

!.•

. '•

·'"'
'

.·

·~ .. :

.. .

•• 1. • ~

. ·:-:

...

i,.;

..... · . ·'.•

.. .

I
I
I

.. ~· .· .. •.

..

,.:

I
. '

~
I

.. I
I .,

I
I

..

I
I
I

I
I
I
I

~
I
I

l

The Alternate Source
So-ftWoare Registration Form

FolKs, we hope you never hav~ a problem with our software. But, even small programs can sometimes be used in
ways 'that authors never dream of, and most of our programs are not small. Just in case, please tell us that
you're using our program. If we find a bug, we'll let you Know what we found, and the proposed fix. If a fix
can be applied with the PATCH command provided with most disK operating systems, we will provide the patch
information and explicit •how to" instructions at no charge. At other times, we may require you to either
purchase a new disKette and/or manual or to send your master disK and a postage paid, self-addressed mailer a.nd
we will provide the fix at no cost. Prices on upgrades range from $7 .SO to S 15.

To insure yourself of having the latest available update, please fill out your name and address below. IF this
program has a registration number, it will be hand written on the actual disl<ette label, otherwise leave this
portion blanK. Transfer that number to both places provided below, clip this page on the hyphen-line, save the
top half for yourself and return the bottom half to our address below. If you liKe, send along an extra sheet
describing your system and even a little about yourself and what you're doing with your computer. We liKe
meeting our customers, and sometimes the phone lines become clogged. If you have a problem using our product,
tell us about that, too. We're still worKing on the Perfect Program.

ThanK you for trying our products!

RespecHully,

Charley Butler
T .A.S Customer Service

For your records:

Program name: --

Registr-ation number: ---------------------

--- <Clip Mel---
Please register me as a user for this program:

Program Name: --

My registration number is:

Name : --
Address: ---
Address: ---
Address: --.. . .
Hail to: The Alternate Source, Program Reg1s"trations, 704 North Pennsylvania Avenue, Lansing, MI 48906

North America, please include a $1 registration handling fee. Foreign customers, please include $3.
<Stamps or International Reply Coupons, OK>

I
I
I

~
I

-
I
I
I

-
-
I

~
I

~
I

I
I
I
I
I
I

I

TABLE OF CONTENTS

PREFACE
. Background • • • • . • •

Submitting suggestions
INTRODUCTION

ADV program
ADVEDT program
ADVTT program
Overview of chapters

CHAPTER 1 - OVERVIEW OF THE ADVENTURE SYSTEM

.

ADV program
ADVEDT program • • • • • . • • • • • •
Adventure di sp 1 ay • . • • • • • •
Adventures included ..••••
Writing adventures .••••.•••.••••

CHAPTER 2 - THE ADVENTURE LANGUAGE
Data base sections • • • • •
Referencing data base components
Header . • . •
Action entries •••.••.••••

Player input actions

.

Automatic actions • • • • • • • . . • ••
Action entry conditions •••.
Condition parameters ••••.•.••
Action entry commands
Parameters .
Writing action entries •••••••••••
Bit flags • • • • • • • • • • •••
Initialization action entries ••••••
Counters
Alternate room registers • • • • • • ••••••••••
Setting alternate room registers ••••••••••
Vocabulary entries • • • . • • • • • • • • •••
Synonyms • • • • • • • • • . • • • • •
Reserved verbs • • • • • • • • • • • • • • •
Reserved nouns • • • • • • • • • • • • • • • •
Rooms • • • • • • • • • • • • • • • • •
Messages •
Objects •
Object names • • • • •
Treasures • • • • • • • • • • •
Artificial light source •••••••••••••••••
Trailer •••••••

CHAPTER 3 - ADVENTURE DRIVER INSTRUCTIONS
Action entry rules
Vocabulary rules ••••••••
Room rules
Object rules

.

P-1
P-1

I-1
1-1
1-1
1-1

1-1
1-1
1-1
1-2
1-3

2-1
2-1
2-2
2-3
2-4
2-5
2-5
2-7
2-8
2-13
2-15
2-17
2-17
2-18
2-22
2-23
2-24
2-24
2-25
2-26
2-27
2-28
2-29
2-29
2-29
2-31
2-32

3-1
3-1
3-2
3-2

Adventure driver rules

CHAPTER 4 - ADVEDT INSTRUCTIONS
Starting the program up
List of commands
READ command • • • • • • • • • .

File names . • . . • . . • • . • • • . • • • • •
WRITE command . • • • • • • •
LIST command • . . • . • . • • • • • • • . • ••.
PRINT command • • • • . . • • • • • • • • • • •
MODIFY command . • • • • • • . . •••
Editing text input • • . . • • . • • • • • . • ••••••

Entering the editor . • • • • ••••.••••
Editing commands ••••••••••••••••••••
Using the text editor •••••••••.

INSERT command • . • • • • . • • . • •
XREF command • • • • • • • • • • • • • • • • . • • • • •

XREF search conditions •••••
XREF search commands • • • •

CLEAR command . • • • • • . • • • •
END command • • • • • • • • • • • • • • • •
Adventure driver routine •••••
Entering and exiting the driver ••••
ADVTT ut i1 i ty • • • . • . • • • .
ADVEDT limitations
Order of adventure entry

CHAPTER 5 - SAMPLE ADVENTURE
Actions
Vocabulary
Rooms • • • , • • • • • •
Messages . . . • •
Objects . • .
Action explanation •
Vocabulary explanation ..•••
Room explanation .
Message explanation
Object explanation

CHAPTER 6 - GETTING STARTED
Brainstorming an idea •.•••

.

Writing the adventure situations •••••
Writing (coding) the adventure ••••
Moving to and from rooms
User friendly actions •••.•
Initialization action entry
"Old West" data base listing ..••.
Header definition . . • . • • • . ••.
Entering the adventure into ADVEDT
Debugging the "Old West" adventure •....

. . . .

CHAPTER 7 - SOLVING AN ADVENTURE
Solving "Mission" type adventures
Solving "Treasure" type adventures

3-3

4-1
4-1
4-2
4-2
4-3
4-4
4-6
4-7
4-9
4-10
4-10
4-12
4-15
4-17
4-18
4-18
4-19
4-19
4-20
4-20
4-20
4-21
4-21

5-1
5-3
5-3
5-4
5-4
5-5
5-12
5-12
5-12
5-13

6-1
6-2
6-3
6-14
6-15
6-15
6-16
6-20
6-20
6-28

7-1
7-1

I
I
I

I
I
I
I
I
I
I
I
1
I
l
l
l

l
l
I

APPENDIX A - ADVENTURE COMMAND SUMMARY
Action entry conditions . . •••••••
Act ion entry commands • • • • • • •
Reserved parameters • • . • • • • •

APPENDIX B - SUBMITTING YOUR ADVENTURES FOR MARKETING

A-1
A-1
A-2

I
I
I

I

I
I
I
I

I

I

1
l

l

l
l

l
1

PREFACE

THE ADVENTURE SYSTEM contains programs for creating, editing and playing
adventure data bases. This package requires a 48K disk or tape system.

THE ADVENTURE SYSTEM (TAS) is a tool to make programming easier. There are many
concepts that have been designed into this tool that make string manipulation
easy. "String manipulation" is what makes your TRS-80 appear to hang up for
minutes at a time if you try to do too much.

With TAS, you are required to learn a new, unique "adventure language".
Learning a new language requires a certain degree of stick-to-it-ive-ness
(••• not sure what language that is!). You must experiment to get comfortable
with the syntax of the language. You must start thinking in => terms <=
necessary to convert your ideas into adventures. Those => terms <= are the
symbols of this language. As you learn more of these symbols, you will get
better with the language. Remember how hard BASIC or assembly language seemed
at first? (for those of you who do not know those languages -- knowledge of
BASIC or assembly language is NOT required for using The Adventure System.)
After a few evenings with a language, programming can be fairly easy and
entertaining. End of Lesson 1.

The saying "if all else fails, read the instructions" should read "all will fail
without reading the instructions" when using this software package. The
"adventure language" you are about to learn has over 60 commands and conditions,
and many subtle rules. Perhaps not as many as BASIC, but much more powerful
than BASIC when used to write adventures. Or lessons. Or simulations. Take
the language in little chunks and chew slowly. Later readings will make finer
details easier to pick up.

The Adventure System has been "growing" for about three years. The manual is
intended to instruct the user on everything he needs to know to write and edit
adventures. You supply only the ideas.

If you have any suggestions for improvements to TAS, please send them to:

Bruce G. Hansen
c/o The Alternate Source
704 North Pennsylvania Avenue
Lansing, MI 48906

The programs in this package are copyrighted. Any adventure data bases you
write are your property. You may market them on your own if you so desire.
However, data bases require an adventure driver to play them, such as ADV/CMD on
your master diskette (the separate driver is not present in the tape version).

ADV/CMD is not the only driver on the market these days. However, if you desire
to include ADV/CMD with your adventure data base, you should contact The
Alternate Source for more information. Royalties for using ADV / CMD are a low,
one-time only fee. You may also want to refer to Appendix B of this manual.

I
I
I

I
I
I
I
I
I
I
I
I
I
I

I

I

I

I
I

I

I

I

INTRODUCTION

The Adventure System DISK version contains the following programs: ADV, ADVTT
and ADVEDT. All three of these programs are written in Z80 machine language.

The Adventure System TAPE version contains the programs: ADVTT and ADVEDT.
Tape users must access these two programs using the Level II SYSTEM command.

In addition, both systems include three "data bases." These can be loaded into
the adventure editor (ADVEDT) and played with the adventure driver (ADV).
Adventures X and Y are full length adventures. We will not help you solve them.
You have all the tools necessary for doing so with this package. Adventure Z is
a "baby" adventure, written just to help you get started.

ADVEDT is the editing program for adventures. The editor is used to enter and
modify adventures.

ADV is an adventure driver program which interprets the commands you give to the
editor. ADV and ADVEDT are used to play your adventures on a disk system.
ADVEDT can also be used to play your adventures on a tape system.

TAPE USERS NOTE! The ADVTT program will read in a data base saved to tape and
dump out a tape version of the adventure. This tape version is a combination of
the adventure driver and the data base. This program will allow anyone with a
tape-based Level II TRS-80 to play your adventure. Normally, data bases saved
with ADVEDT cannot be run using the Level II SYSTEM command. You must save them
with the ADVTT program in order to do so.

This manual is divided into chapters, each containing a different section of
ADVENTURE or using the TAS package. A summary of the chapters and appendices is
given below:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Overview of TAS and adventures in general. This chapter
describes what the program ADVEDT does.

Description of the ADVENTURE data base structure. This chapter
will describe in detail what the different conditions and
commands of ADVENTURE are. Understanding this chapter is
essential before trying to write your own adventures.

ADVENTURE program instructions. This chapter describes how
adventures must be entered so they will work properly with the
adventure driver program (ADV).

Operating Instructions. This chapter contains the instructions
for using ADVEDT and ADVTT. A suggested procedure is also given
to assist you in entering an adventure.

Sample ADVENTURE. This chapter will describe a short adventure
written to show how to use most of the commands and conditions.
This data base is adventure "Z" on your master diskette or tape.

1
1
1
1
1
1

I
I
I
I

I.

I
I
I
I
I
I
I

The Adventure System Introduction - 2

Chapter 6

Chapter 7

Appendix A

Appendix B

Getting started. This chapter goes through all of the steps
necessary to write an adventure: Coming up with an idea,
writing the adventure, typing it into ADVEDT and debugging the
adventure.

ADVENTURE solving techniques. This chapter will describe how to
solve any adventure written with The Adventure system.

contains an abbreviated ADVEDT command summary. This will be
highly useful when writing adventures once you are familiar with
the commands and conditions.

tells how to submit your adventures to THE ALTERNATE SOURCE for
marketing purposes.

