deductions. Integrated with
General Ledger. Prints W2's and 941 's.

Inventory Management Computerized tracking of 1000 inventory items.
Stock receipts/issues/orders/adjustment with printed reports. Calculates
use/reorders/economic order quantities/cost averaging and more. For all
types of inventories including personal collections and insurance lists.

Magic Desk I Type & File Now you can type, file and edit personal letters
and papers without learning any special commands! All Magic Desk com
mands are pictures. Just move the animated hand to the feature you want to
use and you 're ready to go.

Educational Programs

Intro to Basic I 17 programs, a 150-page manual and a flowchart tem
plate. Th is program is an instructional guide that teaches the fundamentals
of programming in BASIC while assuming the user has no previous knowl
edge of programming.

Intro to Basic II Uses the same easy-to-understand approach presented
in BASIC I. This package includes a 180 page manual with explanations,
practice dril ls, examples and a disk with 33 programs. Learn more advanced
techniques of BASIC programming with this terrific program!

Zortec and the Microchips (Ages 6 to 12) A fun way to teach young
people how to program in BASIC. Help Zortek teach the Microchips to pro
gram the computer before the Zitrons attack.

Pilot (Ages 12 to Adult) A special language that helps nonprogrammers
design computerized quizzes and drills. For teachers, parents and students.

LOGO (Ages 6 to Adu lt) Terrapin LOGO. The best , most powerful version of
LOGO on any home computer. Includes sprite graphics, sound commands,
turt le graphics and 400 page tutorial.

Chopper Math (Ages 7 and up) Practice basic math skills. Get the right
answer and land the helicopter on its landing pad before it crashes.

Type Right (Ages 12 to Adult) No more hunting and pecking! Learn how to
type on your computer with 17 lessons and 4 games.

130

Speed/Bingo Math (Ages 4 to 10) Two math games help you build math
skills and have fun at the same time. One or two players. A Bally/Midway
conversion.

Easy Match/Easy Count (Ages 4 to 6) Kinder Koncepts Series. Practice
identifying shapes and letters and counting objects-importanl pre-reading
and pre-math skills.

What's Next/Letters or Numbers (Ages 4 to 6) Kinder Koncepts Series.
Practice in identifying correct sequences of numbers and letters.

Letter SequencesfThe Long or Short of It (Ages 4 to 6) Kinder Koncepts
Series. Practice in identifying letter sequences and in recognizing which
shape is longest or shortest.

A Letter Match/More or Less (Ages 4 to 6) Kinder Koncepts Series.
Upper and lower-case letters, more or less relationships, and matching
numbers.

Shapes and Patterns/Group It (Ages 4 to 6) Kinder Koncepts Series.
Brightly colored shapes and sounds give practice in identifying shapes and
patterns. grouping and regrouping. Excellent pre-reading and pre-math devel
opment drills.

A BEE C's (Ages 3 to 6) The Commodore Bee guides your child in learning
the alphabet. Playing games reinforces this skill. Excellent tool for young
children. It talks with Magic Voice!

Visible Solar System (Ages 7 to Adult) Authentic , astronomer-tested
journey through the solar system. Tour the planets Earth, Mars. Jupiter and
Saturn as well as asteroids. comets and meteors. Planet fun for space buffs'

Number Nabber/Shape Grabber (Ages 6 to 12) Two learning games in
one. Builds arithmetic and shape identity skills. Lively music and sound
effects make this a favorite.

Math Facts (Ages 5 to 10) Give practice in basic math facts. Several
levels.

Numbers Galore (Ages 3 to 14) 3 different math programs. Number
Match It for preschool. Math Facts Games for elementary, and Number
Cruncher for middle school.

Frenzy/Flip Flop (Ages 6 to 14) Milliken EduFun Series Frenzy ... subtrac-
tion and division ... the hungry gator arrives ... save the fish . .. play the
Bonus game . .. the more you save ... the more you play! Flip Flop ... trans
formational geometry .. . look at the two figures ... do they need to flip, turn
or slide? . .. stand on your head ... lie on your side ... you 'll flip over this
game!

Golf Classic/Compubar (Ages 10 to 14) Milliken EduFun Series. Golf
Classic (angle and length estimation). Fore! Play the angles. Choose dis
tances. Multiple players. Sports fun! Compubar (read graphs, construct
arithmetic expressions) add this bar: subtract that one. Did you read them
correctly?

131

Gulp!/Arrow Graphics (Ages 6 to 12) Milliken Edu Fun Series. Gulp! (addi
tion and multiplication drill) the race is on ... add ... multiply . . . faster,
faster .. . don 't get caught ... watch out for those jaws! Arrow Graphics
(problem solving and directionality) following the traveling arrow .. . where
did it go? ... left or right how many steps?

Alien Counter/Face Flash (Ages 4 to 9) Milliken EduFun Series. Alien
Counter (counting) Flying saucers . . . numbers in the sky ... aliens landing
on Earth .. . another perfect encounter? Face Flash (counting, visual mem
ory, and base ten) ready, set, go ... now you see them ... count fast ...
they're gone! How many?

Battling Bugs/Concentraction (Ages 9 to 12) Milliken EduFun Series.
Battling Bugs (positive and negative numbers) columns of bugs, get rid of
them all! You might be the master exterminator! Concentraction (equivalent
fractions) ... choose two ... are they equal? Two players.

Easy Lesson/Easy Quiz For Teachers. Create your own lessons and quiz
zes using the power of the computer.

Arcade Games

International Soccer A Gold Medallion Game. As close to real soccer as
you can get without putting on cleats! Realistic player and ball movement
highlight this stunning version of the most popular sport in the world .

Jack Attack A Gold Medallion Game. Combines cartoon animation with
strategic challenge. 64 different screens. A Commodore original rated a
" must-buy" -Electronic Games Magazine.

Avengers Destroy attacking aliens with laser cannons, as you dodge their
bullets. Classic arcade action. Multi-speed attacks.

Frogmaster Unique sports challenge. Train frogs to play football and
rugby. Over 100 variations. Play against computer, friend or yourself.

Jupiter Lander Space landing simulation. Horizontal and vertical thrust.
Softland scoring. Joystick control.

Le Mans Multi-obstacle road racing at its best. Arcade action and graph·
ics. Night. water, ice and divided highway hazards.

Pinball Spectacular Real pinball action and thrills. Sound you won 't
believe. Chutes. lights, bumpers and more.

Radar Rat Race Beat the maze. Eat all the cheese. Beware of deadly cats
and rats. Cartoon action for all ages.

Starpost Protect the Star Post from waves of invaders. 3 levels of skill. 99
levels of action.

Star Ranger Fight your way through hordes of space enemies. Avoid aste
roids and land safely. Superb graphics combined with intriguing strategy_

Supersmash Racquetball arcade classic. 3 Games in 1. Many skill levels
make this game a smash hit.

132

Tooth Invaders Reviewed by American Dental Association . Arcade action
teaches good dental care. Beat Tooth Decay in 9 levels.

Triad One/Two players. Position yourself on tic-tac-toe grid for different
attack strategies. Progressive difficulty levels test both reflexes and mind.

Dragonsden Arcade-style excitement in this Commodore original. Battle
giant spiders, bats and the dragon in this contest of skill and reflexes. 3
levels.

Bally Midway Games

Blueprint Help J.J. build the "Ammo Machine" and save Loni . Parts are
stored in a colorful maze of houses. Multi-skill and difficulty levels.

Clowns Amazing action under the Big Top. Clowns pop balloons for high
scoring , colorful acrobatic fun for all .

Gort 4 Space action games in 1. Fly your fighter, defeat the Empire. Mult i
skill levels. Talks with Magic Voice. " Best home version ever" -Creative
Computing .

Kickman Ride the unicycle and catch fall ing objects. Multi-skill levels.
Excellent graphics and superb sound. Watch out! Don 't fall!

Lazarian 4 different screens. Multi-skill level space action . Rescue, evade
obstacles and destroy the one-eyed leviathan.

Omega Race Fast space race action . Many skill levels . Avoid deadly
mines as you eliminate droid forces .

Seawolf The classic two-player sea battle. Torpedo PT Boats and
Destroyers. Great graphics and sound.

Wizard of Wor Fight your way through 25 mazes. Defeat the wizard and
his pets. Two-player, multi-skill. Talks with Magic Voice. Brilliant conversion of
the popular classic.

Solar Fox You 're the pilot as you navigate your spaceship over a grid of
colorful pulsating entities, using your laser to erase enemy life forms and
other surprises. But be careful of the enemy f ire or you ' ll be erased! Fast
paced conversion of a Bally Midway or iginal uses an unlimited number of
levels and dozens of different patterns.

Strategy Adventures

Deadline Find the murder and solve the mystery in 12 hours. Inspector
casebook and evidence included.

Starcross Travel through the mystery ship. Meet aliens, friend and foe .
Face the challenge of your destiny. Galaxy Map included.

Suspended Awaken in 500 years. Solve varied and orig inal puzzles to
save your planet from total destruction .

Zork I, II , or Ill Zork Series. Fantasy adventure in a dungeon. Find all the
treasure and escape alive. Three continued fantasies.

133

Music

Music Composer Create, play and save your tunes easily. Simulates up
to 9 instruments. Notes appear on screen . Play your keyboard like a piano.

Music Machine Play piano or organ melodies and percussion rhythms
together. Music staff shows notes on screen . Vibrato , tempo and pitch
controls.

Programming Aids

Assembler 64 For experienced Assembly language programmers. Cre
ate, assemble, load and execute 6500 series Assembly language code.
Macro assembler. Two machine language monitors. Editor and loaders. Sup
port routines . User manual.

Simon's Basic Expands Commodore BASIC with 114 commands such as
RENUMBER and TRACE. plus graphics commands. Programmers and novi
ces love it! A must for the serious Commodore user.

Super .Expander 64 Easy graphics and music. Draw points, lines, arcs,
circles , ellipses, polygons. Create more sprites. Easy music programming .
Combine text and graphics. Adds 21 special commands to BASIC.

• Personal Checklist

Use this checklist to keep track of what you purchase or plan to purchase.

Hardware:
[] Printer

[] DPS 1101 DAISYWHEEL
[] MPS 801
[] MPS 802
[] MCS801

] Commodore Colar Monitor
) 1541 Disk Drive
] Datassette
) Magic Voice Speech Module
] Joysticks
] AUTOMODEM
] Paddles
] Light Pen

134

Software
[] Productivity

[] ___ _
[] ___ _
[] ___ _

] Financial
[] ___ _
[] ___ _

] Educational
[] ___ _
[] ___ _
[] ___ _

] Business
[] ____ _
[] ___ _

] Games
[] ___ _
[] ___ _
[] ___ _
[] ___ _
[] ____ _

] Music
[] ___ _

] Adventures
[] ___ _
[] ___ _

] Programming Aids
[] ___ _

] Miscellaneous
[] ___ _

Books: Commodore Library
[] Programmer 's Reference Guide
[] Commodore 64 Adventures
[] Business Applications on the Commodore 64
[] Graphic Art: Using Turtle Graphics
[] Mathematics on the C64
[] Advanced Programming Techniques on the C64
[] Artificial Intelligence on the C64
[] Programming for Education on the C64
[] 1541 Disk Companion

135

APPENDIX C

• SCREEN AND COLOR MEMORY MAPS
The following maps display the memory locations for identifying the char

acters on the screen as well as their color. Each map is separately controlled

and consists of 1 OOO positions.
The characters displayed on the maps can be controlled directly with the

POKE command .

SCREEN MEMORY MAP

1024~

1064
1104
1144
1184
1224
1264
1304
1344
1384
1424
1464
1504
1544
1584
1624
1664
1704
1744
1784
1824
1864
1904
1944
1984

I
I

11

I I
I I

r -T
I I

I

'
1 1
I

I I

10

I

I
I

I I I

I
I I

I
I I
I I I

I'
I I

I I I

I
I I

11
I

I

I

I
I I

I I ' I I I I
I I I

I
I I I

I I I I
I I I

I I I I

I I I I I I

I
I

I I I
I I

I I I I
I " i
I I I

I I I
I I

I I I
I I

I I

I I I
I I I

I I I I
I I I I

I

COLUMN
20

I
I
I

I
I

I
I

I

T
I I
I I

I
l

I I

I
I

I
I

I
I I I I

I

30

T I j

I I I I I I
I I I

I
I

I
I

I

I
I I

Ii I i 1 I I
I I I I

I I I
I I I I
I I I I I

! I I
I I I I I I I

I I I I I
I I I I I
I I I I I I
I t l I I I I

I I 1 l I I I I I

I
I I
I I
I

I

I i
I
I
I
I

I I I
I
: !