I
I
I

:
1
I
I
I

I

II

Chapter 1

OVERVIEW OF THE ADVENTURE SYSTEM

The Adventure System is a set of programs which enable you to create your own
adventures. "The Adventure System" will be abbreviated frequently in this
manual as, "TAS".

TAS uses a unique format for saving your adventures to tape or disk. This
format allows The Adventure System "driver" program to run any adventure data
base written with The Adventure System editor.

The "driver" program is analogous to the Microsoft BASIC interpreter in every
TRS-80 computer. The "data base", or the actual adventure, is analogous to a
BASIC program saved on disk or tape. By itself, a BASIC program saved on disk
or tape can not be executed. The BllSIC interpreter is required to "understand"
the instructions in the BASIC program and execute them. The same type of
procedure is used with TAS. Adventure data bases saved to tape or disk are not
stand-alone programs, they require the adventure "driver" or interpreter.

The "driver" program of The Adventure System is called "ADV". This is the
program which is run to execute a set of adventure instructions or adventure
data base.

The program which allows you to edit and create your own adventure instructions
(an adventure data base) is called "ADVEDT" (ADVenture EDiTor). To aid in
debugging your adventures, "ADVEDT" has the adventure driver, ADV, built into
it. This way you can start entering adventure instructions and easily jump to
the driver see if the results of your efforts were what was expected.

Also included with TAS is the utility program "ADVTT". This program will read
in an adventure data base saved to tape and write out a SYSTEM tape suitable
for playing, complete with the data base "driver". The tapes written out by
"ADVTT" are a combination of the driver and adventure data base. ADVTT does
not save out the editor. If you want to give a copy of your adventure to a
friend, this is how we request you do it, by saving the adventure with ADVTT.

For those unfamiliar with the playing style of TAS adventures, here is a brief
overview. The player, or adventurer, is placed in a scenario devised by the
author of the adventure. The player is given a description of the current
room, a list of objects, if any, in the room and any obvious exits. Obvious
exits are directions in which the player may move to further explore or exit
that particular room. Obvious exits are generally doors, stairways, and the
like. Sometimes an exit must be "discovered."

Two-word commands are used to move about, pick up and examine objects and
generally accomplish what you want to do. These two word commands are normally
a verb and a noun. For example, suppose an ax is in the room with the player.
To pick up the ax, the player would type in "GET AX".

The ~d venture System Page I - 2

.\dvent1ires h;ive A fairly limited vocahulary when compared to a normal human (at
most 10n words). One of the major challenges of adventure is to figure how to
c11mmunicatP wh;it is to be done. Gener;illy you, are communicating with your
h1Jl lt- i n computer "robot" and rrovirling instruction.

When an Adventure is started, a typical scrPen di5play could be as follows:

I'm in a dark cave . Visihle items:

Coal. Pick ax . Rock pile.

Obvio11s exits are : , ORTH EAST DOI./ ·

/ --------------------------------------- ------------------->

Wel co me to the demo adven ture by Bruce G. Hansen
Dedicated to all Advent•1rc System user<>!!!

Tell me what to do -->

E·,eryth ing lic;tf:!d above the dashed line is the "room display". "I'm in a dark
crivE:' ·· desc ribes the room you' re in . "Coal", "Pick ;ix" and "Rock pile" are
visihlP objects in the r oom (the r e may be some others in the room that are not
immP<liri tely visible - part of the adventure could be finding these "hidden"
objects) . "NORTH", "EAST" and "DOWN" are the obvious directions the player can
mnve i 11.

The ;i<lvent11re driver provides a shorthand entry for moving in the standard
dir«cti0ns f:-.;QRTH , EAST, SOUTH, WEST, UP and DOWN). Typing in just the first
lettP r of the direction is all that is required to move in that direction. For
»x:amplP , yping "E" and <ENTER> would move the player to the East.

Below he dashed line is the area where the computer communicates to you through
mPssag~~ . The "Welcome to the demo" line is a mes s age the driver program was
i:istructed t o send to you. "Tell me what to do --> " is the player's cue to
t;:pe i:i a co mmand. For example, the player could type in "GET COAL". If the
Ai ventu r e al lows the coa 1 to be pi eked up, the player may GET the coal. It wil 1
11n lnng~r be shown as a visible object when the player is carrying it.

To see what he is carrying, the player must take an inventory . Usually, an
inventory can be taken by typing in "GET INVENTORY" or just "INVENTORY" or
simply type "I" (no quotes) and <ENTER> . The exact format is controlled by the
adventure data base. If the verb and noun "GET INVENTORY" are not in the
ridvent11 re data base, then that input will not work. If the adventure data base
recognizes the player response "INVENTORY" as a means for taking an inventory,
then c;imply typing "I" and <ENTER> will display a list of items being carried.
This is a special c~se, handled by the driver.

There are three adventures on the master disk or tape. Adventures "X" and "y"
are on your master diskette as ADVENT/ DX and ADVENT/DY (or your cassette as "X"
and "Y "), Adventure "X" is a "Miner's adventure" and adventure "y" is a
"Burglar's adventure". These are full sized adventures and should provide many
hours of challenge and frustration. Adventure "Z" is a "Mini-venture" which is
•: ·<plained in Chapter 5 of th is manua 1.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Adventure System Page 1 - 3

How do you write your own adventures? The concept is very simple. The basic
ides is that certain commands are executed when certain conditions are met.

Suppose in an adventure you need to pick a lock with a hairpin before a door
can be opened. The conditions to be met could be:

1) The player is holding a hairpin, and
2) The player is in the same room as a locked door.

If these conditions were true and the player typed in "PICK LOCK", some
conn.ands would be executed. These commands could be:

1) Remove the locked door from the room, and
2) Place an unlocked door in the room.

Remember, this was only an example, the scenario for the adventure is
determined completely by the adventure's author.

The trick to writing good adventures is making the conditions subtle, but
logical. For example, if you found a hair pin in one room, it would be logical
to use that pin to pick a lock in another room if the door was locked. Writing
an adventure is like writing a story. There is a major plot with minor
conflicts encountered along the way.

Everything you need for writing adventures is supplied with TAS except ideas.
Possible plots can be found from any book, movie, etc. Also, the Adventure
User's Group has a newsletter devoted to TAS. The newsletter, AUGMENT,
normally has some ideas for adventures in it. Information for joining the
AUGGIES may be found elsewhere in this manual. The possibilities for
adventures are endless!

I

I

The data base is the heart of t~e adventure. By changing this data base you can
create different adventures. We will first tell you everything that is in a
data base and then go into det~tl about each one. Don't even plan on learning
everything in this chapter after one reading. You will probably refer to it
many times for your first actv~~tu~e writing project.

The data base consists of the following sections:

1) HEADER information. 1~• header contains the number of actions, vocabulary
entries, rooms, messages, objects and other variables. It is important that the
header ALWAYS reflect the num!>er of it~ms_ you want in your data base (or more).
This process is described later.

-
2) ACTION entries. There art two kinds of actions: AUTOMATIC ACTIONS and
PLAYER INPUT ACTIONS. Player input action entries co~tain player input (verb
and noun) plus conditions and commands. The automattc actions serve mainly for
bookkeeping. Action entries are analogous to IF ••• TJIEN statements in BASIC.

3) VOCABULARY entries. These two lists (verbs and nouns) contain all of the
words the player may use in this particular adventqre.

4) MESSAGE text. These are the messages used by t~e adventure to communicate
with the player and are controlled by the actions.

5) ROOM description. This is a list of directions \for getting to other rooms
(from the current room} along with a text room descr~.ption.

6) OBJECT description and starting location. The des~ription of the object
determines if it is a treasure, an object which may ~ carried and dropped and
the name of the object. The starting location tells i~ the object is in the
current room, if it is being carried or if the object if in the storeroom.

7) TRAILER,information. This contains the version number, adventure nuaber and
a checksum. It is not important to know anything about this in order to write
adventures.

The adventure data ~se is esaentiflly a collection of action entries, rooms,
messages, vocabulary words and objects. Each of the entries in these data base
sections are numbered from zero up to the last entry. This fonaat is used so a
unique item in any of the data base sections can be viewed and/or changed. Thj
is similar to having a BASIC program line number to uniquely reference each
individual line.

The Adventure System

For example, a list of objects in an adventure could be:

1 ~>Fire breathing D~GON!I!
2 ~> A large sword
3 ~> Fair maiden
4 ~> Coat of ma~l

Page 2 - 2

I
I

With the number referel}cing system used in TAS, the "Fire breathing DRAGON! 11" I
would be referred to as object 1, the "Fair maiden" as object 3, etc.

The other data ba1e sections are numbered in the same manner. Chapter 5 has a
listing of a short adventure Jfhich shows how each of the sections are numbered.

The header contains the following information:

1) The number of bytes required to hold all of the text descriptions such as
verbs, nouns, messages, room descriptions and object descriptions. This number
includes a fixed number of characters for each verb and noun. This fixed number
is the word length of this adventure plus one, times the number of vocabulary
words. Also added to that value is one more than the number of _characters
between quotes in the messages, and room and object descriptions. You do not - .
have to worry about this HEADER. entry. It i~f updated automatically •

. ~ -- '". ' ,,...

2) The highest numbered object in this parttcular adventure. The objects are
numbered starting at zero, so the number of ~~bjects is one plus this number.

3) The highest numbered action in this part~cular adventure. Actions are
numbered starting at zero, so the number of 1rctions is one plus this number.

4) The highest numbered vocabulary word in this adventure. This applies to
both verbs and nouns, being the larger valu~ if they are different. Vocabulary
words are numbered starting at zero, so the total number of verbs and total
number of nouns is one plus this number. Sqme vocabulary words (GO, GET, DROP,
NORTH, SOUTH, etc.) are "predefined". This is discussed later.

5) The highest numbered room in this adven~ure. Rooms are numbered starting at
zero, but room zero is reserved as "the atoireroom" so this value is the total
number of rooms in which the player may movQ. The storeroom is explained later.

6) The maximum number of objects which may be carried. Under certain
conditions, the actions can cause more than this number of objects to be
carried. The player will not be able to voluntarily pick up anything unless the
number of objects currently being carried is less than this number.

7) The starting roo~ number for this adventure. This is the room number the
player starts in at t e beginning of the adventure.

8) The number of tre•fures in this adventure. When the SCORE command is issued,
this number is divided by the number of treasures in the treasure room to give
the percent score. If the result is 100 percent, the player wins the adventure.
Treasures are "defined" as a certain kind of object. This process is described
later.

I
I
I

I
I

I
I
I
I
I
I
I
I
I

The Adventure System Page 2 - 3

9) The word length used by this adventure. This number affects the nouns and
verbs. When the adventure data base is read in by the adventure driver program,
all nouns and verbs are either truncated or padded to this length plus one.
This value is the minimum length of verbs and nouns the player may input.
Normally this value is three or four. Therefore, only the first three
characters (if the word length is three) of the player's verb and noun are used.

10) The time limit. This may be used in some games to control how long the
artificial light will last. If there is no artificial light, it may control the
number of turns in this adventure. If the artificial light is re-filled, this
value is put back in the time limit counter. The maximum time limit is 32767.

11) The highest numbered message. Messages are used by the adventure driver to
communicate with the player. Messages are numbered from one, so this value is
the number of messages.

12) The treasure room number. When treasures are in this room, they are
considered collected. When the SCORE command is issued, the treasures in this
room are summed and divided by the number of treasures for the percent score.

You must manually enter all of the items contained in the HEADER except for item
one. That item is computed by the adventure editor automatically. Defining the
header should be the FIRST thing done before entering an adventure. You can
always increase values later, if needed. Study the maximum values for each in
appendix A.

ACTIONS are the heart of the adventure.
others are automatic operation actions.
statements in BASIC.

Some are player input actions and
Action entries are like IF ••• THEN

Action entries contain the following pieces of information: Verb, Noun,
Conditions, Connnands and Action Titles.