I I
I I
I
I I

I I
I I

I I I
I I I
I I I
I I I

39

1063
l

l I
11

I

l
I
I

t
2023

"" 10 ~

20

24

The Screen Map is POKEd with a value from the Screen Code per Appen

dix D:

POKE 1024, 13

will display the letter Min the upper left corner of the monitor.

136

55296-
55336
55376
55416
55456
55496
55536
55576
55616
55656
55696
55736
55776
55816
55856
55896
55936
55976
56016
56056
56096
56136
56176
56216
56256

I I
I

' I

I I
I I I

I I l

~
I

I

I

I I

I

I 1 I
I I
I I
~I

COLOR MEMORY MAP

10

IT
I I
I

I

I I
I
I
I
I

I I I
i I

COLUMN
20

I

I
I
I
i
I

I I

--,
!
I
I

I

I

I

I

I

I
I

I
, ___

I
I

'

JO

I I I
I I I I I I I

l l I I I
I lT
I
I I I

I

l I I

I

l

'
I i I I
I I I
I I

I I I
I I

i I I I
I i I I I

I I I I

-rt : I I
I I

I I I
I I I

I

I

39

55335
l

I I I I
I

I
I I
I

I

I

I

I

I
I
I

t
56295

20

24

The color map is POKEd with a color value: this changes the character 's
color. Thus

POKE 55296, 1

will change the letter M inserted above from light blue to white.

Colar Codes

O Black 8 Orange
1 White 9 Brown
2 Red 10 Light Red
3 Cyan 11 Dark Gray
4 Purple 12 Medium Gray
5 Green 13 Light Green
6 Blue 14 Light Blue
7 Yellow 15 Light Gray

Border Control Memory 53280
Background Control Memory 53281

137

SET 1 SET 2 POKE SET 1 SET 2 POKE SET 1 SET2 POKE APPENDIX E
rn 93 ~ 1:1 105 [] 117

[IT] B 94 0 106 [] 118

~ ~ 95 CB 107 LJ 119

414111 96 c. 108 ~ 120 • ASCII AND CHR$ CODES
[g ~ IJ 97 109 121 Each character has a corresponding ASCII code obtained by typing:

• 98 Ei] 110 D 0 122 PRINT ASC(" x")

D 99 ~ 111 ~ 123 where X is any character you select , resulting in the fo llowing table. Typing

D 100 ea 112 ~ 124
PRINT CHR$(n)

D 101 ~ 113 El 125
wnere n is the ASCII code number from the table will print the corresponding

1111 102 63 114 ~ 126 character. Thus:

D 103 EIJ 115 ~ 127 PRINT CHR$(65)

~ 104 D 116 will display the letter A where the cursor happens to be and

Codes from 128-255 are reversed images of codes 0-127. PRINT CHR$(147)

wi ll clear the screen .

PRINTS CHR$ PRINTS CHR$ PRINTS CHR$ PRINTS CHR$

0 II 17 " 34 3 51

1 - 18 # 35 4 52

2 !I 19 $ 36 5 53

3 II 20 O/o 37 6 54

4 21 & 38 7 55 - 5 22 39 8 56

6 23 (40 9 57

7 24) 41 58

OISABLES-(18 25 . 42 '
59

ENABLES -(19 26 + 43 c: 60

10 27 44 = 61
'

141
140

-
PRINTS CHA$ PRINTS CHAS PRINTS CHA$ PRINTS CHA$

11 - 28 - 45 => 62

12 II 29 46 ? 63

lll!JI 13 - 30 I 47 @ 64 .. 14 - 31 0 48 A 65 i
I

15 ma 32 1 49 B 66 I
16 ! 33 2 50 c 67 I

PRINTS CHA$ I PRINTS CHAS I PRINTS CHA$ I PAINTS CHA$ I
z 90 c 119 II 148 ES 177
[91 ~ 120 Brown 149 Ea 178
£ 92 OJ 121 Lt. Red 150 BJ 179

l 93 [I] 122 Dk. Gray 151 D 180

t 94 EE 123 Gray 152 [] 181

D 68 [!] 97 ITD 126 Lt. Gray 155 +- 95 IJ 124 Lt. Green153 [] 182

E 69 rn 98 ~ 127 - 156 El 96 rn 125 Lt. Blue 154 LJ 183

F 70 El 99 128 ii 157

G 71 El 100 Orange 129 - 158

H 72 LJ 101 130 • 159

I 73 g 102 131 ... 160

J 74 D 103 132 IJ 161

K 75 [] 104 f1 133 • 162

PRINTS CHA$ PRINTS CHA$ PRINTS CHAS PRINTS CHAS

~ 184 D 186 ~ 188 1!J 190

~ 185 .:J 187 E!J 189 ~ 191

L 76 EJ 105 f3 134 D 163

M 77 ~ 106 f5 135 D 164
CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS 160-190

N 78 ~ 107 f7 136 D 165 CODE 255 SAME AS 126

0 79 D 108 f2 137 II 166
p 80 [SJ 109 f4 138 D 167

a 81 0 110 f6 139 ~ 168

A 82 D 111 f8 140 ~ 169

s 83 D 112 .. 111111141 [] 170

T 84 • 113 tmr.m1142 rn 171

u 85 D 114 143 c. 172

v 86 [_!] 115 - 144 [g 173

w 87 D 116 II 145 6J 174

x 88 Gj 117 - 146 ~ 175
y 89 ~ 118 • 147 ea 176

142
143

APPENDIX F
Register II-

087 086 DBS 08<4 083 082 081 080 Dec Hex

21 15 SE7 SEO SPRITE

ENABLE

(ON/OFF)

22 16 N .C. N .C. RST MCM CSEL XSCL2 XSCLl XSCLO
X SCROLL
MODE

23 17 SEXY7 SEX YO SPRITE

• SPRITE REGISTER MAP EXPAND Y

24 18 VS13 VS12 VS11 VSlO CB13 CB12 C811 N .C. SCREEN

Register# Character
Dec Hex DB7 DB6 DB5 DB4 DB3 DB2 DBl DBO Memory

0 0 SOX7 SOXO SPRITE 0 X
25 19 IRQ N .C. N .C. N .C. LPIRQ ISSC ISBC RIRQ Interrupt

Requests
Component

26 lA N .C. N .C. N .C. N .C. MLPI I MISSC MISBC MRIRC: Interrupt
Request
MASKS

I I SOY7 SOYO SPRITE 0 Y

Component

2 2 SIX7 I SlXO SPRITE 1 x

3 3 SIY7 SIYO SPRITE 1
I

y 27 lB BSP7 BSPO Background-

Sprite

I PRIORITY

28 lC SCM7 SCMO MULTICOLOR

4 4 S2X7 S2XO SPRITE 2 X I

5 5 S2Y7 S2YO SPRITE 2 Y

I 6 6 S3X7 S3XO SPRITE 3 X SPRITE

7 7 S3Y7 S3YO SPRITE 3 Y
SELECT

8 8 S4X7 S4XO SPRITE 4 X
29 1D SEXX7 SEX XO SPRITE

EXPAND X

30 lE SSC7 ssco Sprite-Sprite
9 9 S4Y7 S4YO SPRITE 4 Y I

10 A SSX7 S5XO SPRITE 5 X COLLISION

11 B SSY7 SSYO SPRITE 5 Y 31 lF SBC7 SBCO Sprite-

Background

COLLISION
12 c S6X7 S6XO SPRITE 6 X

13 D S6Y7 S6YO SPRITE 6 Y

14 E S7X7 S7XO SPRITE 7 X

Component

15 F S7Y7 S7YO SPRITE 7 Y

Component

16 10 S7X8 S6X8 ssxa S4X8 S3X8 S2X8 SIX8 soxa MSB of X

COO R D.

17 11 RCB ECM BMM BLNK RSEL YSCL2 YSCLI YSCLO
Y SCROLL
MODE

18 12 RC7 RC6 RCS RC4 RC3 RC2 RCl RCO RASTER

19 13 it.PX? LPXO LIGHT PEN X

20 14 ~PY7 LPYO LIGHT PEN Y

145
144

Reg ister # Col or Dec Hex
Reg ister ii Col or

Dec Hex

32 20 BORDER COLOR 39 27 SPRITE 0 COLOR

33 21
BACKGROUND

COLOR 0
40 28 SPRITE 1 COLOR

34
BACKGROUND

22 COLOR 1
41 29 SPRITE 2 COLOR

35 23
BACKGROUND

COLOR 2
42 2A SPRITE 3 COLOR

36 24
BACKGROUND

COLOR 3
43 2B SPRITE 4 COLOR

37 25
SPRITE

MULTICOLOR 0
44 2C SPRITE 5 COLOR

38 26
SPRITE

MULTICOLOR 1
45 2D SPRITE 6 COLOR

46 2E SPRITE 7 COLOR

146

APPENDIX G

• MUSIC NOTE TABLE
Note values are POKEd into two memory locations 54272 and 54273, also

known as registers or switches 0 and 1 respectively.
POKE the value N1 into Register 1 and the value N2 into Register 0.
The list below covers three octaves of notes for Bass and Treble Clef. For

the full list of nine octaves. see the Programmer 's Reference Guide.

a:
~
'"" ;-

G A B c D E F 0 A B c D E F G A B c D E F

C Middle c
c

TABLE OF NOTE VALUES
NOTE N1 N2
G 6 36
G# 6 130
A 6 228
A# 7 77
B 7 189
c 8 50
C# 8 175
D 9 51
D# 9 191
E 10 84

147

F 10
F# 11
G 12
G# 13
A 13
A# 14
B 15

*C 16
C# 17
D 18
D# 19
E 20
F 21
F# 23
G 24
G# 26
A 27
A# 29
B 30
c 32
C# 34
D 36
D# 39
E 41
F 43
F# 46

* MIDDLEC

148

241
152

73
4

201
156
122
101
96

104
128
169
227

49
146

8
148
57

245
204
192
208

1
83

200
99

.....- -

APPENDIX H

• SOUND CONTROL SETTINGS
Each sound parameter is POKEd into a register of the specialized sound

generating chip. Each register or switch is a memory location (called byte
address) starting with 54272.

Each sound has a characteristic ADSR consisting of the following four
parameters: Attack, Decay, Sustain , Release.

Attack is the rate sound rises to maximum volume. It can vary from a 2-
millisecond cycle to an 8-second cycle. The corresponding register value is O
to 15.

Decay is the rate sound falls from maximum volume to sustain level. This
varies from a 6-millisecond cycle to 24 seconds, corresponding with 0 to 15.

The values of Attack and Decay are POKEd together into register (swi tch)
5 by a single number derived by multiplying the ATT/\CK value by 16 and
adding the DECAY value.

Sustain is the amplitude level at which the sound is held, varying from 0%
to 100 % of maximum level corresponding to register values of 0 to 15.

Release is the rate at which volume falls from the sustain level to zero:
similar in timing to the decay rate .

Sustain and Release are POKEd into regi ster 6 together as one number
derived by multiplying SUSTAIN by 16 and adding the RELEASE value.

Waveform is the shape of the sound wave produced. The waveforms
called Triangle , Sawtooth and Pulse are related to the musical instrument.
Noise is a randomized waveform . Only specific register values will activa te
this characteristic of sound.

Pulse is the tonal quality of the Pulse waveform. Tl1us, whenever register
(switch) 4 is activated with a 65, a va lue other than zero must be POKEd into
either switch 2 or 3 for the Pulse Rate.

Frequency is the vibratory level of sound which distinguishes one note
from another. Concert A is 440 cycles per second. Switches 0 and 1 are
required to def ine the frequency. 256 times the value in Register 1 plus the
value of Register 0 is the sound generator's oscillator frequency. This is
directly proportional to the sound frequency.

Below is a table of values which can be POKEd into these reg isters. The
actual memory location is 54272 plus the register number.

149

--
Register Description Range of Values APPENDIX I

Voice 1 Voice 2 Voice 3
0 7 14 frequency 0 to 255
1 8 15 frequency Oto 255
2 9 16 pulse Oto 255
3 10 17 pulse 0 to 15
4 11 18 Waveform 16,32,64, 128 • DERIVED TRIGONOMETRIC FUNCTIONS

17 ,33,65, 129
5 12 19 Attack/Decay Oto 255
6 13 20 Sustain/Release 0-255 FUNCTION BASIC EQUIVALENT

All voices
21 Filter-low cutoff O to7
22 Fil ter-high cutoff Oto 255
23 Resonance 16,32,64,128

SECANT SEC(X)= l/COS(X)

COSECANT CSC(X)= l/SIN(X)

COTANGENT COT{X)= l /TAN(X)

INVERSE SINE ARCSIN{X)=ATN(X/SQ R(- X* X + l))
or any sum INVERSE COSINE ARCCOS(X)= - ATN (X/SQR

23 Filter switch/voice 1,2 or 4 (-x•x + l)) +rr/2

24 Volume 0 to 15 INVERSE SECANT ARCSEC(X)= ATN(X/SQR(X * X - l))

INVERSE COSECANT ARCCSC(X)=ATN(X/SQR(X*X- l))

+ (SGN(X)- l *rr/2

INVERSE COTANGENT ARCOT(X)= ATN (X)+ rr/2 !
HYPERBOLIC SINE SINH(X)= (EXP(X)- EXP(- X))/2 -
HYPERBOLIC COSINE COSH(X)= (EXP(X)+ EXP(- X))/2

HYPERBOLIC TANGENT TAN H(X)= EXP(- X)/(EX P(x)+ EXP

(- X)) *2+ 1

HYPERBOLIC SECANT SECH (X)=2/(EXP(X)+ EXP(-X))

HYPERBO LI C COSECANT CSCH(X)= 2/(EX P(X) - EXP(- X))

HYPERBOLIC COTANGENT COTH(X)= EXP(-X)/(EXP(X)

- EXP(-X))*2+ l

INVER SE HYPERBOLIC SINE ARCSINH(X)= LOG(X+SQR(X*X+ Ji)
INVERSE HYPERBOLIC COSINE ARCCOSH (X)= LOG(X+SQR(X*X- 1))

INVERSE HYPERBOLIC TANGENT ARCTANH(X)= LOG((l + X)/(1- X))/2

INVERSE HYPERBOLIC SECANT ARCSECH(X)= LOG((SQ R

c-x•x+ J) + l /X)

INVERSE HYPERBOLIC COSECANT ARCCSCH(X)= LOG((SGN(X)* SQR

(X*X+l/x)

INVERSE HYPERBOLIC COTAN- ARCCOTH(X)= LOG((X + l)/(x- l))/2
GENT

151
150

APPENDIX J Looks like Looks like

Com- Abbrevi- this on Com- Abbrevi- this on
mand at ion screen mand ation screen

LEFT$ LE B!lil F LEQ RIGHT$ R Emil I R t\J
LEN NONE LEN RND R Emil N R0

• ABBREVIATIONS OF BASIC KEYWORDS LET L Bllil E L LJ RUN Rma u R[Lj

As a time-saver when typing programs and commands, you can abbrevi- LIST L ma I L E\J SAVE S Emil A s~
ate most keywords. The abbreviation for PR INT is a question mark. The

LO abbreviations for other words are made by typing the first one or two letters LOAD L ma 0 SGN s Emil G s [l]
of the word, followed by the SHIFTed next letter of the word . When used 1n a NONE LOG sma I s EJ
program line , the keyword will LIST in the full form .

LOG SIN

MID$ Mmal MEJ SPC(s mD p so

Looks like Looks like
NEW NONE NEW SQR sma Q s•

Com- Abbrevi- this on Com- Abbrevi- this on Nma E N El mand ation screen mand ation
NEXT STATUS ST ST

screen

ABS Amil B A [IJ END E Emil N E 0
NOT N Bllil 0 ND STEP STma E STD

AND A mD N A0 EXP E ma X E ~
ON NONE ON STOP s ma T s [l]

ASC A mas A[!] FN NONE FN
OPEN omD P oD STR$ sTmaR sTQ

ATN A maT A[] FOR F mao F D OR NONE OR SYS s BllD y s DJ
CHR$ C maH c DJ FRE F milR F Q PEEK Pmil E p El TAB(Tmil A T~

CLOSE CLma 0 CLD GET G B!lilE G El POKE Pmil 0 PD TAN NONE TAN

CLR C B!IDL cO GET# NONE GET#
POS NONE POS THEN T ma H TO

CMD C BllD M c ISI GO SUB GO mil S Go[!}
PRINT ? ? TIME TI TI

CONT c mao cO GOTO G B!lilo G D PRINT# PB!lil R p bd TIME$ TI$ TI$

cos NONE cos IF NONE IF
READ RB!lil E R El USR umD s u [!]

DATA D milA D~ INPUT NONE INPUT
REM NONE REM VAL vmDA v~

DEF D maE D El INPUT# I mD N 0
RESTORE RE Bllil S RE[!] VERIFY vma E v LJ

DIM D £llD I D EJ INT NONE INT
RETURN RE Bllil T RE[] WAIT WBl!il A w~

152 153

NOTE: See the BASIC Encyclopedia (page 159) for detai ls on specif ic
commands.

154

--- -

APPENDIX K

• BASIC CONVERSIONS
If you have programs wr itten in a BASIC other than Commodore BASIC,

some minor adjustments may be necessary before running them on the C64 .
Here are some hints to make the conversion easier.

String Dimensions

Modify all statements that are used to declare the dimension of strings.
Commodore BASIC does not require a string length dimension-only the
quantity of variables. A statement such as DIM A$(J ,K), which dimensions a
string array for J elements (single array), each of length K, should be con
verted to DIM A$(J) .

String Concatenation

Replace the ampersand or comma some BASICs use to concatenate
strings with the plus sign.

Substrings

In Commodore 64 BASIC, the MID$, RIGHT$ and LEFT$ functions are
used to take substrings of strings. Forms such as A$(J) to access the
Jth character of the nondimensioned string A$ must be changed to
MI 0$(A$,J, 1).

Forms such as A$(J,K) to access the Kth character of the single dimen
sioned array A$(J) must be changed to MID$(A$(J),K, 1).

Slicers in the form A$(J TO K) which take a substring of the variable from
the Jth character to the Kth character must be changed to MID$(A$,J,K
J + 1).

LET statements

LET statements are accepted by Commodore BASIC and need not be
changed.

155

PAUSE

To create a time delay in Commodore BASIC replace PAUSE statements
with a FOR ... NEXT loop.

PRINT AT

To achieve an equivalent in the C64 BASIC, replace PRINT AT X, Y with :

POKE 782,X:POKE 781, Y:SYS 65520

Multiple Statements

Some BASICs use a backslash (/) to separate multiple statements on a
line. Commodore BASIC requires the colon(:).

Multiple Assignments

To set more than one variable to the same constant, such as LET B = C = O
must be converted to separate statements with colons or on individual lines:
B=O:C=O.

MAT functions

Programs using MAT functions available on some BASICS must be rewrit·
ten using FOR .. . NEXT loops to execute properly.

Random Numbers

Other BASICs may apply the random function differently. Whereas
INT(RND*6)+ 1 is used to obtain the six numbers of a die, use
INT(RND(0)*6)+ 1 in Commodore BASIC.

156

APPENDIX L

• RECOMMENDED READING LIST
Below is a sample list of books available from the major publishing houses

as well as the Commodore Library.

Beginning BASIC

Brady
Hayden

Prentice Hall
Sams

Sybex

Just for Kids

Creative
Datamost
Sams
QUE
Sybex
Trillium

General Applications

Brady
Commodore

Compute
Creative
Hayden
Rest on
Sams
TAB

Taking Off with BASIC on the C64
Basic Commodore 64 BASIC
I Speak BASIC to My C64
Programming Your Commodore 64 in BASIC
Learn BASIC Programming in 14 Days on Your C64
Commodore 64 Starter Book
Your First Commodore 64 Program
T_he Easy Guide to Your C64

Computers for Kids: C64
Kids and the Commodore 64
Commodore 64 for Kids from 8 to 80
Tim lost
Power Upl Kids ' Guide to the C64
Kids Working with Computers: C64

101 Uses for the C64
Business Applications on the C64
Artificial Intelligence on the C64
Commodore 64 Adventures
Creating Arcade Games on the C64
The Working Commodore 64
Stimulating Simulations for the C64
C64 Data Files: A BASIC Tutorial
Commodore 64 BASIC Programs
Using and Programming the C64

157

Education

Byte
Commodore

Sybex

Computer Controllers

Birkhauser
Prentice Hall
Sybex

Graphics

Arrays
Brady
CBS
Commodore
Prentice Hall
Sams
Sybex
TAB

Music

Birkhauser
Prentice Hall

Telecommunicat ions

Osborne/McGraw

References

Arrays
Brady
Commodore

Compute
Computext
Reston
Osborne/McGraw

Learning with Commodore LOGO
Mathematics on the C64
Programming for Education on the C64
Parents, Kids , and the C64

Your Computer Butler
Easy Interfacing Projects for the C64
The Commodore 64 Connection

C64 Color Graphics: An Advanced Guide
C64 Graphics: Activities Handbook
Color Graphics for the C64
Graphic Art on the C64
Sprite Graphics for the C64
C64 Graphics and Sounds
Graphics Guide to the C64
C64 Graphics and Sound Programming

The C64 Music Book
Music and Sound for the C64

C64 Telecommunications

The C64 User's Encyclopedia
Introduction to Assembly Language for the C64
Advanced Programming Techniques on the C64
Programmer's Reference Guide
1541 Disk Companion
Compute 's First Book of 64
C64 BASIC Guide
Master Memory Map: C64
Your Commodore 64

158

BASIC 2.0
ENCYCLOPEDIA

INTRODUCTION _____________ 161

BASIC COMMANDS 162

BASIC STATEMENTS 168

BASIC FUNCTIONS 181

VAR IABLES AN D OPERATORS 186

159

............

• INTRODUCTION
In this manual, you 've seen an assortment of exercises using the BASIC

language that give you a feel for computer programming and some of the
vocabulary involved. This encyclopedia gives a list of the rules (syntax) and
terms of the BASIC 2.0 language, along with a concise description of each .
Experiment with these commands, and remember-you can 't damage your
Commodore 64 by typing in programs, and the best way to learn computing
is by computing.

The encyclopedia provides formats , brief explanations and examples of
the BASIC 2.0 commands and statements. It is not intended to teach BASIC.
If you are interested in learning BASIC, Appendix L lists tutorial books that
will help.

Commands and statements are listed in separate sections. Within the sec
tions, the commands and statements are listed in alphabetical order. Com
mands are used in direct mode, while statements are most often used in
programs. In most cases, commands can be used as statements in a pro
gram if you prefix them with a line number. You can use many statements as
commands by using them in direct mode (i .e., without line numbers).

The BASIC Encyclopedia is organized as follows:

• COMMANDS: the commands used to work with programs, edit , store
and erase them.

• STATEMENTS: the BASIC program statements used in numbered lines of
programs.

• FUNCTIONS: the string, numeric and print functions .
• VARIABLES AND OPERATORS: the different types of variables, legal var

iable names. and arithmetic and logical operators.

A more complete explanation of BASIC 2.0 commands is provided in the
Commodore 64 Programmer 's Reference Guide, available from your Commo
dore dealer or your local bookstore.

161

• BASIC COMMANDS
CONT (Continue)

This command is used to restart the execution of a program which has
been stopped by using the STOP key, a STOP statement or an END statement
within the program. The program will restart at the exact place it left off.

CONT will not work if you have changed or added lines to the program (or
even just moved the cursor), or if the program halted due to an error, or if you
caused an error before trying to restart the program. In these cases you will
get a CAN'T CONTINUE ERROR.