Action titles will be considered only briefly, since they are the easiest. The
action titles of an action entry are used only to document the function of the
action entry. They are optional and serve only as comments.

The verb and noun combination input by the player are used to select the
"conditions" and "commands" to be executed. For example, if the player were to
type "GO CAVE" into the adventure driver, the driver would only consider actior.
entries with the verb, noun combination of "GO CAVE". If an action entry had
the verb, noun combination of "GO ROLE" it would not be considered if the player
typed in "GO CAVE" (unless HOLE and CAVE are defined as SYNONYMS, but we'll get
to that).

The "conditions" of an action entry are a
performing the "commands" of the action.
GUN". Before the player would be allowed
that he is holding onto a gun.

list of tests to be considered befor
Suppose the player typed in "SHOOT
to shoot a gun, a "condition" may be

The Adventure System Page 2 - 4

The "commands" of an action entry are performed if all of the "conditions" are
met. If only one condition of an action entry fails, the commands of that
action entry will not be performed. Suppose the player types "SHOOT GUN". An
action entry is present with the verb, noun combination of "SHOOT GUN", so it is
considered. Suppose the only condition to shoot the gun was that the player was
holding onto a gun. If the condition(s) are true, the colllll8nd(s) are executed.
A command could be to display the message "Bang!!!".

Both action "conditions" and action "commands" are described in detail shortly,
but first, let's look at the two kinds of actions.

If the verb of the action entry is not AUTO, then the action is a "Player Input
Action". The verb, noun combination of the action must match the verb, noun
combination of player's input for the action to be considered. If the noun of
the action entry is "ANY", it matches any possible noun in the player's input.

For the following example, suppose the player input the verb, noun combination
"EXAMINE DOOR". If an action entry had the verb, noun combination "EXAMINE
DOOR", then that action entry would be considered. Likewise, if the action
entry had the verb, noun combination "EXAMINE ANY", the action would be
considered. A noun of "ANY" in an action entry really means "match with ANY
player 's noun".

When player input actions are being checked for a matching verb, noun
combination, the action entries are scanned in · ascending numeric order. When
the verb and noun of an action entry match the player's input, the conditions
are evaluated. The procedure of checking the conditions of a matched verb, noun
combination is called "considering" an action entry. If all of the conditions
of the action entry are true, then the commands of this action entry are
performed. See how it's similar to a BASIC IF ••• THEN statement?

When a "true" match is found (all conditions of the action entry were
be true), no further player input actions are evaluated on this pass.
is defined as the turn a player gets when he types in his input.

found to

1
A "pass",

I

For example, suppose the player types in "CUT ROPE" and there are two action
entries with that same verb, noun combination. If all of the conditions of the
first "CUT ROPE" action were true (thus a "true" action or match), the second
action would not be considered.

However, if a verb-noun match is made, and all of the conditions were not true,
then the scanning procedure continues until either a "true" match is made, or
all of the actions are checked for a matching verb, noun combination.

Using our above example, suppose the conditions of the first "CUT ROPE" action
entry were not all true. The adventure driver would continue scanning the
action entries for another "CUT ROPE" action. It would eventually find the
second "CUT ROPE" action and consider the conditions of that action entry also.

I
I
I
I
I
I
I
I
I
I
I
1
l
I

I

I
I
I

The Adventure System Page 2 - 5

If a verb-noun match was found in at least one action entry, but the conditions
were not true in any of the matched actions, then the message --

"I can't do that ••• yet!"

is displayed after all of the action entries have been checked. If no verb-noun
match was found, then the message "I'm sorry, but I don't understand what you
mean" is displayed.

If the verb of the action entry is "AUTO", then this is an automatic action.
The auto•atic action entries have a variety of uses. All automatic actions are
considered before the player is allowed to input his verb, noun combination.

Another way of thinking of auto actions is this: when the adventure driver is
running through the automatic action entries, the computer is taking its turn.
When the player inputs a verb, noun combination, the player is taking his turn.

Such things as falling asleep, checking for day/night or any other task that
must be performed regardless of the player's input are candidates for automatic
action entries. Chapter 5 contains a more detailed description of automatic
actions.

Automatic actions are very similar to the player input actions described above.
There are a few major differences however. These are:

1) The verb, noun combination of an automatic action is the verb "AUTO" and
the noun is a number from 1 to 100• The noun number is the probability that
this action will be considered. For example, an "AUTO 20" is an auto action
which has a 20 percent chance of being considered.

2) The automatic actions must be at the beginning of the action entries -
before any player input actions. If an auto action is entered after a player
input action, then that auto action will never be considered. This chapter
(along with chapters 3, 4, 5 and 6) has more information on the order of action
entries in subsequent sections.

3) When automatic actions are being evaluated, they are all scanned
regardless of how many are true or false. As you recall, when player input
actions are evaluated, only the first "true" action entry is performed. With
auto actions, ALL auto actions are considered regardless of how many are true or
false.

If the action is to be considered (the action's verb and noun match the player's
verb and noun), up to five conditions are evaluated. If any conditions fail,
the co11111Bnds in the action are not performed. The commands of an action entry
are explained later on in this chapter.

The Adventure System Page 2 - 6

All condition codes have a number associated with them. This number refers to
another component of the adventure. For example, "HAS 10" is a condition to
test if the player is carrying (HAS) object 10. The condition codes are as ·
follows:

PAR This condition always passes. The number included with PAR
(that is, PAR 20) may be used by the commands in this entry.
See the manual section following the condition description for
mor.e details on PARameters. Briefly, parameters are like DATA
statements in BASIC.

HAS The condition passes if the player is carrying (HAS) the
numbered object (that is, HAS 15 tests if the player is holding
object 15). It fails if the object is either in the same room
as the player or is in any other room.

IN/W The condition passes if the player is in the same room as the
numbered object (IN/With). It fails if the player is either
holding the object or the object is in any other room. Example,
"IN/W 5" tests if the player is IN/With object 5.

AVL The condition passes if the numbered object is AVaiLable because
the player is either carrying the object or is in the same room
as the object. It fails if the object is in any other room.
Example, "AVL 4" tests if object 4 is AVaiLable to the player.

IN The condition passes if the player is IN the numbered room. It
fails if the player is 1n any other room. Example, "IN 2" tests
if the player is in room 2.

-IN/W The condition passes if the numbered object is either held by
the player or if the object is in any other room. It fails if
the object is in the same room as the player. Example, "-IN/W
52" tests if the player is not IN/With object 52.

-HAVE The condition passes if the player is not carrying the numbered
object. It fails if the player is carrying the object.
Example, "-HAVE O" tests if the player does not HAVE object o.

-IN The condition passes if the player is not in the numbered room.
The condition fails if the player is in any other room.
Example, "-IN 35" tests if the player is not IN room 35.

BIT The condition passes if the numbered bit flag is set. It fails
if the flag is cleared. See the description of bit flags later
on for more information. Example, "BIT 3" tests if BIT flag 3
is set.

-BIT The condition passes if the numbered bit flag is cleared. It
fails if the flag is set. See the description of bit flags
later on for more information. Example, "-BIT 4" tests if BIT
flag 4 is reset or cleared.

The Adventure System Page 2 - 7

ANY The condition passes if the player is carrying any objects at
all. It fails if the player is not carrying any objects. The
number entered (that is, the 50 in the condition ANY 50) has no
affect on this condition. Example, "ANY 50" tests if the player
is holding ANY objects. The "50" included with the condition
code "ANY" is not used and may be any legal entry. Usually it
is entered as a zero ("ANY O").

-ANY The condition passes if the player is not carrying any objects.
It fails if the player is carrying any objects at all. Example,
"-ANY O" tests if the player is not holding ANY objects.

-AVL The condition passes if the numbered object is in any other
room. It fails if the object is available either because it is
being ca~ried or it is in the same room as the player. Example,
"-AVL 22" tests if object 22 is not AVaiLable to the player.

-RMO The condition passes if the numbered object is not in room zero.
Room zero is reserved as a etoreroom. The condition fails if
the object is in room zero. Example, "-RMO 20" tests if object
20 is not in RooM zero.

RMO The condition passes if the numbered object is in room zero.
The condition fails if the object is in any room other than room
zero. Example, "RMO 11" teets if object 11 is in RooM zero.

CT<• The condition passes if the counter is less than or equal to the
number. It fails if the counter is greater than the number.
See the description of the counters later on for more
information on them. Example, "CT<• 100" tests if the CounTer
is less than or equal to 100.

CT) The condition passes if the counter is greater than the number.
It fails if the counter is less than or equal to the number.
Example, ''CT) 50" tests if the CounTer is greater than 50.

ORIG The condition passes if the numbered object is in the ORIGinal
(same) room it started in. It fails if the object is in any
other room or is being carried. Example, "ORIG 10" tests if
object 10 is in the ORIGinal room in which the adventure started.

-ORIG The condition passes if the numbered object is in any room other
than its starting room or ie being carried. It fails if the
object is in the same room it started in. Example, "-ORIG 5"
tests if object 5 is not in the ORIGinal room that it started
the adventure in.

CT• This condition passes if the counter is equal to the number. It
fails if the counter is not equal to the number. Example, "CT•
10" tests if the CounTer is equal to 10.

The number input with the condition must be in the range 0-1600. For example,
"CT• -1" is an illegal number associated with the condition "CT•". Likewise, a
"PAR 1601" is illegal.

The Adventure System Page 2 - 8

Any action entry may have from zero (0) to five (5) conditions to be tested
before its commands are executed. When the number of conditions is less than 5
(or zero to four), the unused conditions are normally set to "PARO". Since
this "PAR" condition always passes (or tests to be true), this is the "no
condition" state. Chapters 5 and 6 have more details on unused conditions in an
action entry.

So far we have covered the verbs, nouns and conditions of an action entry. The
last section of the action entries to be covered are the commands. If the verb
and noun match the player's input (or this is an automatic action with a true
probability), then the conditions are evaluated. If all of the conditions are
true, then the commands are executed. The following is an explanation of the
commands.

There are up to four commands per actio~ entry. These four commands may use one
or more conditions (or DATA statement e!.ements) entered in the condition line of
the same action entry. For example, if the first parameter found in the
conditions was a 10 (PAR 10) and the first command which uses a parameter in the
commands is a "GOTOY" command, the player would move to room 10 (GOTO 10).
Commands that use parameters act like a READ statement in BASIC. They read the
next item from the PAR values. The PAR values are in the "conditions" of the
same action. It is possible to CONTinue actions, but you cannot pass parameters
to the next action.

If a command uses one parameter, its value is represented by "Par # l" in the
following command description. If the command uses two parameters, the first is
represented by "Par 11" and the second by "Par 112." The parameters used by any
command are skipped by later commands if they also use parameters. Again, this
is exactly how BASIC handles READ ••• DATA statements.

For example, if the conditions contain three parameters: PAR 3, PAR 15, PAR 26,
in that order, (or DATA 3,15,26 in BASIC), the first command (or READ statement)
that uses a parameter will use the 3 (READ X - X will equal 3), the second
command would READ the 15 and the third would READ the 26. Too many parameters
in the conditions has no effect. It's like having extra DATA left over in a
BASIC DATA statement.

Not having as many parameters in the conditions as the number expected by the
commands will produce strange results. The adventure driver will not display an
error message like BASIC's "Out of DATA", and the results will not be as
expected. For example, specifying no parameters in the conditions and having a
"GETX" (which is a command that uses a parameter) in the commands will produce
unpredictable results.

As stated before, there may be up to four commands in an action entry. If a
command is unused, it is displayed as a " "

Commands are executed in the order in which they appear. For example, if an
action entry contained the commands "GETX", "MSG5", "GOTOY" and "EXX,X", they
would be executed in that order.

I

I

I
I

The Adventure System

The following are the available commands:

0

1-99

No command or message. This is a "null" command and is the
command entered when not all four possible commands are used.
It is displayed as a "-".