COPY

On a dual disk drive (4040), COPY a disk file from one drive (the source file)
to the other. On a single disk drive (1541), COPY a file on the same disk under
a different filename. You must open the disk file before COPYing as follows:

OPEN file number, device number, channel number

Example:

OPEN 15,8, 15: REM file 15, device 8, channel 15

The COPY command format is as follows:

PR I NT#15, "COPY[drive number]:new file = [drive number]:old file"

For example:

PRINT#15,"COPYO:NOON = 1:NIGHT"

copies the file named "NIGHT" from drive 1 to drive O and renames it
"NOON" .

PRINT#15,"COPYO:STUFF = 1 :STUFF"

copies the file named STUFF from drive 1 to drive 0.

PRINT#15,"COPYO:DOGS = O:CATS"

copies the file named "CATS" onto the same disk in a single drive and
renames it "DOGS"

LIST

LIST [first line] - [last line]
The LIST command displays the lines of a BASIC program in the Commo

dore 64 memory.

162

The LIST command has five options:

1. Type the word LIST to display the entire program in memory. Slow down
the LISTing by holding down the CTRL key. Stop the LISTing by pressing
the RUN/STOP key.

Example: LIST (LISTs the entire program).

2. Type the word LIST and follow it with a line number to display that
specified program line.

Example: LIST 10 (LISTs only line 10).

3. Type the word LIST and follow it with a line number and a dash to
display the program starting at the specified line number.

Example: LIST 100- (LISTs from line 100 to the end of the program).

4. Type the word LIST and follow it with a dash and a line number to
display the program from the beginning to the specified line number.

Example: LIST -100 (LISTs the program from the start up to line 100).

5. Type the word LIST, follow it with a line number, a dash and another line
number to display the program from the first specified line number to
the second specified lihe number.

Example: LIST 10-200 (LISTs lines 10 through 200).

LOAD

The LOAD command fills the computer 's memory with a program stored
on diskette or cassette tape. The format for the load command is as follows :

LOAD "filename" ,[device number],[secondary address]

The filename is the name of the program you want to load . The device
number for cassette is 1, the device number for a disk drive is 8. The second
ary address is number 1 and is only specified when you want to LOAD a
machine language program into a specific Commodore 64 memory location
from which it was SAVEd.

You have four options in which to LOAD a program from CASSETTE tape.

1. Type LOAD and press RETURN. The computer responds by displaying :

PRESS PLAY ON TAPE

163

Press the play button on the Datassette. The screen turns off and the
computer searches for the first program on the cassette tape. Press the c
key to LOAD the program or the spacebar to search for the next program on
the cassette.

Example: LOAD BiEIE
2. Type LOAD followed by a program name within quotation marks. The

same sequence of events happens as above (option 1) except this
directly LOADs a specified program name from the cassette tape.

Example: LOAD "Program Name" l:limlli!
3. Type LOAD followed by a program name within quotation marks, a

comma and the number 1. This is the same as number 2 except you
specify the device number 1 as the Datassette. If a device number is
not specified, it defaults to device number 1. When using cassette
tape, you do not have to specify the device number, it is optional.

Example: LOAD " Program Name", 1 iBEIElli
4. Type LOAD followed by a program name within quotes, a comma, the

number 1, a second comma and the number 1 again. This LOADs a
specified program name from device 1 (Datassette) into the Commo·
dore 64 memory location from which it was SAVEd. If the secondary
address 1 is specified, the program name and device number must be
specified.

Example: LOAD " Program Name", 1,1 llmillli
You have two options in which to LOAD a program from DISKETTE:

1. Type LOAD followed by a program name wit~.in quotation marks,
a comma and the number 8. This LOADs the specified program from
diskette.

Example: LOAD " Prog ram Name",8

2. Type LOAD followed by a program name within quotes, a comma, the
number 8, a second comma and the number 1. This LOADs the speci·
fied machine language program name into a predetermined Commo
dore 64 memory location from which it was SAVEd.

Example: LOAD "Program Name",8,1 liiQl;;.u.-1.1

In these examples, indicates that you must press the RETURN
key after the given command.

Arguments appearing within brackets are optional.

164

NEW

BE CAREFUL WHEN YOU USE THIS COMMAND. This command
erases the entire program in memory, and also clears out any variables that
may have been used. Unless the program was SAVEd, it is lost.

The NEW command can also be used as a BASIC program statement.
When the program reaches this line, the program is erased. This is useful if
you want to leave everything neat when the program is done.

RUN

RUN [line number]

The RUN command executes a program in the Commodore 64 's memory.
If a line number is specified follow;;1g the RUN command , the computer
starts RUNning the program at the specified line number. RUN may be used

within a program.

Examples:

RUN Executes the program from the beginning .

RUN 100 Starts executing the program at line 100.

SAVE

SAVE ["filename" [,device number[,EOTflag]]]

The SAVE command stores a program currently in the computer 's memory
onto a disk or cassette tape.

You have three options in SAVEing programs on CASSETTE

1. Type SAVE and press RETURN . The Commodore 64 responds by dis·
playing the message:

PRESS RECORD & PLAY ON TAPE

Press the PLAY and RECORD buttons on the Datassette . The Commodore
64 SAVEs the program in memory starting at the current position of the cas
sette tape. Make sure you do not have an important program at that tape
position because the C64 SAVEs the current program on top of the original
one,andthatoneislost.

Example: SAVE !i~11¥1

165

2. Type SAVE followed by a program name in quotation marks. This SAVEs
the specified program onto the cassette tape at the current position .
The same conditions in option 1 apply.

Example: SAVE " Program Name" &bk

3. Type SAVE followed by a program name in quotes. a comma and the
number 1. This is the same as option 2 except you specify the device
number for the Datassette.

Example: SAVE " Program Name", 1 !ISiEIRIWI
To SAVE to DISK, type SAVE followed by a program name within quotes, a

comma, and the number 8. This saves the contents of the Commodore 64
memory onto the disk. The diskette must be formatted before you can SAVE
programs on it. See the DISK NEW command.

Example: SAVE " Program Name",8#~~1il

SCRATCH

Deletes a file from the disk directory. Use this command to erase
unwanted files and to create more storage space on the disk. You must first
open the disk command channel (sec0ndary address 15) before scratching
any files as follows :

OPEN file number, device number, secondary address

Example: OPEN 15,8, 15 4 1 w=
The format for the SCRATCH command is as follows:

PRINT# file number,"SCRATCH [drive number]:filename"

Example: PRINT#15,"SCRATCHO:MY BACK" i!EBIE

You can abbreviate the SCRATCH command as follows:

PRINT#15,"SO:MY BACK" B!lllE

The above examples erase the file named "MY BACK" from the disk in
driveO.

166

VERIFY

VERIFY " filename " ,[device#],[secondary address]

The VERIFY command compares the program on tape or disk with the one
in memory. If the programs are identical, the Commodore 64 responds with
" OK". If the two versions of the program differ, a VERIFY ERROR results.
This command makes sure the program is SAVEd correctly to tape or disk.

You have three ways to VERIFY a program:

1. Type VERIFY and press RETURN . This verifies the program at the cur
rent position of the cassette tape.

Example: VERIFY

2. Type VERIFY followed by a program name within quotation marks. This
verifies the specified program name on the cassette tape.

Example: VERIFY "Program Name" =e 44

3. Type VERIFY followed by a program name within quotation marks, a
comma and a device number. The device number can be either 1 for
the Datassette or 8 for the disk drive. This command verifies the speci
fied program name on the designated device (disk drive or tape).

Examples: VERIFY " Program Name",8 (Verifies program on
disk)
VERIFY " Program Name" ,1 (Verifies program on
cassette tape)

167

• BASIC STATEMENTS

CLOSE

CLOSE file number

This statement closes a previously opened file . The number following the
word CLOSE is the file number to be closed.

Example: CLOSE 2 !iii&llE (Closes file 2)

CLR

CLR

This statement clears the value of any variables in memory, but leaves the
program itself intact.

Example: CLR !ial&E

CMD

CMD file number [,string]

CMD sends output which normally goes to the screen , to the specified file
corresponding to another device. This can be a printer file or a data file on
tape or disk. The file must be OPENed first.

Example: OPEN 4,4
CMD4
LIST
PRINT#4
CLOSE 4

(Open file 4 on device 4-the printer)

(Lists the program in memory on printer)
(Close channel to printer)
(Close file 4)

You can specify an optional string in the CMD command. Any characters
in the specified string are output to the device.

Example:

OPEN 4,4, (Open file 4 on device 4)
CMD 4,"Anybody out there?" (Send screen output to printer)
PRINT#4 (Close channel to printer)
CLOSE 4 (Close file 4)

168

DATA

DATA constant list

This statement is followed by a list of items to be used by READ state
ments. Items may be numeric values or text strings, and are separated by
commas. String items need not be inside quote marks unless they contain a
space, a colon, or a com1'1a. If two commas have nothing between them , the
value will be READ as a zero for a number, or as an empty string .

DATA 12, 14.5, " HELLO, MOM " , 3.14, PART 1

DEF FN

DEF FN function name (numeric variable}

This command allows you to define a complex calculation as a function
with a short name. In the case of a long formula that is used many times
within the program, this can save time and space.

The function name will be FN and any legal variable name (1 or 2 charac
ters long). First you must define the function using the statement DEF fol
lowed by the function name. Following the name is a set of parentheses
enclosing a numeric variable. The actual formula that you want to define
then follows , with the variable in the proper spot. You can then "call " the
formula, substituting any number for the variable.

Example:

10 DEF FNA(X) = 12*(34.75 - X/.3)
20 PRINT FNA(7} f

f J 7 1s inserted where
X 1s in !he formula

For this example, the result would be 137.

DIM

DIM variable (subscripts) [,variable(subscripts)] ...

Before you can use an array, you must first execute a DIM statement to
establish the DIMensions of the array. If the array has less than 11 elements
you do not need a DIM statement since the Commodore 64 automatically
DIMensions each variable to 10 elements.

The DIM statement is followed by the name of the array, which may be any
legal variable name. The array name is followed by an integer enclosed in
parentheses. The integer specifies the number of elements in each dimen
sion. You may use any number of dimensions, but keep in mind that eadi

169

array element uses memory. To figure out the total number of array elements
in each array, multiply the number of elements in each dimension of the
array.

NOTE: Integer arrays use only 40% of the space of floating point
arrays.

Example:

10 DIM A$(40),B7(15},CC %(4,4,4}
Array A$ has 41 elements
Array B7 has 16 elements
Array CC % has 125 elements

You can dimension more than one array in a DIM statement by separat ing
the arrays with commas. If you execute a DIM statement more than once for
each array within a program, a REDIM 'D ARRAY ERROR message is dis·
played. It is good programming practice to place DIM statements near the
beginning of the program.

END

When a program encounters an END statement, the program stops RUN·
ning immediately. You may use the CONT statement to re-start the program
at the statement following the END statement.

Example: END

FOR ... TO .. . STEP

FOR variable = start value TO end value [STEP increment]

The FOR ... TO statement and the NEXT statement are used together to
form a program loop-a sequence of instructions that are executed repeti·
lively. The loop variable acts as a counter and is added to or subtracted from
during the FOR/NEXT loop. The start value is the beginning count of the loop
variable and the end value is the finishing count of the loop variable . The
STEP portion of the FOR ... TO statement is specified if you want to incre·
ment the loop variable by a value greater than 1. You must specify the STEP
portion if the start value is greater than the end value and you are counting
backwards through a program loop.

The logic of the FOR . .. TO statement is as follows . First , the loop variable
is set to the start value. When the program reaches a line with the command
NEXT, it adds the STEP increment (default = 1} to the value of the loop
variable and checks to see if it is higher than the end of loop value. If the loop
variable is less than or equal to the end value, the statement immediately

170

following the FOR . . . TO statement is executed. If the loop var iable is greater
than the end of loop value, the statement directly following the NEXT state·
ment is executed. If the loop variable value is negative, the loop is executed
until it becomes less than the end value. See the NEXT STATEMENT

Example:

10 FOR L = 1 TO 20
20 PRINT L
30 NEXT L
40 PRINT "BLACKJACK! L = " L

This program prints the numbers from one to twenty on the screen , fol
lowed by the message BLACKJACK! L = 21 .

You can set up loops inside one another. This is known as nesting loops.
Nest loops so that the inner FOR .. . TO statement and the corresponding
NEXT statement are both in between the outer FOR ... TO statement and
corresponding NEXT statement. Remember that in nesting , the last loop to
start is the first one to end.

Example: Nested Loops

10 FOR L = 1 TO 20
20 PRINT L
30 FOR I = 1 TO 10
40 PRINT I
50 NEXT I
60 NEXT L

GET

GET variable list

The GET statement inputs data from the keyboard, one character at a
time. When the computer accepts a character from the keyboard, it is
assigned to the variable name specified in the GET command. If no charac
ter is typed, a null (empty) character is assigned, and the program continues
without waiting for a key. For this reason , the GET statement is usually used
along with an IF . .. THEN statement to check for a null character(""). There
is no need to press the RETURN key after you type a character for a GET
statement.

The word GET is followed by a variable name, usually a string variable. If a
numeric variable is used and a key other than a number is pressed , the
program stops and a TYPE MISMATCH ERROR occurs. If a string variable is
used, the GET statement accepts any character entered from the keyboard.
The GET statement can only be used within a program.

171

Example:

10 GET A$:1F A$
continue.

"" THEN 1 O: REM Wait for a key to be pressed to

GET#

GET# file number, variable list

The GET# statement inputs data from a previously opened file on a periph
eral device, one character at a time. The character is assigned to the speci
fied variable name. This command can only be executed within a program.

Example:

10 GET#1.A$

GOSUB

GOSUB line number

The GOSUB statement calls a separate and independent program seg
ment called a subroutine. When a GOSUB statement is encountered in a
program, the computer jumps to a subroutine, and executes it. When a
RETURN statement is encountered in the subroutine, the computer jumps
back to the instruction directly following the GOSUB statement in the main
program.

Example:

1OGOSUB800: REM Jump to the subroutine at line 800 and execute it.

800 PRINT "HI THERE"
810 RETURN

GOTO

GOTO line number

The GOTO statement jumps to and executes the instructions starting at
the speciiied line number. When used in direct mode the GOTO statement
starts execL tion of a program at the specified line number.

172

Example:

10 PRINT "REPETITION IS THE MOTHER OF LEARNING"
20GOTO 10

The GOTO in line 20 causes the program to be run continuously, until the
RUN/STOP key is pressed.

IF . .. THEN

IF expression THEN statement(s)

The IF .. . THEN statement evaluates a condition and executes one of two
possible program segments, depending on whether the condition is true or
false. If the expression is true, the BASIC statement directly following the
word THEN is executed. If the expression is false , the program continues to
the program line directly following the line containing the IF statement. The
evaluated expression is usually a mathematical expression containing rela
tional or logical operators (= , < , > , < = , > = , <> , AND , OR, NOT). The
IF .. . THEN statement is the computer 's way of making a decision.

Example:

50 IF X = 0 THEN PRINT "OK"
60 PRINT "REST OF PROGRAM"

Evaluates the value of X. If X equals 0, the computer PRINTS "OK" and
continues with line 60. If X does not equal 0, the part following the word
THEN is skipped and the program continues with line 60.

INPUT

INPUT [" prompt string ";] variable list

The INPUT statement accepts characters from the keyboard and stores
them in the specified variable name. The program pauses, displays a ques
tion mark (?) on the screen , and waits for you to type a response and press
the RETURN key. The maximum amount of characters you can INPUT is 77.

The word INPUT is followed by a variable name or list of variable names
separated by commas. You can include a message enclosed in quotes called
a prompt before the list of input variables. If the prompt is present , there
must be a semicolon(:) after the closing quote. When more than one variable
is INPUT, separate them with commas. If you don 't, the computer asks for
the remaining input variable values by displaying two question marks(??) on

173

the screen. If you press the RETURN key without INPUTting a value, the
INPUT variable retains the value previously input for that variable . This state
ment can on ly be executed within a program.

Example:

10 INPUT " Number of Ice Cream Cones" ;A$

INPUT#

INPUT# file number, variable list

INPUT# works like INPUT except it takes data from a previously OPENed
file or device instead of the keyboard. No prompt string is allowed. Th is com
mand can only be used in prog ram mode.

Example:

101NPUT#2, A$, C,D$
(Inputs three variable values from file 2.)

LET

[LET] variable = expression

LET is rarely used in programs, since it is not necessary. Whenever a
var iable is assigned a value, LET is always implied. The variable name which
receives a value is on the left side of the equal sign, and the value itself is on
the right side.

Example:

10 LET A = 5
20 LET B = 6
LET is specified (but not necessary) in lines 1 O and 20.
LET is implied in lines 30 and 40.
30C =A* B + 3
40 0$ = " HELLO"

NEXT

NEXT [index variable , ,variable]

The NEXT statement completes a FOR ... NEXT loop. When the computer
encounters a NEXT statement, the program goes back to the corresponding
FOR .. . TO statement and checks the index variable. If the index variable is
less than or equal to the limit of the loop in the FOR ... TO statement ,

174

the loop cycles again . If the index variable is greater than the limit of the
loop. the program continues with the statement directly following the NEXT
statement.

Specifying a variable is optional in a NEXT statement, though it may be
followed by a variable name or a list of variable names separated by com
mas. If there are no names listed, the last loop started is the one incre
mented. If the variables are specifiep, they are incremented in order from left
to right.

Example:

10 FOR L = 1TO10:NEXT
20 FOR L = 1TO10:NEXT L
30FORL = 1T010FORM = 1T010: NEXTM . L

ON

ON expression GOTO/GOSUB line #1 , line #2, .

This statement makes the GOTO and GOSUB statements into conditional
statements like the IF ... THEN sta tement. The word ON is followed by a
mathematical expression and either a GOSUB or GOTO statement and a list
of line numbers. The result of the expression determines which line number
or subroutine is executed. If the result of the expression is 1, the first line in
the list is executed. If the result 1s 10, the tenth line number 1s executed, and
so on . The result of the expression should not exceed the number of line
numbers in the list. If the result is larger than the number of line numbers 1n
the list or zero, the program continues with the line directly following the ON
statement. If the number is negative. an ILLEGAL QUANTITY ERROR results .

Example:

10 INPUTX:IF X<OTHEN 10 When X = 1, ON sends control to
the first line number 1n the list

20 ON X GOTO 50, 30, 30. 70 When X = 2, ON sends control to
the second line (30), etc.

25 PRINT " FELL THROUGH ":GOTO 10
30 PR INT " TOO HIGH ":GOTO 10
50 PRINT " TOO LOW" :GOTO 10
70END

175

OPEN

OPEN file number, device number [.secondary address[. " filename[. type,
mode"]]]

The OPEN statement opens a channel to a peripheral device such as a
printer, disk drive or Datassette for input and output operations. The word
OPEN is followed by a logical file number and a device number. The OPEN
statement can also include the following optional information: secondary
address, a filename, a file type and a file mode.

The logical file number is the number assigned to a file between 1 and
255. The logical file number is referred to by the other input and output com
mands such as PRINT#, INPUT#, CMD and CLOSE. The OPEN statement
associates a file number to a device number.

The device number is the number assigned to a peripheral device. For
example, device 1 is the Datassette, device 4 is the printer and device 8 is
the disk drive. The device number is implied in other input and output state
ments with the logical file number.

The optional secondary address specifies an input or output operation on
a peripheral device. For example, secondary address 0 on the Datassette
specifies a read operation from tape. Secondary address 1 specifies a write
operation. These secondary addresses specify, different operations on dif
ferent devices. Consult your peripheral 's user 's guide for more secondary
address information .

The OPEN statement may specify a filename enclosed in quotation marks,
but it is not required for printer or tape files . The filename has a maximum
length of 16 characters.

File type specifies which kind of files are being used. There are four types
of disk drive files: sequential (SEO), relative (REL), program (PRG) and user
(USR) files . The Datassette uses only program and sequential files . If the file
type is not specified, the disk drive and Datassette assume it is a program
file unless the mode is specified.

The mode specifies what type of output operation is performed. The
modes are Read (R) , and Write (W). The mode is usually specified when using
disk files .

Example:

10 OPEN 3,3
100PEN 1,0
200PEN 1,1,0,"UP"

OPENs the SCREEN as a device.
OPENs the keyboard as a device.
OPENs the Datassette for reading ; file to be
searched for is named UP

176

OPEN 4,4 OPENs a channel to use the printer.
OPEN 15,8, 15 OPENs the disk drive command channel.
5 OPEN 8,8,12,"TESTFILE,SEQ,W" Opens a sequential disk file for

writing.

See also: CLOSE, CMD, GET#, INPUT#, and PRINT# statements.

POKE

POKE address, value

The POKE statement changes the contents of a Commodore 64 Random
Access Memory (RAM) location . The word POKE is always followed by two
numbers. The first number is a memory location. This can have a value from
O to 65535. The second number is a value from O to 255, which is placed in
the location, replacing any value that was there previously.

Example:

10 POKE 28000,8
20 POKE 28 * 1000,27

PRINT

PRINT print list

Places the value 8 in location 28000
Places the value 27 in location 28000

The PRINT statement outputs characters to the screen . The word PRINT
can be followed by any of the following:

Characters inside of quotes
Variable names
Functions
Punctuation marks

("text lines")
(A 1, B, A$, X$)
(SIN(23), ABS(33))
(; ,)

The characters inside of quotes are referred to as literals since they are
PR INTed exactly as they appear. When a var ,abie name is PRINTed. the con
tents of the variable is PRINTed, not the variable name (unless it appears
within quotation marks).

If more than one variable is PRINTed, they must be separated by commas
or semi-colons. A comma places 15 spaces between each output variable or
string. A semi-colon PRINTs output variables and strings separated by one
space.

177

Example:

PRINT statement

10 PRINT " HELLO"
20 A$= " THERE": PRINT " HELLO,"A$
30A=4:B = 2:PRINTA+ B
50J=41 :PRINT J; J-1
60C= A+ B:D =A-B:PRINT A;B;C,D

See also: POS(), SPC(), and TAB() FUNCTIONS.

PRINT#

PRINT# file number, print list

RESULT

HELLO
HELLO.THERE
6
41 40
4 2 6 2

PRINT# works just like the PRINT statement except it outputs characters
to a previously OPENed file number on a peripheral device instead of the
screen.

Example:

100 PRINT#1 ,"HELLO THERE! " ,A$,B$,

READ

READ variable list

Th is statement is used to get information from DATA statements into varia
bles, where the data can be used. The READ statement variable list may
contain both strings and numbers. Care must be taken to avoid reading
strings where the READ statement expects a number, which produces a
TYPE MISMATCH ERROR message.

Example:

Read A$, G$

REM

REM message
The REMark is just a note to whoever is reading a LISTing of the program.

It may explain a section of the program, give information about the author,
etc . REM statements in no way effect the operation of the program, except to
add to its length. The word REM may be followed by any text , although
graphic characters mcy cause unexpected results.

178

Example:

10 NEXT X:REM UPDATE LOOP
20 REM THIS LINE IS UNNECESSARY

RESTORE

RESTORE line number

When executed in a program, the pointer to the item in a DATA statement
which is to be read next is reset to the .first item in the list. Th is gives you the
ability to re-READ the information . If a line number follows the RESTORE
statement, the pointer is set to that line. Otherwise the pointer is reset to the
first DATA statement in the program.

Example:

RESTORE 200

RETURN

RETURN

This statement is always used in conjunction with GOSUB. When the pro
gram encounters a RETURN, it will go to the statement immediately following
the GOSUB command. If no GOSUB was previously issued, a RETURN
WITHOUT GOSUB ERROR will occur.

STOP

STOP

The STOP statement halts execution of a program. The message, BREAK
IN LINE #, is displayed when the program encounters the line number that
contains the STOP statement. The program can be re-started at the state
ment following STOP using the CONT command. The STOP statement is com
monly used while debugging programs.

SYS

SYS address

The SYS statement is followed by a decimal number or numeric variable in
the range 0 to 65535. The program begins executing a machine language
program starting at the specified address. This is similar to the USA function
but does not pass a parameter. See the Commodore 64 Programmer 's Refer'.
ence Guide for information about machine language programs.

179

WAIT

WAIT address, value 1, value 2

The WAIT statement is used to halt a program until the contents of a mem
ory location change in a specific way. The address must be in the range
between o to 65535. Value 1 and value 2 must be in the range between 0 and
255.