Display message numbers 1-99.

Page 2 - 9

GETX Pick up the Par #1 object unless the player is already carrying
the maximum number or carry limit of objects which may be
carried. The object may be in the current room or in any other
room.

DROPX Drop the Par #1 object in the same room as the player. The
object may be carried or in another room.

GOTOY Move the player to the Par #1 room. This command may need to be
followed by a DAY/NIGHT command (described later) depending on
the light status of the room.

X-RMO This command moves the Par #1 object to room zero.

NIGHT This command sets the light/darkness bit flag (15). The room
will be dark if the artificial light source is not available.
The artificial light source is described in more detail in the
bit flag and object sections of this chapter. This command
should be followed by a DSPRM command.

DAY Clear the light/darkness bit flag (15). This should also be
followed by a DSPRM command.

SETZ Set the Par #1 bit flag.

X- >RMO This command moves the Par Hl object to room zero.

CLRZ This clears the Par #1 bit flag.

DEAD This clears the light/darkness flag (makes it light), moves the
player to the last room and tells him he is dead. Thia is the
command normally used to kill the player. The HEADER holds the
last room number.

X->Y Move the Par #1 object to the Par #2 room. This command will
automatically display the room if the Par #1 object either
entered or exited the current room.

FINI Indicate to the player that the game is over and inquire if he
wants to play again.

The Adventure System Page 2 - 10

DSPRM

SCORE

INV

Display the current room. This checks the light/darkness flag
and if the artificial light source is present. If it is light,
the room description, visible objects and obvious exits are
displayed. If it is dark, nothing is displayed (it is too dark
to see) unless the artificial light source is present. A room
is "light" if bit flag 15 is not set or the artificial light
source is in the current room. A room is dark if bit flag 15 is
set and the artificial light source is not in the current room.

Tells the player how many treasures have been stored in the
treasure room and what percent of the treasures have been
stored. If one hundred percent have been stored, then the
winning message is displayed and the player is given the option
of playing again.

Gives the player an INVentory or list of what objects are being
carried.

SETO This sets bit flag zero. It may be useful since no parameter
from the conditions is necessary.

CLRO Clears bit flag zero. It may be useful since no parameter from
the conditions is necessary.

FILL Re-fills the artificial light source and clears bit flag 16
(indicator of light source status). Re-filling the artificial
light source sets the counter containing the number of moves
left before the light source runs out to the time limit of the
adventure. The time limit value is specified in the HEADER
section. This also picks up the artificial light source (object
9). This command should immediately be followed by a X-)RMO
command where Par #1 is the unlighted artificial light source
(they are two different objects). In other words, after a FILL
command, the artificial light source in its unlighted state
should be sent to the storeroom.

CLS This command did a clear screen in the BASIC version of
ADVENTURE and does nothing in the machine language version.
This command is included just for compatibility.

SAVE Saves the game to disk or tape depending on which version is
being used. It writes the player's game variables such as the
current room, current locations of all objects, status of all
bit flags, current values of all alternate room registers and
the current values of all counters.

EX:X,X Exchange the room location of the Par #1 object with the room
location of the Par #2 object. A DSPRM is automatically
performed if either Par #1 or Par #2 objects were in the current
room.

I
I

I
I
I
I
I
I
I
I
I
I

I

I
I

I

I

I
I
I

I

I
I

I
I
I

I

I

I
I

I

The Adventure System Page 2 - 11

CONT This command sets a flag to allow this action entry to be
CONTinued. In effect, another five conditions and/or four more
commands could be performed. When all commands of the action
entry containing the CONT command have been performed, the
conditions of all subsequent action entries with an "AUTO O"
verb, noun combination (up to the first non "AUTO O" verb and
noun) will be evaluated. The checking procedure of the "AUTO O"
actions continues regardless if the action entry being checked
is true or false. CONTinued action entries are similar to
automatic action entries in this respect. For example, consider
the following actions:

3: LIGHT TORCH HAS 12 PAR 9 PAR 12 PAR 0 PAR 0
EXX,X MSG5 CONT -

4: AUTO 0 PAR l PAR 0 PAR 0 PAR 0 PAR 0
EXM,CT CT-1

5: AUTO 0 CT= 0 PAR 9 PAR 12 PAR 0 PAR 0
EXX,X MSG6

6: AUTO 0 PAR 1 PAR 0 PAR 0 PAR 0 PAR 0
EXM,CT

7: SHOOT GUN HAS 23 IN/W 2 PAR 2 PAR 4 PAR 0
EXX,X MSG8

If the conditions of the action with the verb-noun of "LIGHT
TORCH" are found to be true (action entry 3), then its commands
are executed. One of its commands is a "CONT". This means that
all "AUTO O" verb-noun actions following the "LIGHT TORCH"
action will be considered. In this case, there are three of
these "AUTO O" action entries. All three are considered even if
none of them are true or false. For example, the third one is
considered even if the second one was a "true" action entry.
See how the CONTinued action entries are similar in this respect
to the automatic action entries? If CONTinued actions acted
like player input actions, then if the first one was true, the
second and third ones would not be considered.

Note that only the three "AUTO O" action entries would be
checked. The "CONT" command stopped action entry evaluation at
the first non "AUTO O" action which was action 7 (SHOOT GUN).

AGETX Always GET the Par #1 object even if the carry limit is
overflowed.

BYX-)X Put the Par #1 object in the same room as the Par #2 object. If
the Par #2 object is being carried, this will pick up the Par 11
object also, regardless of the carry limit. If this command
changes the location of any objects in the current room, a DSPRM
command is automatically executed.

CT-1 Subtract one from the counter value.

The Adventure System Page 2 - 12

DSPCT This displays the value df the counter. No carriage return is
printed after the value. This is similar to the BASIC statement
"PRINT CT;".

CT(-N The sets the counter equal to the Par #1 value.

RXRMO This exchanges the current room with the room number held in
alternate room register zero. This command may be used to save
a player's current room for return to it later on. This command
should be followed by a "GOTOY" command if alternate room
register zero had not been set. Alternate room registers are
explained in greater detail later on in this chapter.

EXM,CT Exchange the value of the counter and the value of the Par #1
alternate counter. There are eight counters numbered Oto 7.
When the adventure starts, these are not set to any particular
value, so initialization automatic action entries should set
them if they are to be used. Also, the time limit may be
accessed by exchanging with alternate counter eight (8). The
counters are explained in greater detail later on in this
chapter.

CT+N Add the Par #1 value to the counter.

CT-N Subtract the Par #1 value from the counter.

SAYW This displays the noun (second word) input by the player without
a carriage return. This is like the BASIC statement "PRINT
NOUN$;".

SAYWCR This displays the noun (second word) input by the player
followed by a carriage return. It is like the BASIC statement
"PRINT NOUN$".

SAYCR Starts a new line on the display. It is like the BASIC
statement "PRINT".

EXC,CR Exchange the value of the current room with the Par #1 alternate
room register. This may be used to remember more than one room.
There are six alternate room registers numbered from O to 5.

DELAY This command pauses for about l second before going on to the
next command •

I
I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
l
l
l
l

The Adventure System Page 2 - 13

It may be useful to have a list of the action entry commands broken down by the
number of parameters each requires. The following list does this:

NO PARameters

0
Messages (1-99)

NIGHT CLS
DAY SAVE
DEAD CONT
FINI CT-1
DSPRM DSPCT
SCORE EXRMO
INV SAYW
SETO SAYWCR
CLRO SAYCR
FILL DELAY

ONE PARameter

GETX
DROPX
GO TOY
X-RMO
SETZ
X->RMO
CLRZ
AGE TX
CT(-N
EXM,CT
CT+N
CT-N
EXC,CR

1WO PARmeters

X-)Y
EXX,X
BYX-)X

This list could be helpful for determining which PARameters are used by what
commands in the action entries.

The use of parameters is perhaps the most confusing facet of The Adventure
System. New things are most easily learned when compared to something you
already know. Since most people have an understanding of the BASIC READ ••• DATA
statements, they will be used to help explain parameters.

Parameters are values defined in the action entry conditions via the "PAR"
condition. They are the same as using a DATA statement in BASIC. One important
difference is that each DATA statement is associated only with the action entry
it appears in. For example, if some parameters are listed in the conditions of
action entry #5, only the commands of action entry #5 can READ them.

The comm.ands which require parameters act like READ statements in BASIC. The
big difference is that they will only read data from the action entry they
appear in. For example, if a "GETX" command is in action entry #12, it will
only read a parameter (or DATA value) from action entry #12. It won•t read one
from action #11 or action #13 or any other action entry. An example would
probably help at this point. Consider the following action:

SHOOT GUN HAS 10
EXX,X

PAR 9
MSG5

PAR 10
DROPX

PAR 25 0

The conditions in this action are "HAS 10", "PAR 9", "PAR 10", "PAR 25" and "O".
The "O" signifies a "PAR O". This shorthand is used since many action entries
will probably have some unused conditions. In order to clarify the listing,
"PAR O" is displayed as "O".

If the player types "SHOOT GUN" and is holding object 10, this action entry is
"true" (the parameters are always "true"). Therefore, the commands are
executed.

The Adventure System Page 2 - 14

In this case, the command "EXX,X" is done first. "EXX,X" uses two parameters
(see COMMAND description above). Since the parameters are contained in the
conditions, the object numbers having their locations switched by the "EXX,X"
command are found there. The first parameter found in the conditions is a "PAR
9". Since "EXX,X" requires two parameters, the second parameter in the
conditions, "PAR 10", is also read. 'nle location of object 9 and object 10 are
then switched by the "EX:X,X" command. The BASIC equivalent would be a "DATA
9, 10". A "READ X" would read the 9, a "READ Y" would read the 10.

The next cocnmand is a "MSGS". This command does not use any paYameters since it
simply displays message number 5. Its BASIC counterpart would be something like
"PRINT A$(5)".

The next command is a "DROPX". The "DROPX" command requires a parameter so it
knows which object to drop in the player's current room. The next parameter (or
DATA element) defined in the conditions is a "PAR 25". So, the "DROPX" command
READs the 25 and drops that object (object 25) in the player's current room.

Let's take a look at our "SHOOT GUN" action entry again:

SHOOT GUN HAS 10
EXX,X

PAR 9
MSG5

PAR 10
DROPX

PAR 25 0

Now let's list the conditions and commands of this action entry in the order
they appear within the action entry:

HAS 10
PAR 9
PAR 10
PAR 25

0

EXX,X
MSG5
DROPX

Now, let's eliminate all non "PAR" conditions. This leaves us with the lists:

PAR 9
PAR 10
PAR 25

0

EXX,X
MSG5
DROPX

When the commands of this action entry are executed, they are performed from the
top down. In this case, the first command to be executed would be an "EXX,X".
As explained above, the "EXX,X" command requires two parameters from the
conditions. The parameters are placed in the conditions so let's look at the
list of conditions. The first two PARameters are "PAR 9" and "PAR 10". The
"EXX,X" comm.and will read the "PAR 9" and "PAR 10" and switch (or exchange) the
ro01ll locations of objects 9 and 10.

The second command is a ''MSG5". This command requires no parameters. It simply
displays message 5 on the screen.

The third command is a "DROPX" command. As explained above, this command
requires one parameter. As we refer back to our list of parameters in the
conditions, we see the next one is a "PAR 25". The "DROPX" command reads the
"PAR 25" value and proceeds to drop object 25 in the player's room.

I

I
I

I
I
I
I
I
I

I
I
I
I
I
I

The Adventure System Page 2 - 15

The fourth command is a "-". This is an unused command and it does nothing.

Notice that the "O" or "PAR O" parameter is not used. As stated above, not all
parameters which appear in the conditions need to be used. However, there would
be a problem if we ran out of conditions when there were still commands to be
executed which required parameters.

The previous two examples interpreted what an action entry meant. Now let's
think of a situation we want to check with an action entry and write the action
entry ourselves. This action entry will use parameters to help explain their
use further.