The contents of the memory location is first logically ANDed with value 1.
If value 2 is present, the specified memory location is exclusive-~Red wi_th
value 2. If the result is zero, the program checks the memory location again .
When the result is not zero, the program continues with the statement
directly following WAIT

180

• BASIC FUNCTIONS

NUMERIC FUNCTIONS

Numeric functions return a numeric value. The functions they perform
range from calculating mathematical functions to specifying the contents of
a memory location . Numeric functions follow the form:

FUNCTION (argument)

where the argument can be a numerical value, variable, or string .

ABS(X) (absolute value)

The absolute value function returns the positive value of the argument X.

ASC(X$)

This function returns the ASCII code (number) of the first character of X$.

ATN(X) (arctangent)

Returns the angle whose tangent is X, measured in radians.

COS(X) (cosine)

Returns the value of the cosine of X, where X is an angle measured in
radians.

EXP(X)

Returns the value of the mathematical constant e (2.71828183) raised to
the power of X.

FNxx(x)

Returns the value of the user-defined function xx created in a DEF FNxx
statement.

INT(X) (integer)

Returns the integer portion of X, with all decimal places to the right of the
decimal point removed. The result is always less than or equal to X. Thus, any
negative numbers with decimal places become the integer less than their
current value (e.g . INT(- 4.5) = - 5).

181

If the INT funct ion is to be used for rounding up or down, the form is INT(X
+ I - .5)

Example:

INT (4.75 + .5)

LOG(X) (logarithm)

This returns the natural log of X. The natural log is log to the base e (see
EXP(X)). To convert to log base 10, divide by LOG{10).

PEEK(X)

This function gives the contents of memory location X, where X is located
in the range of 0 to 65535, returning a result from 0 to 255. Th is is often used
in coniunction with the POKE statement.

RN D(X) (random number)

This function returns a random number between 0 and 1. This is useful in
games, to simulate dice rolls and other elements of chance, and is also used
in some statistical applications. The first random number should be gener
ated by the formula RND(O), to start things off differently every time. After
this , the number X should be a 1, or any posit ive number. (X represents the
seed, or what the RaNDom number is based on.) If X is zero, RND is re
seeded from the hardware clock every time RND is used. A negative value
for X seeds the random number generator using X and gives a random num
ber sequence. The use of the same negative number for X as a seed results
in the same sequence of random numbers. A positive value gives random
numbers based on the previous seed.

To simulate the rolling of a die, use the formula INT(RND{1)*6+ 1). First
the random number from 0 to 1 is mult iplied by 6, which expands the range
from 0 to 6 (actually, greater than zero and less than six).

Then 1 is added, making the range 1 to 7. The INT function truncates the
decimal places, leaving the result as a digit from 1 to 6.

To simulate 2 dice, add two of the numbers obtained by the above formula
together.

Example:

100 X = INT(RND(1)*6) + INT(RND(1)*6) + 2
100X=INT(RND(1)*1OOO)+1
100 X + INT(RND{1)*150) + 100

182

Simulates 2 dice
Number from 1-1000.
Number from 100-249.

SGN(X) (sign)

This function returns the sign, as in positive, negative, or zero, of X. The
result is + 1 if positive, 0 if zero, and - 1 if negative.

SIN(X) (sine)

This is the trigonometric sine function . The result is the sine of X, where x
is an angle in radians.

SQR(X) (square root)

This function returns the square root of X, where X is a positive number or
0. If X is negative, an ILLEGAL QUANTITY ERROR results .

TAN(X) (tangent)

This gives the tangent of X, where X is an angle in radians.

USR(X)

When this function is used, the program jumps to a machine language
program whose starting point is conta ined in memory locat ions 785 and 786.
The parameter X is passed to the machine language program in the floating
point accumulator. Another number is passed back to the BASIC program
through the calling variable. In other words, this allows you to exchange a
variable between machine code and BASIC. See the Commodore 64 Pro
grammer 's Reference Guide for more details on this, and on machine lan
guage programming.

VAL(X$)

This function converts the string X$ into a number, and is essentially the
inverse operation from STR$. The string is examined from the left-most char
acter to the right , for as many characters that are recognizable . If the Com
modore 64 finds illegal characters , only the portion of the string up to that
point is converted .

STRING FUNCTIONS

String functions differ from numeric functions in that they return charac
ters , graphics or numbers from a string (defined by quotation marks) instead
of a number.

CHR$(X)

This function returns a string character whose ASCII code is x.

183

LEFT$(X$,X)

This function returns a string containing the leftmost X characters of X$.

LEN(X$)

This function returns the numbP.r of characters (including spaces and
other symbols} in the string X$.

MID$(X$,S,X)

This function returns a sub-string containing X characters, starting from
the character specified by Sin X$. MID$ can also be used on the left side of
assignment statement as a variable as well as a function.

RIGHT$(X$,X)

This function returns Ifie number of right-most characters specified by X in
X$.

STR$(X)

This function returns a sub-string which is identical to the PR INTed version
of X$.

Example:
A$=STR$(X}

OTHER FUNCTIONS

FRE(X)

This function returns the number of available bytes in memory. X is a
dummy argument.

POS(X)

This function returns the number of the column (0-79) where the next
PRINT statement begins on the screen . X is a dummy argument.

184

SPC(X)

This function is used in the PRINT statement to skip X spaces. x can have
a value from 0-255.

TAB(X)

This function is used in the PRINT statement. The next item to tie printed is
in column number X. X can hGve a value from Oto 255.

185

• VARIABLES AND OPERATORS

VARIABLES

The Commodore 64 uses three types of variables in BASIC. These are:
floating point numeric, integer numeric, and string (alphanumeric) variables.

FLOATING POINT VARIABLES can be displayed up to nine digits. When a
number becomes larger than nine digits, as in 109 or 10-•, your computer
displays it in scientif ic notat ion form. For example, the number 12345678901
is displayed as 1.234356789E + 10. There is a limit to the size of float ing
point numbers that BASIC can handle, even in scientific notat ion . The largest
number is + 1. 70141183E + 38. Calculat ions wh ich result in a larger number
will display the BASIC error message ?OVERFLOW ERROR. The smallest
float ing-point number is + 2.93873588E - 39. Calculat ions which result in a
smaller value give you zero as an answer and NO error message.

INTEGER VARIABLES can be used when the number is from + 32767: to
- 32768, and with no fractional portion. An integer variable is a number like
5, 10, or - 100. Integers take up less space than float ing point variables,
particularly when used in an array.

STRING VAR IABLES are those used for character data, which may contain
numbers, letters and any other character that your Commodore 64 can
make. An example of a string var iable is A$= " COMMODORE 64".

VARIABLE NAMES

Variable names may consist of a single letter, a letter followed by a num
ber, or two letters. Variable names may be longer than 2 characters, but on ly
the first two are significant.

An integer variable is specif ied by using the percent (%) sign after the
variable name. String variables have the dollar sign($) after their names.

Examples:
Numeric Var iable Names: A, AS, BZ
Integer Variable Names: A %, A5 %, BZ %
String Var iable Names: A$, A5$, BZ$

186

ARRAYS

Arrays are lists of variables with the same name, using an extra number
(or numbers) to specify an element of the array. Arrays are defined using the
DIM statement, and may be floating point. integer, or string variables arrays.
The array variable name is fol lowed by a se t of parentheses () enclosing
the number of the variable in the list.

Examples: A(7) ,BZ %(11),A$(87)

Arrays may have more than one dimension . A two dimensional array may
be viewed as having rows and columns, with the first number identifying the
row and the second number in the parentheses identifying the column (as if
specifying a certain grid on a map).

Examples: A(7,2),BZ%(2,3,4),Z$(3,2)

RESERVED VARIABLE NAMES

There are three variable names which are reserved for use by the Commo
dore 64, and may not be used for another purpose. These are the variables
ST, TI , and TI$. You also can't use KEYWORDS such as TO and IF, or any
names that contain KEYWORDS, such as SRUN , ANEW, or XLOAD as varia
ble names.

ST is a status variable for input and output (except normal screen/
keyboard operations). The value of ST depends on the results of the last
input/output operation. A more detailed explana tion of ST is in the Commo
dore 64 Programmer's Reference Guide, but in general, if the value of ST 1s o
the opera tion was successful.

TI and TI$ are variables that relate to the rea l-time clock built into your
Commodore 64 . The system clock is updated every 1/60th of a second. It
~tar t s at 0 when your Commodore 64 is turned on, and is reset only by chang
ing the va lue of TI$. The variable TI gives you the current value of the clock in
1 /60ths of a second.

TI$ is a six-character string that reads the value of the real -time clock as a
24 hour clock. The first two characters of TI$ contain the hour, the next two
characters are the minutes, and the last two characters are the seconds.
This variable can be set to any value (so long as all characters are numbers).
and will be automatically updated as a 24 hour clock.

Example: TI$ = ·' 101530' ·sets the clock to 10: 15 and 30 seconds (AM)

187

The value of the clock is lost when your Commodore 64 is turned off. It
starts at zero when your computer is turned on , and is reset to zero when the
value of the clock exceeds 235959 (23 hours, 59 minutes and 59 seconds).

BASIC OPERATORS

The· ARITHMETIC operators include the following signs:

+ addition
- subtraction
• multiplication
I division
i exponentiation (raising to a power)

On a line containing more than one operator, there is a set order in which
operations always occur. If several operators are used together, the com
puter assigns priorities as follows : First , exponentiation , then multiplication
and division , and last, addition and subtraction. If two operations have the
same priority, then calculations are performed in order from left to right. If
you want these operations to occur in a different order, Commodore 64
BASIC allows you to give a calculation a higher priority by placing parenthe
ses around it. Operations enclosed in parentheses will be calculated before
any other operation . You have to make sure that your equations have the
same number of left parentheses as right parentheses, or you will get a
SYNTAX ERROR message when your program is run .

There are also operators for equalities and inequalities, called RELA
TIONAL operators. Arithmetic operators always take priority over relational
operators.

equal to
< less than
> greater than
< = or = < less than or equal to
> = or = > greater than or equal to
< > or > < not equal to

Finally, there are three LOGICAL operators, with lower priority than both
arithmetic and relational operators:

AND
OR
NOT

188

These are used most often to join multiple formulas in IF ... THEN state
ments. When they are used with arithmetic operators, they are evaluated

last.

Examples:
IFA=BANDC=DTHEN 100

IFA=BORC=DTHEN 100

A=5:B=4:PRINTA=B
A= 5:8 = 4:PRINT A> B
PRINT 123 and 15:PRINT 5 OR 7

Requires both A= B & C = D to be
true.
Allows either A= B or C = D to be
true.
Displays a value of 0
Displays a value of - 1
Displays 11 and 7

189

GLOSSARY

191

The following glossary contains definitions for some of the computer
terms used in this Guide. Most of the terminology in the glossary is universal.
However, there are certain terms that are unique to the Commodore 64 .
Consult the Commodore 64 Programmer's Reference Guide for more
detailed information on the Commodore 64 computer.

Alphanumeric-Letters, numbers and special symbols found on the key
board, excluding graphic characters.

Animation-The simulation of motion of an object on the screen through
gradual, progressive movements, using computer instructions.

Array-A data-storage structure in which a series of related constants or
variables are stored in consecutive memory locations. Each constant or vari
able contained in an array is referred to as an element. An element is
accessed using a subscript. See Subscript.

ASCII Code-Acronym for American Standard Code for Information Inter
change (ASCII). A standard computer code of numeric values representing
each keyboard character. See Character String Code.

Assignment Statement-A BASIC statement that sets a variable , constant
or array element to a specific numeric or string value.

Attack-The rate at which the volume of a musical note rises from zero to
peak volume.

Background Color-The color of the portion of the screen that does not
contain characters. The background color is dark blue when you turn on the
Commodore 64 .

BASIC-Acronym for Beginner's All-purpose Symbolic Instruction Code.
BASIC is the high-level language built into the Commodore 64 .

Binary-A base-2 number system. All numbers are represented as a
sequence of zeros and ones.

Bit-The abbreviation for binary digit. A bit is the smallest unit in a computer.
Each binary digit can have one of two values, zero or one. A bit is referred to
as enabled or "on" if it equals one. A bit is disabled or " off" if it equals zero.