Suppose our scenario is this, we want to shoot a buffalo with a gun. After the
buffalo has been shot, we will remove it from the room and replace it with a
dead buffalo. The message "Got em!!" will also be displayed. The conditions
for this a ion would be:

1) The player is holding onto a gun.
2) TI\~ player is in the same room as the buffalo.

The commands would be:

1) Remove the buffalo from the current room.
2) D~p a dead buffalo into the current room.
3) Display the message "Got em!!".

It will be necessary to define some data base sections before writing the action
entry. The data base sections to be used are as follows:

Verb Noun Objects Messages
------ --------

SHOOT BUFFALO 1: Gun 5: Got em!!
2: Buffalo
3: Dead Buffalo

The verb, noun combination of this action entry will be chosen to be "SHOOT
BUFFALO".

The first condition should check if the player is holding onto the gun (object
1). The condition which accomplishes this is a "HAS" condition. Therefore, the
condition will be "HAS 1". This condition checks to see if the player is
holding onto the gun. If the player is not holding the gun (object 1), this
action entry fails and it is skipped without its commands being executed.

The second condition checks if the player is in the same room as the buffalo
(object 2). The condition which checks this is an "IN/W" condition. Since we
want to check if the player is in with the buffalo, the condition would be "IN/W
2". So, if the player is in with the buffalo (object 2), the condition will
pass. However, if the player is not in the same room as the buffalo, this
condition will not pass and this action entry will be skipped without any of its
col!Dllands being executed.

The Adventure System Page 2 - 16

You may ask why we did these two conditions? The first one makes sure the
player is holding onto the gun before shooting the buffalo. I chose to let the
player shoot the buffalo ONL]J¥}jen- .hotdln:g on_ro--rhe"l»gyfi. It doesn't make sense
to let the player shoot the buffalo if he isn't carrying a gun. The second one
makes sure the player is ' in with the buffalo before shooting it. This makes
sense since we don't want the player to be able to shoot the buffalo if he's not
in the same room as the buffalo.

Anyway, getting onto the commands. The first command should remove the live
buffalo (object 2) from the player's current room and place it in the storeroom.
The storeroom is used to store or save all objects which the player has not
either found or objects we don't want the player to see yet. Since the live
buffalo is dead, this is an object we don't want the player to see. The command
to do this is an "X-)RMO".

If you refer to the ACTION ENTRY COMMANDS section above, you will see that the
.. X-)RMO" command uses a parameter from the conditions. This means we will have
to add a "PAR 2" to the conditions. When the "X-)RMO" command is executed, it
will read a PARameter from the conditions. Since the object to be moved to the
storeroom is object 2 (the live buffalo), the "PAR 2" must be placed in the
conditions for that command to remove the proper object.

The second command will drop the dead buffalo (object 3) into the player's room.
The comm.and to drop an object into the player's room is a "DROPX". As shown
above in the ACTION ENTRY COMMANDS section, the "DROPX" command requires one
parameter from the conditions. Since we're writing the action entry, we will
have to place the correct parameter in the conditions. In this case, it is a
"PAR 3". Object 3 (the dead buffalo) is to be dropped in the player's room.
When the "DROPX" command is executed, it will get the "PAR 3" from the
conditions and drop that object number in the player's room.

The last command is to display the message "Got em!!". In our message data base
section above, "Got em!!" is message 5. So, the command would be ''MSGS".

Now our action entry is finished. Summarizing, we have:

Conditions

HAS 1
IN/W 2

Commands

X-)RMO with a PAR 2
DROPX with a PAR 3
MSGS

Note that the first two commands have parameters associated with them. These
parameters need to be placed in the conditions. To keep the order of the
parameters correct, we will work from the top command down.

The first command uses a "PAR 2", so we place that parameter after the last
condition listed ("IN/W 2"). The second command uses a "PAR 3", so we place
that one after the first parameter (PAR 2). Our list should now be:

Conditions

HAS 1
IN/W 2
PAR 2
PAR 3

Commands

X-)RMO
DROPX
MSGS

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I

I
I

The Adventure System Page 2 - 17

Note that we have only used four of the five conditions possibl~. As stated
above, unused conditions should be entered as a "PARO". This parameter is
displayed as simply a "O".

Also note that we used only three of the four commands possible. As stated
above, unused commands should be entered into the adventure editor program as a
"O". The "O'" command is displayed as a "-".

Putting our verb, noun, conditions and co111D1ands together, we get the following
action entry:

SHOOT BUFFALO HAS 1

X-)RMO
IN/W 2
DROPX

PAR 2
MSG5

PAR 3 0

With a little practice writing action entries becomes very simple.

There are thirty-two bit flags available to the user, numbered from O to 31.
These are "true/false" types flags available for use by the adventure author.
They are normally used to "flag" when a certain situation has occurred.
Examples are given in Chapter 5.

When the adventure is started, all bit flags are cleared. There are commands to
set and clear them as well as conditions to test their status. Two bit flags
are reserved by the adventure driver:

15) If this bit flag is set, it is dark outside. The room will be
in darkness unless the artificial light source is available.

16)

The artificial light source is discussed in the OBJECT section
of this chapter. There are two commands (DAY and NIGHT) to
clear and set this bit flag.

When this flag is set, the artificial light source has run out.
The "FILL" command will clear this flag and set the time limit
to its original value.

Bit flags are tested in the conditions and set/cleared by the commands of an
action entry. For example, to test if bit flag 5 is set, the condition would be
"BIT 5". If bit flag 5 is to be set, a "PAR 5" would have to be in the
conditions, and a "SETZ" in the commands. Moreover, if bit flag 5 was to be
tested to see if it was reset, the condition would be "-BIT 5".

1HITIALIZATIOM ACTION ENTRY USI A BIT FLAG

An example using a bit flag might be helpful at this point. When an adventure
is started, usually some initialization takes place. Normally this initializa
tion should occur only one time, right at the start of the adventure. In our
example, the initialization procedure will simply display an opening message. A
bit flag will be used to make sure we display the message only once.

The Adventure System Page 2 - 18

As stated before, all bit flags are cleared at the start of an adventure.
Therefore, a "-BIT" (test 1.f bit flag is cleared) condition will always be true
at the start of an adventure. We will use this convention in our initialization
action.

A sample data base will need to be set up for this example. Our initialization
action will be action entry O. For the bit flag, we will use number 31. Note
that bit flag 15 or 16 were not used since their use is predefined as shown
above. Our sample opening message will be:

1: Welcome to the BIT FLAG example adventure!!

To test if bit flag 31 is cleared (which it will be at the start of the
adventure), the condition code would be "-BIT 31". Since we want this action to
be executed only once, bit flag 31 will have to be set and never cleared by the
rest of the adventure. As long as bit flag 31 is set, the "-BIT 31" condition
will be false, and the commands of the initialization action will not be
repeated. To set bit 31, we need a "PAR 31" in the conditions and a "SETZ"
instruction in the commands.

The commands of this initialization action entry will be:

1) Set bit flag 31.
2) Display the opening message (message 1).

Summarizing all of our conditions and commands, we get the action entry:

AUTO 100 -BIT 31
CLRZ

PAR 31
MSGl

0 0 0

Note that the verb, noun combination of this action entry is an "AUTO 100".
This is an automatic action entry that is considered 100 percent of the time.
Since this is an action to be considered regardless of what the player inputs,
it needs to be an auto action. Also, we want the initialization action to be
considered every time. If the probability of the action was only SO (or
consider it 50 percent of the time), then there would be a 50 percent chance the
opening message would not be displayed at the start of the adventure. It might
be displayed after many player inputs.

The "AUTO 100" also means that this action will be considered before every
player input. But if bit flag 31 is set, then the "-BIT 31" condition of this
action will be false and the commands of action 1 will not be executed. This is
a very common procedure for displaying opening messages in adventures.

The counters are values which may be incremented, decremented, assigned values
by commands as well as be tested against a number for numeric conditions. The
primary counter is labeled CT. There are alternate counters which may be
switched with the CT counter in order to operate on other numbers. Why would we
want to switch dlternate counters with CT? The only counter which may be
directly acted upon is the CT value.

I

I

I
I

I
I

I
I
I
I

I
I
I
I
I

I

The Adventure System Page 2 - 19

For example, you can not test directly if alternate counter 4 is equal to 10.
First, you would have to switch the contents of alternate counter 4 and CT.
Then test if CT (after the switch) is equal to 10.

When the adventure is started, CT is not assigned any particular value. There
are eight alternate counters available numbered 0-7. Alternate counter 8 is the
current time limit status.

Counters are very useful in adventures. Applications include counting the
number of tiaes a situation has occurred. Scott Adams uses a counter in his
adventure 6 (Strange Odyssey) to keep track of the nu her of moves you've had a
space suit on. The space suit has a limited air supply so the number of moves
you've drawn air from its tanks is counted. When this value is decremented from
its starting value down to zero, the player has run out of oxygen and dies.

Our example will involve a six shooter. Originally this gun has six shots.
However, each subsequent shot subtracts one from a counter holding the number of
shots left. Our scenario is that you shoot a Buffalo with the gun. If you have
shots left in your gun when you shoot the Buffalo ("SHOOT BUFF"), you will kill
it and get some "dead meat". Other actions include "EXAM GUN" which will tell
you the number of shots left in the gun. A "SHOOT ANY" action is used to
subtract from the shots left when you shoot something other than the Buffalo.
Since at the start of the adventure all counters are not set to any
predetermined value, an initialization action phould set our shot count to 6.
In this case we will use alternate counter 3 for our shot counter. The
initialization action could be something like this:

AUTO 100 -BIT 1
SETZ

AUTO 0 PAR 3
EXM,CT

PAR 1
EXM,CT
0
MSG8

PAR 3
CT<-N
0

PAR 6
CONT
0

0

0

The "AUTO 100" verb, noun of the first action indicates that this action should
be considered 100 percent of the time. If this is the start of the adventure,
all bit flags will be cleared. If bit flag 1 is cleared, this action is
executed ("-BIT I" is the only condition which could be "false" - "PAR"
conditions are always "true"). Since all bit flags are cleared at the start of
an adventure, this bit will be cleared when the game is started. Bit flag 1 is
subsequently set so this action will not be executed again. Since the next time
the automatic actions are scanned, bit flag 1 will be set and the condition
"-BIT l" will be false so none of the commands will be executed.

The "EXM,CT" command and the associated parameter 3 exchange the CT counter
value with alternate counter 3. Next, the CT value is set to 6 with the "CT(-N"
command (and a parameter of 6). The CONTinue flag is set since more commands
are required than are available in one action entry. The next action switches
CT and alternate counter 3 back again. Then our friendly opening message 8 is
displayed. Message 8 could be any message the adventure author chooses. In
fact, it doesn't even need to be displayed, but most adventures start out with
some sort of message. The title of the adventure and author credits are usually
given.

The "EXM,CT" commands were necessary since TAS allows only testing, setting and
arithmetic to be done to the CT counter. The other alternate counters (0-7) can
not be set or tested directly, they must first be exchanged with the CT counter.

The Adventure System Page 2 - 20

Before giving the rest of the actions in this example, tpe objects and messages
used are defined:

Objects:
3
4
5

Messages
8
9
10
11
12
13
14

Buffalo
Dead meat/KEA/
Six shooter/GUN/

Welcome to example adventure!
GOT RIM!
BANG!!
It's a fine looking thunder stick! It has
shots left.
Click
No buffalo here

These objects and messages will be used in the rest of the action entries.
Objects 4 and 5 may be carried since they are named objects. Named objects
(notice the name between the slashes at the end of the object description) are
explained in the OBJECT section of this chapter. For now, just accept the fact
that these objects can be picked up and dropped without action entries to
perform these functions.

The actions used in this example are:

10: SHOO BUFF IN/W 3 HAS 5 PAR 3 0 0
EXM,CT CONT

11: AUTO 0 CT•O 0 0 0 0
MSG13

12: AUTO 0 CT>O PAR 4 PAR 3 0 0
MSGlO MSG9 EXX,X CT-1

13: AUTO 0 PAR 3 0 0 0 0
EXM,CT

14: SHOO BUFF -IN/W 3 0 0 0 0
MSG14

Action 10 is evaluated if the player types "SHOO BUFF". The conditions are
"IN/W 3" and "HAS 5". These conditions check if the player is in the same room
as the buffalo and if he is carrying the gun. If either of these conditions
are false, then this "SHOO BUFF" action is skipped and the next "SHOO BUFF" or
"SHOO ANY" action is considered. For now let's assume the conditions are true
(the player is in with the Buffalo and is carrying the gun). The commands of
action 10 will exchange counter 3 and the CT value. The CONTinue flag is also
set.

Action 11 is considered next. Notice that the verb, noun combination is "AUTO
O". This action is a CONTinuation of action 10. If the CT value is equal to
zero (no more shots left), then message 13 is displayed (Click). Regardless if
action 11 was true or false, action 12 is also considered. This is the nature
of CONTinued actions.

I
I
I
I

I
I
I
I
I

I
I
I
I
I

I

I

I

I

I

I

I

I

I

I

The Adventure System Page 2 - 21

Action 12 checks if the CT value is greater than zero (some shots are left in
the gun). If there are some shots left, messages 10 and 9 are displayed (Bang!
Got him!), the location of the Buffalo and dead meat are switched (the dead meat
would have originally been in the storeroom) and one is subtracted from the CT
value.

The order of actions 11 and 12 was not arbitrarily selected. If the otder were
switched and the shot counter would have had one bullet left, subtracting one
from it would set it to zero. Then action 11 would have "seen" a zero CT value
and displayed the message "Click". It is intended that either one of these
CONTinued actions will be true, not both. Switching their order raises the
possibility that both could be true.

Action
and an
again.
action
always

13 is used to switch the CT value and counter 3 back again. Whenever CT
alternate counter are switched, care should be taken to switch them back
This is the reason that the second exchange was done on a separate

in this example. Since there were no conditions in action 13, it would
be executed if action 10 were true.

If the player typed "SHOO BUFF" and the conditions of action 10 were not met,
then action 14 would be considered. The condition of action 14 is a "-IN/W 3".
Therefore, if the player is not in the same room as the Buffalo, this action is
true and its commands are executed. If this is the case, then message 14 is
displayed (No buffalo here).

An "EXAM GUN" action could be used to find out how many shots were left in the
gun. It could read:

20: EXAM GUN

21: AUTO 0

AVL 5
EXM,CT
PAR 3
EXM,CT

PAR 3
CONT

0
HSG12

0
HSGll

0

0
DSPCT
0

0

0

Action 20 is executed if the player is either holding onto the six shooter or is
in the same room as the gun. If this is true, then counter 3 is exchanged with
the CT value. Message 11 is displayed next (It's a fine looking thunder stick.
It's got). The number of shots left is then displayed by the "DSPCT" command
(CT holds the number of shots left after the EXM,CT command of action 20). The
CONTinue flag is also set. Action 21 is used to exchange CT and counter 3 back
again. Message 12 is also displayed (shots left).

Some action is also needed so something is displayed when the gun is shot.
There are two cases involved. Fi rs t, if the gun is empty, the message "Click"
is displayed. Second, if the gun has some shots remaining, the message "BANG!"
is displayed and one is subtracted from the shot counter. These actions could
be:

96: SHOO ANY HAS 5 PAR 3 0 0 0
EXM,CT CONT

97: AUTO 0 CT•O 0 0 0 0
MSG13

98: AUTO 0 CT)O 0 0 0 0
MSGlO CT-1

99: AUTO 0 PAR 3 0 0 0 0
EXM,CT

The Adventure System Page 2 - 22

Action 96 checks if the player is holding onto the gun. If he is, then CT and
counter 3 values are exchanged and the CONTinue flag is set.

Action 97 is considered next. If there are no shots left, then message 13 is
displayed (Click).

Action 98 checks if any shots remain. If the number of shots left is greater
than zero, then message 10 is displayed (BANG!) and one is subtracted from the
shot count.

Action 99 is used to exchange CT and counter 3 back again. Note that alternate
counter 3 and CT were switched back again. This fact can not be over
emphasized. It is extremely important to always switch the counters back. It
will not cause your computer to Self-destruct, but you will almost certainly
have problems with subsequent use of counters.

Notice that the "SHOO BUFF" action (actions 10 and 14 given above) preceded the
"SHOO ANY" action (action 96 given above). If the "SHOO ANY" action preceded
the "SHOO BUFF" action, the latter would never be executed. If the player is
holding onto the gun when he types "SHOO BUFF", the "SHOO ANY" action would be
found true and the "SHOO BUFF" action would never be reached (if their order was
reversed). It is good practice to put the more "limited" actions before the
less "limited" ones.

For more information on using the counters, see Chapter 5.

The value of the current room (CR) may be saved and restored by exchanging it
with an alternate room register. The saved room value may be restored by
performing another exchange with the same alternate room register.

Alternate room registers are another potentially confusing facet of the
adventure data base format. There are currently six alternate room registers
available numbered 0-5. The main purpose of the alternate room registers is to
save a player's current location for recall at a later time. As a side note,
don't worry much about the alternate room registers. None of the over three
dozen adventures received at The Alternate Source for review have used alternate
room registers. In other words, they are very esoteric commands. But the need
for them may arise at some time. So if you don't understand their use right
away, don't be discouraged. You can write a good adventure without using them.

As an example, suppose you had an adventure with days being accounted for (night
and day). After so many moves the player will fall asleep. When the player
falls asleep, he has a dream. This dream could be a hint of upcoming
attractions. In this case, the dream will move the player to a "hint" room,
display the hint room, then move him back to his original room.

A "GOTOY" co111D1and in the action entries with the appropriate parameter could
move the player to the "hint" room, but there is no way a "GOTOY" could send him
back to the original room. The room number to be returned to would change
depending on which room the player was in before he had his "dream".

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

The Adventure System Page 2 - 23

For example, the player could .fall asleep while in room 1 or room 5. If the
dream room was 10, a "GOTOY" with a "PAR 10" would send him to the dream room.
However, we couldn't send the player back to the room he was in before the dream
since a second "GOTOY" command would need a "PAR" room number to send him to.
This could be roo111 1 ("PAR l") or room 5 ("PAR 5").

In this case, the alternate room registers can come to the rescue. The player's
current room DU11ber could be stored in an alternate room register before mving
him to the '"hint" room. The commands for using the alternate room registers are
"EXRMO'" and "EXC, CR... In this example, we will use alternate room register O
thus utilizing the command "EXRMO".

The scenario to demonstrate this goes as follows: the player is currently in
room number 5. He will fall asleep and be temporarily sent to room 17 (the
"hint" room). After a delay (via the "DELAY" command), he will return to his
original room number or room 5. For simplicity sake, bit flag 1 will be set if
the player has just fallen asleep. The actions to perform this could be:

·AUTO 100 BIT l
CLRZ

PAR 1
EXRMO

PAR 17
GO TOY

0
CONT

0

This action will test if bit flag 1 is set. If it is set, then the player has
just fallen asleep. NOTE: in this example, some actions preceding this one
would have set the flag if the player bad fallen asleep.

Since all conditions in this action entry were true, the commands would be
executed. In this case, bit flag 1 is cleared and the player's current room is
exchanged with the room number currently stored in alternate room register O.

It should be noted at this point that after the exchange, the player's room
number will be a bogus value unless the alternate room register had been
previously set. At this point the player is sent to room 17, or the "hint"
room. 'nle continue flag is also set. The subsequent action entry could be:

AUTO 0 0
DSPRM

0
DELAY

0
EXRMO

0
DSPRM

0

This action will display the p1layer's current room, which at this point is room
number 17 (the "hint" room). The "DELAY" command will pause the display for
about one second. After the pause, the player's room number before he fell
asleep is recalled by doing another "EXRMO". This command will exchange his
current room number (17) with the room number held in alternate room register 0
(room 5 at this point). The "DSPRM" command will display the player's current
room which at this point is room number 5.

There are no obvious applicatlons for setting the room registers but an explana
tion will be given anyway. Just because there are no obvlous applications does
not mean there aren't any. Who knows, you may be the first to come up with one!

The Adventure System Page 2 - 24

Suppose we are currently in room number 5 and we want to set alternate room
register 2 to room 10 and alternate room register 5 to room 23. The octton to
do this could be put in some initialization routine, such as displaying the
opening message, etc. The example here assumes this case with message 8 being
the opening message:

0: AUTO 100 -BIT l PAR 2 PAR 10 0 0
EXC,CR GO TOY CONT MSG8

1: ADTO 0 PAR 2 PAR 5 PAR 23 PAR 5 0
EXC,CR EXC,CR GO TOY EXC,CR

2: AUTO 0 PAR 1 0 0 0 0
SETZ

Action 0 is the initialization action entry. When adventures are started, all
bit flags are cleared. Therefore, at the start of this adventure, a "-BIT"
condition will always be true. If in the same set of initialization action(s),
the bit flag is set, the initialization action(s) will not be executed again.

The first MEXC,CR" with an associated parameter of 2 exchanges the player's
current room with alternate room register (or arr) 2. In this case, alternate
room register 2 will hold a 5 after the switch since the player's current room
was 5. The "GOTO 10" ("GOTOY" command and a parameter of 10 - this shorthand
will be used from this point on) sets the player's room number to 10. The
'"CONT" is used to tell the adventure driver program that this action entry will
CONTinue on with all subsequent "AUTO O" actions. Message 8 is displayed as
some sort of opening message.

Action l exchanges the player's current room and alternate room register 2
again. Before the switch, alternate room register 2 held 5 and the current room
was 10. The switch sets alternate room register 2 to 10 and the current room t o
5. Thus, alternate room register 2 is set as we originally wanted.

Next, alternate room register 5 and the current room are exchanged. This sets
alternate rooa register 5 to room number 5. The "GOTO 23" sets the current room
to 23. The last "EXC,CR .. switches alternate room register 5 and the current
room back again. This second exchange sets alternate room register 5 to 23 and
the current room to 5.

Our task is now completed except for one detail, the initialization bit flag
must be set so this set of actions are not executed again. Action 2
accomplishes this by setting bit flag 1.

The vocabulary consists of a list of verb strings and noun strings. These are
the ln>rde the player may use in the adventure. Synonyms are handled by
beginning the word with an asterisk, which is then treated the same as the first
previous word without an asterisk. Examples of primary vocabulary words and
synonyas are in the following table:

Vocabulary

GET
TAPE
DOG

Synonym

*TAKE
*CASSE'ITE
*HOUND

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I
I

I
I

I

The Adventure System Page 2 - 25

A pritll8ry vocabulary word may have more than one synonym. For example, in the
following list of verbs, the verb "GET" has three synonyms:

Verb

10: GET
11: *TAKE
12: *GRAB
13: *SNATCH

If there is an action entry which uses the verb "GET", the player may type "GET"
or any synonym of "GET" for his inputted verb to match the action entry's verb,
noun combination. This is what makes synonyms powerful. For example, suppose
there was an action entry with the verb, noun combination of "GET PLOW". If the
player input "GRAB PLOW", the adventure driver would see the player input as
"GET PLOW" since · "GRAB" is a synonym of "GET". This eliminates having duplicate
action entries just to allow the player to use two similar verbs.

There are really two lists of vocabulary words, one for the verbs and one for
the nouns. The adventure editor (ADVEDT) references these words by number.
This reference number is the position in the vocabulary list of the word in
question. Notice how the short list of verbs above ("GET", "*TAKE", etc.) were
numbered. They are referenced by the ADVEDT program by that number. For
example, if you wanted to change verb 11 from "*TAKE" to "*LIFT", the adventure
editor would be told that verb 11 is to be changed.