193

Bit Map Mode-An advanced graphic mode in the Commodore 64 in which
you can control every dot on the screen.

Border Color-The color of the edges around the screen. The border co/or
is cyan (light blue) when you turn on the Commodore 64 .

Branch-To jump to a section of a program and execute it. GOTO and
GOSUB are examples of BASIC branch instructions.

Byte-The number of bits that make up the smallest unit of addressable
storage in a computer. Each memory location in the Commodore 64 contains
one byte of information. One byte is the unit of storage needed to represent
one character in memory. One byte is made up of eight bits. See Bit.

Character-Any symbol on the computer keyboard that is printed on the
screen . Characters include numbers, letters, punctuation and graphic
. symbols.

Character Memory-The area in Commodore 64 's memory which stores
the encoded character patterns that are displayed on the screen.

Character Set-A group of related characters. The Commodore 64 char
acter sets consist of: upper-case letters, lower-case letters and graphic
characters.

Character String Code-The numeric value assigned to represent a Com
modore 64 character in the computer 's memory.

Chip-A miniature electronic circuit that performs a computer operation
such as graphics, sound and input/output.

Color Memory-The area in the Commodore 64 's memory that controls the
color of each location in screen memory.

Command-A BASIC instruction used in direct mode to perform an action .
See Direct Mode.

Computer-An electronic, digital device that stores and processes in
formation .

194

C dTon-Expression(s) between the words IF and THEN, evaluated as
ei~:er\;ue or false in an /F ... THEN statement. The _conditional IF ... THEN
statement gives the computer the ability to make dec1s1ons.

Coordinate-A single point on a grid having vertical (Y) and horizontal (X)
values.

Counter-A variable used to keep track of the number of times an event has
occurred in a program.

Crunch-To minimize the amount of computer memory used to store a
program.

Cursor-The flashing square that marks the current location on the screen.

Data-Numbers, letters or symbols that are input into the computer to be
processed .

Datassette-A device used to store programs and data files sequentially on
tape .

Debug-To correct errors in a program.

Decay-The rate at which the volume of a musical note decreases from its
peak value to a mid-range volume called the sustain level. See Sustain.

Decrement-To decrease an index variable or counter by a specific value.

Delay Loop-An empty FOR ... NEXT loop that slows the execution of a
program.

Dimension-The property of an array that specifies the directio_n alon_g an
axis in which the array elements are stored. For example, a two-d1mens1onal
array has an X-axis for rows and a Y-axis for columns. See Array.

Direct Mode-The mode of operation that executes BASIC commands
immediately after the RETURN key is pressed. Also called Immediate Mode.
See Command.

Disable-To turn off a bit , byte or specific operation of the computer.

195

Disk Drive-A random access, mass-storage device that saves and loads
files to and from a floppy diskette.

Duration-The length of time a musical note is played.

Enable-To turn on a bit , byte or specific operation of the computer.

Envelope Generator-Portion of the Commodore 64 that produces specific
waveforms (sawtooth, triangle, pulse width and noise) for musical notes. See
Waveform.

Execute-To perform the specified instructions in a command or program
statement.

Expression-A combination of constants, variables or array elements acted
upon by logical , mathematical or relational operators that return a numeric
value.

File-A program or collection of data stored on diskette or cassette.

Firmware-Computer instructions stored in ROM , as in a game cartridge.

Frequency-The number of sound waves per second of a tone. The fre
quency corresponds to the pitch of the audible tone.

Function-A predefined operation that returns a single value.

Function Keys-The eight keys on the far right of the Commodore 64 key
board. Each key can be programmed to execute a series of instructions.

Graphics-Visual screen images representing computer data in memory
(1.e .. characters. symbols and pictures).

Graphic Characters-Non-alphanumeric characters on the computer 's
keyboard.

Grid-A two-dimensional matrix divided into rows and columns. Grids are
used to design sprites and programmable characters.

Hardware-Electronic components in a computer system such as key
board. disk drive and printer.

196

Home-The upper-left corner of the screen.

Increment-To increase an index variable or counter with a specified value.

Index-The variable counter within a FOR .. . NEXT loop.

Input-Data led into the computer to be processed. Data can be input
through the keyboard, disk drive, Datassette or modem.

Integer-A whole number containing no fractional part.

Interface-An attachment that connects a computer to a peripheral device.

Keyboard-Input component of a computer system.

Kilobyte (K)-1,024 bytes.

Loop-A program segment executed repetitively a specified number of
times.

Machine Language-The lowest level language the computer understands.
The computer converts all high-level languages such as BASIC into machine
language before executing any statements.

Matrix-A two-dimensional rectangle with row and column values.

Memory-Storage locations inside the computer. ROM and RAM are two
different types of memory.

Memory Location-A specific storage address in the computer. There are
65,536 memory locations (0-65535) in the Commodore 64.

Mode-A state of operation.

Modem-Abbreviation for modulator-demodulator. A modem is a computer
attachment that interfaces a computer to a telephone. This allows you to
communicate with other computers using the same lines as your telephone.

Monitor-Video screen.

Multi-Color Character Mode-A graphic mode that allows you to display
four different colors within an 8 X 8 character grid.

197

Multi-Color Bit Map Mode-A graphic mode that allows you to display one
of four colors for each pixel within an 8 X 8 character grid. See Pixel.

Null String-An empty character(""). A character that is not yet assigned a
character string code. Produces an illegal quant ity error if used 1n a GET
statell!ent.

Octave-One full series of eight notes on the musical scale.

Operating System-A built-in program that controls everything your com
puter does.

Operator-A symbol that tells the computer to perform a mathematical ,
logical or relational operation on the specified variables, constants or array
elements in the expression. The mathematical operators are + , - . •. / and
i . The relational operators are < , = , > . < = . > = and < > . The logical
operators are AND , OR and NOT.

Order of Operations-Sequence in which computations are performed in a
mathematical expression. Also called Hierarchy of Operations.

Peripheral-Any accessory device attached to the computer such as a disk
drive, printer, modem or joystick.

Pitch-The highness or lowness of a tone that is determined by the fre
quency of the sound wave. See Frequency.

Pixel-Computer term for picture element. Each dot on the screen that
makes up an image is called a pixel. Each character on the screen is dis
played within an 8 X 8 grid of pixels. The entire screen 1s composed of a 320
X 200 pixel grid. In bit map mode, each pixel corresponds to one bit in the
computer's memory.

Pointer-A register used to indicate the address of a location in memory.

Printer-Peripheral device that outputs the contents of the computer's
memory onto a sheet of paper. This paper is referred to as a hard copy.

Program-A series of instructions that direct the computer to perform a
specific task. Programs can be stored on diskette or cassette , reside in the
computer 's memory, or be listed on a printer.

198

Programmable-Capable of being processed with computer instructions.

Program Line-A statement or series of statements preceded by a line
number in a program. The maximum length of a program line on the Commo
dore 64 is 80 characters.

Random Access Memory (RAM)-The programmable area of the comput
er's memory that can be read from and written to (changed). All RAM loca
tions are equal ly accessible at any time in any order. The contents of RAM
are erased when the computer is turned off.

Random Number-A nine-digit decimal number from 0.000000001 to
0.999999999 generated by the RND function.

Read Only Memory (ROM)-The permanent portion of the computer's
memory. The contents of ROM locations can be read , but not changed. The
ROM in the Commodore 64 contains the BASIC language interpreter, charac
ter image patterns and portions of the operating system.

Register-Any memory location in RAM . Each register stores one byte. A
register can store any value between 0 and 255 in binary form.

Release-The rate at which the volume of a musical note decreases from
the sustain level to zero.

Remark-Comments used to document a program. Remarks are not exe
cuted by the computer, but are displayed in the program listing .

Resolution-The density of pixels on the screen that determine the fineness
of detail of a displayed image.

Screen-Video display unit which can be either a television or video
monitor.

Screen Code-The number assigned to represent a character in screen
memory. When you type a key on the keyboard , the screen code for that
character is entered into screen memory automatically. You can also display
a character by storing its screen code directly into screen memory with the
POKE command.

199

Screen Memory-The area of the Commodore 64 's memory that contains
the information displayed on the video screen. The Commodore 64 screen
memory ranges from memory location 1024 through 2023.

Software-Computer programs stored on diskette or cassette that can be
loaded. into random access memory.

Sound Interface Device (SID)- The MOS 6581 sound synthesizer chip
responsible for all of the audio features of the Commodore 64. See the Com
modore 64 Programmer's Reference Guide for ch ip specifications.

Sprite-A programmable, movable, high-resolution graphic image. Also
called a movable object block (MOB).

Standard Character Mode-The mode the Commodore 64 operates in
when you turn it on and when you write programs.

Statement-A BASIC instruction conldined in a program line.

String-An alphanumeric character or series of characters surrounded by
quotation marks.

Subroutine- An independent program segment separate from the main
program that performs a specific task. Subroutines are called from the
main program with the GOSUB statement and must end with a RETURN
statement.

Subscript-A variable or constant that refers to a specific element in an
array by its position with in the array.

Sustain- The midranged volume of a musical note.

Synta x-The grammatical rules of a programming language.

Tone-An audible sound of specific pitch and waveform .

Variable-A unit of storage representing a changing alphanumeric value.
Variable names can be any length, but only the first two characters are
stored by the Commodore 64. The first character must be a letter.

200

Video Interface Controller (VIC)-The MOS 6566 chip responsible for all
the graphics features of the Commodore 64 . See the Commodore 64 Pro
grammer's Reference Guide for chip specifications.

Voice-A sound producing component inside the SID chip. There are three
voices within the SID chip so the Commodore 64 can produce three different
sounds simultaneously. Each voice consists of a tone oscillator/waveform
generator, an envelope generator anu an amplitude modulator.

Waveform-A graphic representation of the shape of a sound wave. The
waveform determines some of the physical characteristics of the sound.

201

• INDEX

A

Abbreviations-BASIC, 152-154
ABSolute function , 41 , 181
Accessories , 11
Addition, 36
ADSR, 112
Animation , 83, 97
Arrays , 63-64, 187
ASC function , 70, 181
ASCII character codes, 141-143
Asterisk key, 31 , 37
At symbol, 49
Attack, 149, 193
ATN function , 181
Automodem, 14

B

BASIC
abbreviations, 152-154
commands, 39, 47-50, 56,

162-167
conversions, 155
language, 35, 193
math functions , 40-41
numeric functions , 40, 72,

181-182
operators, 37, 45
control functions , 184-185
statements, 45, 53-56, 61-69,

168-180
string functions, 70-71 , 183- 184
variables , 42-44 , 186-188

203

Binary, 193
Bit , 193
Bit Map mode, 103, 194
Books, 158- 159
Byte 77, 194

c
Cartridge slot , 124
Cartridges, 27
Cassette tape recorder, 11
Channel selector, 125
Character Display mode, 103
Checklist , 134
CHR$codes, 141-143
CHR$ function , 70, 76, 183
CLR statement, 168
CLR/HOME key, 23
Clock, 187
CLOSE statement, 50, 168
CMD, 168
Colon, 65
Col or

code display, 76
control , 75
CHR$ codes, 76
keys , 76
memory map, 82, 137
screen and border registers , 77
screen codes, 79

Comma, 36
Command, BASIC, 194
Commodore Information network,

122

Commodore key, 23, 75
Commodore Library, 135
Compuserve, 122
Concatenat ion , 155
Connections, 123-128
constants , 42
CONT command, 56, 162
ConTRoL key, 22, 75
COPY command, 162
Copying music, 109
Copying programs, 35
COSine function , 181
CuRSoR keys, 21
Cursor, 8
Customer Support , 122

D

Datassette, 11
DATA statement, 61 , 169
Debug , 195
Decay, 149, 195
DEFine statement, 169
Delay loop, 80
DELete key, 21 , 22
Dice, 72
DIMension statement, 63, 66, 169
Direct mode, 39, 195
Disk commands, 49-50
Disk Directory, 49
Disk Drive, 11 , 13, 30
Disk Software, 30
Disks, 27, 47
Division , 37
Dollar sign, 49
Duration , 108, 196

E

Editing programs, 46
END statement, 63, 170
Error messages, 117-120
EXPonent function, 181
Extended background color, 104