Some of the vocabulary entries are predefined by ADVENTURE and SHOULD NOT be
ch&nged. These predefined verbs and nouns are listed below:

Vb# Verb

O AUTO This is not entered by the player while playing the adventure.

1 GO

It is the verb entered when typing in the auto action entries
which are all evaluated before a valid player input.

This is a special case for the direction nouns 1-6.

10 NOUN This is used to pick up objects if there is no action entry that
applies and the noun matches the object name enclosed in slashes
of an object in the current roOll. See the OBJECT section of
this chapter for more information on the object name.

18 DROP This is used to drop objects if there is no action entry that
applies and the noun matches the name enclosed in slashes of an
object being carried.

The Adventure System Page 2 - 26

Nnl Noun

0 ANY This is not entered by the player while playing the adventure.
It denotes the action entries which can match any noun (or no
noun).

1 NORTH This is reserved for the first room direction entry with verb I.

2 SOUTH This is reserved for the second room direction entry with verb
I.

3 EAST This is reserved for the third room direction entry with verb I.

4 WEST This is reserved for the fourth room direction entry with verb
I.

5 UP This is reserved for the fifth room direction entry with verb 1.

6 DOWN This is reserved for the sixth room direction entry with verb 1.

The vocabulary words are used by the action entries (as was shown numerous times
above when action entries were described). To see an actual list of vocabulary
words, take a look at the adventure data base listed in Chapter 5.

The word length of the adventure affects the vocabulary words. If the word
length of the adventure is four, then only the first four character of the verbs
and nouns are significant. For example, the noun "BUFF ALO" appears as "BUFF" to
the adventure driver.

One thing to consider when writing the vocabulary words is word duplication.
When the player inputs his verb, noun to the adventure driver, that program
scans the vocabulary words for a match from the first word in the list to the
last. Suppose the word length of an adventure is three. The nouns "KITE" and
.. KITCHEN" are in the noun vocabulary list. If the word length is three, both of
these nouns appear to the adventure driver as "KIT". Suppose "KITE" precedes
"KITCHEN" in the noun list, and the player inputs something like "GO KITCHEN".
The verb, noun combination would appear to the adventure driver as "GO KIT"
since the word length is three. When a scan is made of the nouns to see if
"KIT" is a legal noun, the first match is made with "KITE". If the action entry
which allows the player to enter a kitchen has a verb, noun combination of "GO
KITCHEN", then the match will not be made. Since the noun match was with
.. KITE", the adventure driver program would be looking for a "GO KITE" action
entry and will never "see" a "GO KITCHEN" action entry.

The solution to this potential problem is to use vocabulary words that have at
llOSt the number of word length characters in them. For example, if the word
length was three, you would enter the noun "KITE" as "KIT". If both "KITE" and
"KITCHEN" bad been entered in the noun list as "KIT", the problem discussed
above would not happen.

I

I

I
I

I
I
I
I

I
I

I
I
I

The Adventure System Page 2 - 27

It is important to look at your vocabulary words for these word duplication
problems. Another thing that should be noted is that two primary nouns or verbs
can not have the same synonym. When a scan is made of the vocabulary and the
player's verb and/or noun is a synonym, only the first occurence of the synonym
will be 11atched. If that synonym is used for a primary noun or verb further
down in the vocabulary list, it will never be matched. For example, look at the
following nouns:

Noun#

10
11
12
13

Noun

PISTOL
*GUN
RIFLE
*GUN

If the player typed in "SHOOT GUN", the adventure driver would scan the nouns
for a match of "GUN". The first match would be with noun 11. Since noun 11 is
a synonym, the first preceding primary noun is used. In this case, it is noun
10, the "PISTOL". As you can see, the "GUN" synonym of "RIFLE" will never be
matched.

The vocabulary words must be in all upper case letters. The adventure editor
program, ADVEDT, will force them to upper case for you so this is not a
potential problem.

ROOMcntria·

The room entries consist of the room number of the adjacent room(s) in the six
reserved directions North, South, East, West, Up and Down plus a room
description string. If the adjacent room number is zero, there is "no obvious
exit" in that direction.

Rooms in The Adventure System are referenced by number. For example, a room may
be described as a "Jail Cell... However, it is referenced by its numeric
position in the list of rooms. When the adventure is played, the adventure
driver refers to the player's room as a number. Take the following room as an
example:

Room fl N s E w u D Room description

5: 0 2 0 15 0 0 Closet

If the player is in room 5 (the room described above), he may move SOUTH or
WEST. Since a zero is the adjacent room in the N, E, U and D directions, he may
not move in those directions. If the player moves SOUTH, he will move to room
2. If he moves WEST, he moves to room 15.

If the text description of the room does not begin with an asterisk("*"), the
adventure driver program will precede the room description with "You're in a";
otherwise, it will just display the description minus the asterisk. In our
above example, the room description would be displayed as "You're in a Closet".
However, if the room description were:

*I'm at the entrance of a large cave

The Adventure System Page 2 - 28

The room description would be displayed as:

I'm at the entrance of a large cave

Room zero is reserved as a storeroom for objects currently not in any room. The
storeroom is typically used for storing objects the player has not found yet or
objects that the adventure author does not want the player to see at this time.

The player can not get to room zero by using one of the reserved directions (he
can not move SOUTH, etc. into room zero). Actions usually do not permit the
player to enter this room.

The last room is reserved for some sort of limbo state should the player die.
This is where the player is sent with a DEAD command. It may or may not contain
exits back to the other rooms. The last room number is contained in the HEADER
section of the adventure.

~en the adventure driver displays the room discription and there are objects in
the current room, it will add ". Visible item:" after the room description.
This should be considered when deciding on your room descriptions so this
message is not "broken up". By "broken up", I mean part of the text being at
the end of one line and the rest at the beginning of the next line. For
example, consider the following room description as displayed by the adventure
driver.

I'm at the fork of a road with a fence blocking a trail. Vis!
ble items:

Rattlesnake.

Notice how the word "Visible" is "broken up". If room descriptions are well
thought out, this "breaking up" of words will not happen.

The room description should not be ended with a period or other character of
this type. The visible items message is preceded by a period, so ending a room
description with a period will cause two periods to end the description.

The messages consist of a string of characters for each message to be displayed
by the action entries. Entry O should always be left as a null string and can
not be displayed by the commands of an action entry. Recall that a message 0
was used by the action entry commands as a null or unused command. That is why
message O can not be displayed. The messages are like the text part of BASIC
PRINT statements.

As stated before, the messages are the communication medium between the
adventure and the player." The highest numbered message number is 99.

I
I
I
I
I
I
I
I
I
I
I
I
I

I

The Adventure System Page 2 - 29

Messages can be up to 255 characters. The (DOWN ARROW) key can be used to start
a new line on the display. For example, consider this message:

WANTED: DEAD OR ALIVE (DOWN ARROW)
The Dalton Gang <DOWN ARROW)

REWARD: $5,000! I <ENTER>

The object entries consist
room number of the object.
not found at the beginning
starting room of an object
adventure.

of a text description of the object and the starting
Room zero is used as the starting room for objects

of an adventure. A minus one (-1) is used for the
which the player ls carrying at the beginning of the

The object descriptions should begin with an asterisk if that particular object
is a treasure. For example, an object description of "*GOLD NUGGET*" denotes a
treasure. The SCORE action entry command checks for objects whose current
location is the same as the treasure room defined in the HEADER. If an object
ls in the treasure room, the first character of its description is checked. If
the first character is an asterisk, the object is a treasure. The number of
treasures is computed by the SCORE command in this manner.

Also, if the object is to be picked up and dropped, a descriptive name for the
object is enclosed in slashes at the end of the description. The word between
the slashes must be the same length or smaller than the word length of the
adventure. It 11a1st also be in all upper case letters. If the player's verb is
"GET" or "DROP" and no other action applies, the adventure program will
automatically pick up or drop the object if the player's inputted noun is the
same as the object name. Take the following object as an example:

Obj# Start Room Description

5 15 Hammer/HAM/

At the start of the adventure, this object is placed in room 15. The object is
described as a "Hammer". Note the "/HAM/" at the end of the object description.
This is the "Object Name" described above. Since this name is three characters
long, the word length of this adventure would probably be three.

If the player types "GET HAM" and there are no "GET HAM" or "GET ANY" action
entries, the "Hanuner" is picked up by the player if the carry limit has not been
exceeded and the "Hammer" is in the same room as the player. Moreover, if the
player is carrying the "Hammer" and he types "DROP HAM", the "Hammer" will be
dropped. These "GET" and "DROP" procedures are done automatically without the
use of action entries.

The name of the object must be a noun in the list of vocabulary entries for the
automatic pick up and drop feature to work. The object name must also be a
primary noun, not a synonym. The purpose of this feature is to reduce the
number of action entries required in an adventure. Without this pick up/drop
feature, an action entry would be required to pick up and drop every object.

The Adventure System Page 2 - 30

More than one object may have the same object "name". The adventure driver
program will scan from the lowest numbered object to the highest numbered object
for a "name" that matches the player's noun. If a match is made and the
location of the object is the same as the player's current room, the object is
picked up, provided the carry limit is not exceeded. If the location of this
object is not the same as the player's room, this object is skipped and the
scanning procedure continues. The following is an example of multiple object
names:

Obj# Current Room Description

3
4
5

10
5
3

Security Badge/BADG/
Visitor's Badge/BADG/
Marshall's Badge/BADG/

Note that the object names of objects 3-5 are the same, "/BADG/". Suppose the
player was currently in room 5 and was not holding any of these badges. If the
player typed in "GET BADG", the automatic get procedure would be started. The
first object name that matches the player's noun ("BADG") is object 3. However,
object 3 is not in the player's current room (room 5) so this object is skipped.

The next object name that matches the player's noun is object 4. This object is
in the player's current room (room 5) so it is picked up (provided the carry
limit is not exceeded).

Suppose the player was currently holding every one of the badges. If he typed
"DROP BADG", the automatic drop feature would be started. The first object
being carried by the player with the name "BADG" is object 3, so this object is
dropped. The next "DROP BADG" would drop object 4, etc.

An example of a treasure which can be picked up is:

FIRESTONE (cold now)/FIR/

Which can be picked up by the word "FIR" ("GET FIR"). Before the fires tone is
cooled, the treasure was in the storeroom and the following object was in the
room:

Glowing *FIRESTONE*

Because this object does not begin with an asterisk, it is not recognized as a
treasure. Also, it can not be picked up since it has no object name (name
between slashes). The action that cools the firestone exchanges the locations
of these two objects.

The action entries can allow objects which do not have object names to be picked
up. For example, suppose there were the following two objects in an adventure:

Object#

25
26

Object description

Red hot poker
Wet towel/TOWEL/

I
I
I

I
I

I

I
I

I

The Adventure System Page 2 - 31

The player can pick up and drop object 26, the towel, with no action entries
since it is a "named" object. However, object 25. the red hot poker, can not be
picked up without action entries because it is not "named". There may be an
action entry which requires the player to be holding onto the wet towel before
he can pick up the red hot poker. The action entry controlling this could be as
follows:

GET POKER IN/W 2 5
GETX

HAS 26 PAR 25 0 0

The "IN/W 25" condition makes sure the red hot poker is in the player's current
room. The "HAS 26" condition checks to see if the player is holding onto the
wet towel. If both of these conditions are true, then the command '*GETX" is
executed. This command will get object 25 which is the red hot poker.

Wben objects are displayed by the adventure driver, their description is ended
by a period. Take the two objects described above for example:

I'm in a kitchen. Visible items:

Read hot poker. Wet towel.

Notice how both of these objects are followed by a period. The adventure driver
progr~m does this automatically.

Object number nine (9) is reserved as the artificial light source in its lighted
state. The adventure driver program checks to see if object 9 is available when
a room is in darkness (NIGHT).