204

F

File, 176, 196
Floppy, 30
FN fun ction , 181
FOR . .. NEXT statement, 53, 170
Formatting disks, 47
FRE funct ion , 184
Frequency, 149, 196
Function keys, 24, 70, 196

G

Game controls and ports, 124
GET statement, 55, 171
GET# statement, 172
GOSUB statement, 67- 68, 172
GOTO statement , 42, 172
Graphic keys , 24
Graphic modes, 102

H

High resolution mode, 103
HOME key, 23
Hyperbolic functions , 151

IF . . . THEN statement, 45, 173
Initialize command, 50
INPUT statement, 54, 173
INPUT#, 174
INSerT key, 21
INTeger function , 40, 72, 181
Integer variable, 186

J

Joystick ports, 124
Joyst icks, 13

K

Keyboard , 19-24

L

LEFT$ function , 184
LENgth function , 184
LET statement , 155, 17 4
LIST command, 49, 162
LOAD command, 48- 49, 163
LOADing cassette software, 28-29
LOADing cartridge software, 28
LOADing disk software, 30-31
LOGarithm funct ion , 182
Loops, 64, 171

M

Machine language, 179, 183, 197
Magazine subscript ion , 122
Memory, 69, 77 , 197
Memory maps, 80-82, 136-137
MID$ function , 184
Modem, 13, 197
Multicolors, 103, 197
Multiplication , 37
Music programs, 109-111
Musical notes, 108, 147
Musical scale, 107

N

NEW command, 165
NEXT statement, 53, 174
Noise, 156
Null string , 198
Numeric variables, 71

0

ON statement , 68, 175
OPEN statement , 50, 176
Operating System, 198
Operators, 198

arithmetic , 37, 188
logical , 173, 189
order of, 37, 188-189,

198
relational , 45, 173, 188

205

p

Paddles, 13
Parentheses, 38, 50
PAUSE, 156
PEEK function , 69, 182
Peripherals, 198
Pitch, 198
Pixel , 87, 198
POKE statement, 69, 177
Ports, 124-127
POS function , 185
PRINT statement, 36-39, 177
PRINT AT, 156
Printers, 12, 13
PRINT#, 178
Program, 198

line numbering , 42
mode, 41
music, 110

Programmable keys, 24
Progammer 's Reference Guide 32

104, 112, 147, 180 ' '
Pulse, 149

Q

Question mark, 37
Quotation marks, 38
Quote mode, 39

R

RAM, 14, 69, 199
RaN Dom function , 72, 182
Random numbers, 72, 156, 199
READ statement, 61. 178
Registers, 77, 199
Release, 149, 199
REMark statement, 178, 199
Replace a program, 49
Reserved variables, 187
Restore key, 23, 102
RESTORE statement, 62, 179
Return key, 20

RETURN statement , 67 , 179
RIGHT$ function , 184
ROM , 14, 69
RUN command, 29, 31 , 165
RUN/STOP key, 22

s
SAVE command, 47-48, 165
Saving programs (tape), 47
Saving programs (disk), 48
SCRATCH command , 50, 166
Screen codes, 138-140, 199
Screen memory map, 81 , 136
Semicolon , 36
serial port , 126
SGN function , 183
Shift key, 20
Shift lock key, 21
SID chip, 107, 200
SINe function , 183
Slash key, 37
Software

business, 130
educational , 130-132
financial, 129
games, 132-133
music, 134
productivity, 128-129
programming aids, 134
using, 27-32

Song , 109
Sound effects, 112-114
Sound registers , 108, 150
SPC function 40, 185
Sprite control , 94-99
Sprite programming , 100
Sprite Register Map, 144-146
Sprite viewing area, 99
Sprites, 87-94, 200
SQuaRe function, 40, 183
STEP, 84 , 170

206

STOP statement, 56, 179
STOP key, 22, 45
Storing Programs, 47
String variables , 44, 186
Strings, 44 , 71 , 200
STR$ function , 71 , 184
Subroutine, 67, 200
Subscripts, 200
Subtraction , 36
Sustain , 149, 200
Syntax, 163, 200
Syntax error, 119
SYS statement, 179

T

TAB funct ion , 39, 185
TAN function , 183
Telecommunications, 122
THEN , 45
TI variable , 187
TI$ variable , 187
Trackball , 13
Troubleshoot ing chart , 9, 120-121

u

Up arrow key, 37
Upper case/graphic mode, 20
Upper/Lower Case mode, 20
User groups, 122
User port , 127
USR function , 183

v
VALue function , 71 , 183
Variables

array, 65
dimensions, 65
floating point , 186
integer, 186
numeric, 43
string($) , 44, 186

VERIFY command, 49, 166
VIC ch ip, 87, 201
Voice , 201

w
WAIT command, 180
Waveform , 149, 201

207

NEW!
RECREATIONAL
BLOCKBUSTERS

FOR YOUR
COMMODORE 64!

Don't Miss
Out On The Fun!

VIDUZZLES-Have fun
building puzzles on your
computer screen.
Construct an owl , clown
or dog puzzle using 25 or
50 pieces. Compete
against the clock or a
friend . Ideal for chi ldren.
You don't even have to
worry about losing the
pieces! (Cartridge)

RALLY SPEEDWAY
Gentlemen, start your
engines! The only
raceway game with
unique two player aclton.
Hear the roar of your
engines as you thunder
around the challenging
track. Design custom
courses to enjoy endless
racing challenge as your
skill increases. (Diskette)

SATAN'S HOLL:>W
Battle Satan's hordes as
you build a bridge across
the River of Fire to
Satan's Hollow. But you
must be brave to
complete the rightous
challenge as you now
cross the bridge and face
Satan himself. Exciting
graphics and action make
this BALLY/MIDWAY
conversion a winner!
(Diskette) (::commodore

Just Released
Educational
Programs
That Get
An ''N'
SKYTRAVEL-(Ages 10-Adult) The most advanced
and complete astronomy program on the market
tod&y. Shows the location of over 1 ,200 stars, 88
constellations, the sun , the earth 's moon ,_ 8 planets .
Halley's comet, and many deep spa_ce obiects .
Detailed information on each 1s available through
special Inform and Find functions. Create your own
star and planetary charts . Even travel 10,000_ years
into the past or future to gaze at the stars! (Diskette)

JUST IMJl.GINE
(Ages 4-14) One of
the most unique
educational programs
today! Children can
create their own
animated stories and
watch as they come to
life . Different
background scenes
combine with
animated objects and
written stores to
construct a film type
sequence. Develops
spelling , reading and
creative writing skills .
(Diskette)

NUMBER BUILDER
(Ages 8-13) You must
reach a designated
number, but how?
Should you add,
subtract, multiply or
divide? By using the
correct sequence of
mathematical opera
tions , Number Builder
allows you to arrive at
the number and in
addition strengthen
your math skills .
Includes arcade type
format , several
difficulty levels , and
self test. (Diskette)

--u ---~

SHY TRAVEL

FISH-METIC-(Ages
7-13) A whale of a
mathematical learning
game that teaches the
concepts of greater
than , less than , and
equal to in a game
type format. Apply
these to positive and
negative whole
numbers, fractions,
and decimals.
Includes 15
preliminary difficulty
levels and an
additional super 16th
level for endless
challenge . (Diskette)

Two New
Arrivals
To Our

Productivity Line
Of Software

B/GRAPH-A professional
graphics-charting and statistical
analysis program that allows you
to create numerous types of
graphs and charts , as well as
providing statistical and analytical
tools for evaluating data. Not only
valuable , but easy to learn too .
(Diskette)

--·-n ---··

SILENT BUTLER-You don 't have
to be rich to have a butler. With
this new home accounting
program you can keep track of bill
paying , household transactions,
and up to 6 accounts-3 checking
and 3 saving . Pay bills using your
personal checks and a printer.
Includes a tax summary and
appointment reminder. (Diskette)

c~ commodore
COMPUTERS

COMMODORE 64 BOOKS
MATHEMATICS on the
Commodore 64---Learn the math
techniques that professional
programmers use. Covers a wide
variety of mathematical techniques
which you can incorporate in all
types of BASIC . Contains
numerous subroutines and
examples with illustrations.

ADVANCED PROGRAMMING
TECHNIQUES on the Commodore
64---Packed with advice and tips for
intermediate and advanced BASIC
programmers. Learn the shortcuts you
need to move up and become a more
" professional " programmer.

PROGRAMMING FOR EDUCATION on the
Commodore 64---Learn how to write creative
learning programs in BASIC for pre-schoolers
and elementary age children . Excellent for parents
as well as teachers.

COMMODORE 64 ADVENTURES-Learn to create
your own adventure programs! See how each
module of a real adventure is built. Contains many
diagrams, maps, charts and playing tips. A great
way to make your dreams come alive on the screen.

GRAPHIC ART on the Commodore
64-Contains information on high
resolution graphics techniques and

subroutines. Develop your own turtle
graphics system. All programs are

in BASIC .

ARTIFICIAL INTELLIGENCE on the
Commodore 64---0ne of the hottest new
topics in personal computing! Learn the

concepts and fundamentals of making
your computer " think" for itself. A topic

that is both entertaining and intriguing .
Artificial Intelligence is almost certainly

the wave of the future .

BUSINESS APPLICATIONS on the
Commodore 64---Covers the techniques
of writing business programs in BASIC.
Provides a rich library of solid routines

that can be combined to build up
programs for accounts, stock control ,
inventories, invoices and much , much

more.
COMMODORE 1541 DISK
COMPANION-Everything you always wanted
to know about disks and the 1541 . Includes a
full range of advanced disk drive techniques.
THE text if you are looking for a comprehensive
bible on the Commodore 1541 disk drive.

NOTES

NOTES NOTES

NOTES NOTES

NOTES Get the RlOSt A SPECIAL OFFER
FOR NEW OWNERS!

out of your
Conunodore co01puter .
. . . With Commodore magazines.

And save 20% off the regular newsstand price.
Subscribe to Commodore Power/Play and Commodore Microcomputers

magazines and you're on your way to realizing the full power and potential of your
new Commodore computer.

Each issue brings you new ways to use and enjoy your computer. The first word
on new software and hardware. Programming techniques for both beginners and
advanced users. In-depth product reviews of the best software and hardware. The
latest games or education and applications programs. Visits with other users who
have discovered new and interesting ways to use their Commodore computers.

You 'll find practical articles on linking up with user groups in your area.
Telecommunications and using on-line services such as CompuServe. Computer
music and art, and much, much more.

ln addition, every issue contains programs you can type in yourself and use right
away. There's entertainment and games or practical household and business
applications programs in each issue!

Together, they're the perfect combination of pure fun and productivity!
And if you take advantage of this pecial offer--0nly for new computer owners-

you can save as much as 20% off the regular newsstand price!

Subscribe now and get the most out of your Commodore
computer. And save as much as 20%!

·------------DETACH AND MAIL TODAv---- - ---------
Please sign me up for
D year(s) of Power/Play and Microcomputers (12 issues total per year) at

S24/year (a savings of 20% off the regular newsstand price).
D year(s) of Power/Play only (entertainment and games----6 issues per

year) at SI 5/year.
D year(s) of Microcomputers only (more in-depth information about

practical ways to use your computer--6 issues per year) at S 15/year.
All PRICES lN US CURRENCY Can:.dian add S'5 00 to c:ich subscription m cover postag~. Overseas: S25.00J6 issu~ (Includes posragc:).

Name Phone _______ _
Address ______________________ _

City _________ State ____ Zip _______ _

Signature ______________________ _

METHOD OF PAYMENT

0 Enclosed is my check or money order for S (Make check or money
order payable to COMMODORE PUBUCATIONS)

0 Bill me IB 64

0 Charge my VlSA or MasterCard (circle one) Card number

~..__.__.___.. __ .__...___.__._....1.....JL......J.......L...J..-L....J-L......JI Expiration Dat.~----
or call 800-345-8112 to order (in Penna. 800-662-2444)

11111 I
BUSINESS REPLY CARD

FIRST CLASS PERM IT NO. 25 1 HOLMES, PA

POS T AG(WIL L BE PAID BY ADORE SSH

Commodore Publications
Magazine Subscription Department
Box 651
Holmes, PA 19043

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