If a room is in darkness (Bit flag 15 set or the NIGHT command is issued) and
the artificial light source is present, then the room is displayed in its
lighted state. If the artificial light source is not present in a dark room
(set bit flag 15 or NIGHT command), then the only information given about the
room is: .. It's too dark to see!". The room description, objects and obvious
exits are not displayed if the room is in darkness. If the player moves in an
illegal direction in the dark (a non obvious exit direction), be is killed.

The time limit value in the HEADER section is the maximum number of moves the
artificial light source will last before it runs out. This time limit counter
(alternate counter 8) is automatically decremented by the adventure driver every
time the player takes bis turn. If the time limit is decremented to zero, the
artificial light source is "snuffed out" and sent to the storeroom. Therefore,
if the player ~s in a dark room (Bit flag 15 set or the NIGHT command has been
issued), and the artificial light source goes out, the light source would be
sent to the storeroom and the player would be left in the dark.

The FILL command AGETs object 9 and sets the time limit counter back to the time
limit value held in the HEADER section. Examples of object 9 are a lit
flashlight and a lit lamp. Chapter 5 contains the listing of an adventure which
uses an artificial light source. It may be helpful to review this chapter for
more information on the artificial light source.

The Adventure System Page 2 - 32

The trailer information contains the version number. the adventure number and a
security ch~cksum. If the version number is 415 it will be displayed as "4.15"
when the HEADER section is listed. The adventure number is simply the number
identifying the adventure. The security checksum is 2 * #actions + #objects +
version#. If the checksum computed by the adventure driver program does not
equal the one in the adventure file, the adventure driver program will not allow
the game to be played since it contains bad data.

The TRAILER is controlled and updated automatically by the adventure editor
program, ADVEDT. This data base section is transparent to the adventure author
and player. ADVEDT will compute and use the proper values when a data base is
saved to disk or tape.

I

This chapter will give the rules governing the entering of an adventure with the
adventure editor, ADVEDT. These are rules pertaining to the ADV adventure
driver program, not the adventure editor (ADVEDT). Rules are broken down by
data base sections such as action entries, vocabulary, etc.

Rules for the Action entries are as follows:

l) All of the automatic actions must precede player input
actions. Any auto-actions not placed before the player
input actions will be ignored.

2) If the action entry uses commands which require
parameters, there must be parameters in the condition line.
If not, the results will be unpredictable.

3) The verb and noun of an action entry must be a ~rimary
noun, not a synonym.

4) The range of values which accompany a condition code
(Le. the 10 of an "IN 10" condition) must be in the range
0 to 1600 inclusive.

5) The value which accompanies a condition code must
reference a "real" item. For example, if there is a
condition code like "HAS 75", there must be an object 75.
The same goes for rooms, bit flags, counters and messages.

Rules for the vocabulary:

1) The predefined verbs and nouns (NORTH, GET, etc.) must
remain in their preset positions. Failure to do so might
cause difficulty in rooving from room to room and/or
carrying objects.

2) This is not a rule, but a strong suggestion. When
keying in verbs and nouns with ADVEDT, make your vocabulary
words the same length or shorter than the word length
specified in the header. This will make unintentional
duplicate words easy to find.

Duplicate nouns and verbs can be a potential problem.
For example, suppose noun 10 was SHED and noun 11 was
SHELF. If the word length of the adventure was three, SHED
and SHELF would appear to be the same noun, SHE (the word
is truncated at three characters). This is where the
problem occurs. If an action entry refers to SHELF (i.e.
EXAMINE SHELF), and the player types in "EXAM SHE", the
adventure driver program starts scanning the list of nouns

The Adventure System Page 3 - 2

Since the noun number the adventure driver is looking for
(11) is not the same as the one it found (10), the action
entry is never considered (the verb, noun combinations of
the player and action entry do not match). By limiting the
length of inputted nouns and verbs to the word length of
the adventure, this problem will never crop up.

3) If a word is to be a synonym, it must be preceded by an
asterisk and placed immediately after the primary noun or
verb. For example, if GO is the verb and RUN, WALK and
ENTER are to be synonyms, the list of verbs would read GO,
*RUN, *WALK and *ENTER.

4) Vocabulary words must not contain imbedded asterisks.
Any other character may be used in a vocabulary word.
Examples are "$20", "30", etc. Vocabulay words must be
upper case letters and/or special characters. Special
characters are "! .. , "#", "$", etc.

Room rules are as follows:

1) The header contains the number of rooms, the last being
used to send the player to after a DEAD command. The last
room should be some sort of limbo state or something
similar. A common last room text description is "lot of
trouble". If the player ends up in this room, the room is
described as "I'm in a lot of trouble".

2) Each room has six values associated with it. These are
the room numbers which are entered on a direction command
(1. e. "GO NORTH"). These values should be legal room
numbers (ADVEDT won't let a bad number be entered). A zero
is used if no exit is possible in that direction.

3) Room number O is reserved for a storeroom. Objects
which have not been found, or are being hidden from the
player are normally placed here.

The rules for the Objects are as follows:

1) The starting room for an object should be a valid room
number. Objects not found yet or not used at the beginning
of the adventure should be in room zero (the storeroom).
Objects the player is carrying at the start of the
adventure should have a starting room of minus one (-1).

2) An object name is placed between slashes at the end of
the object· description if that object is to be carried and
dropped via the GET and DROP verbs (with no action
entries). The name should be the same length or less than
the word length of the adventure.

I
I

I
I
I
I

I

I

The Adventure System Page 3 - 3

3) The object name must be a primary noun in the
vocabulary list, not a synonym. If the object name is a
synonym, the pick up and drop feature will not work for
that object. If the player's noun is a synonym, the
associated primary noun is found and that primary noun is
uued when trying to match an object name. This is why the
object name must be a primary noun.

4) l'he first character of an object description must be an
asterisk for the object to be recognized as a treasure.
Otherwise, the SCORE command will not recognize the object
as a treasure.

5) Object number 9 is reserved as the artificial light
source in its lighted state. The time limit value held in
the HEADER is decremented each time this object is not in
the storeroom (room 0).

6) The object name must be all capital letters.

The following is a description of the messages displayed and tasks performed
automatically by the adventure driver.

1) If the player is in the dark and he moves in an
illegal direction (i.e. NORTH when there is no obvious
NORTH exit), the player is killed, the room is made light,
and the player is moved to the last room number. The
message "I fell and broke my neck!" is displayed.

2) If the player is in the dark and he moves in a legal
direction (i.e. NORTH when there is an obvious NORTH exit),
the message "It is dangerous to move in the dark" is
displayed. The player is not penalized for moving in the
dark as long as it's a "legal" direction.

3) If the player's room is light and he moves in an
illegal direction, the message "I can't move in that
direction" is displayed.

4) If the artificial light source runs out, the message
'"The light ran out" is displayed and the artificial light
source is moved to the storeroom.

5) If the artificial light source is not in the storeroom. and
the number of "turns" before it runs out is between 1 and 24,
the message "Light runs out in XX turns!" is displayed.

6) If the player tries to GET an object and he is already
at the carry limit, the message "I'm carrying too much ••
• Take inventory!" is displayed.

7) If the action entry command DEAD is issued, the
message .. I'm dead" is displayed.

The Adventure System Page 3 - 4

8) If the action entry command FINI is issued, the game
is ended and the message "This game is over. Play again?"
is displayed.

9) If the action entry command SCORE is issued, the treasures
are counted and the message "I've stored XX treasures. On a
scale of 0 to 100 that rates YY" is displayed.

10) If the player stores all of the treasures in the
treasure room and the SCORE command is executed, the
message "Congratulations! You finished it all!" is
displayed.

11) If the action entry command INV is issued, the message
"I'm carrying the following:" is displayed plus a list of
the objects being carried.

12) If the SAVE command is executed, the message "Saving
game. Which number (0-9) ?" is displayed.

13) If the player's inputted verb and noun were both in
the vocabulary (legal entries), and there is no action
entry with those two words together, the message "I'm
sorry, but I don't understand what you mean" is displayed.
For example, "GET" is a legal verb and "NORTH'' is a legal
noun. If the player types in "GET NORTH" and there is no
"GET NORTH" action entry, this message is displayed.

14) If the player's input matches one or more action
entries but all action entries were false (none were
executed), the message "I can't do that • • • yet!" is
displayed.

15) If the player types "GO" with no direction, the
message "Give me a direction too" is displayed.

16) If the player's inputted verb is not in the
vocabulary, the message "I don't know how to
"verb"something." is displayed.

17) If the player's inputted noun is not in the vocabulary,
the message "I don't know what a "noun"is." is displayed.

18) If the player tries to GET an object he is already
carrying, the message "I'm already carrying it" is displayed.

19) If the player tries to GET a named object, and the
object is not in the player's room, the message "I don't
see it here" is displayed.

20) If the player tries to GET/DROP an object which can
not be picked up or dropped, the message "I' t beyond my
power to do that!" is displayed.

I
I

I
I
I
I

The Adventure System Page 3 - 5

21) If the player tries to DROP an object he is not
carrying, the message "I'm not carrying it" is displayed.

22) The adventure driver automatically decrements
alternate counter 8 (the time limit) if the artificial
light source is not in the storeroom.

23) The adventure driver automatically does a DSPRM
co11111and if an object enters or exits the current room.

24) The adventure driver automatically does a DSPRM command
if the player moves to a different room via a GOTOY command.

I
I
I

I

I

1

I

I

I

I
I
I
I
I
I
I
I
I

This chapter contains the instructions for the adventure editor, ADVEDT,
program. The differences between the tape and disk versions are noted where
applicable. Each coDIJlland of the editor will be covered in detail.

Put the ADVEDT diskette in drive 0 and turn on the computer. From the DOS
command mode type:

ADVEDT

Enter BASIC and type SYSTEM. The file name is •A". When the computer prompts
you again, type "/<ENTER)" •

NOTE: Tb.ere is a key frequently used within ADVEDT called the "Exit" key. This
key is either the <BREAK> key or the SHIFT RIGHT ARROW keys. Some DOSes do not
recognize the <BREAK> key as an inputted key. To see if your DOS does, press
the <BREAK> key from DOS command mode. If nothing happens, your DOS does not
recognize the <BREAK> key. If this is the case with your DOS, use the SHIFT
RIGHT ARROW combination. All references henseforth will use the <BREAK> key as
the "exit" key. If you must use the SHIFT RIGHT ARROW combination, just
remember to substitute that combination for the <BREAK> key from now on.

If any high memory drivers are to be used, they must be loaded before the
ADVEDT. They must also protect themselves by setting the high memory pointer
(4049H for Model I, 4411H for Model III, 40BlH for tape version) to some value
below them. Failure to do this will cause "ADVEDT" to overwrite them!

To modify or just peek at an existing data base, READ it into memory and then
use the ADVEDT commands to review it. To create a new adventure simply run
ADVEDT and start entering data via the MODIFY command. It is normally good
practice to clear memory before entering a data base via the CLEAR command.

If a data base has previously been read in during this session with ADVEDT, use
the CLEAR command to zero out that data base. Thie will allow you to start wt.th

a "clean slate".

The ADVEDT coOIDlands and corresponding menu keys are listed below:

R READ an adventure data base in.
W WRITE an adventure data base out.
L LIST the data base.
P PRINT (hardcopy) the data base.
M MODIFY a data base section.
I INSERT blanks into the data base.
X XREF: cross reference utility
C CLEAR a data base out.
E END ADVEDT and return to BASIC or DOS.

The Adventure System Page 4 - 2

Most of these c011111ands have options within them. A description of each command
is given below.

Remember, while in the editor, pressing the <BREAK> key at any time (except
~ or tape I/O) will return you to the main menu.

This co181!land will read in an adventure data base. To activate the command,
press the ~R" key from the main menu.

The disk version of the prograa has the option of reading from tape or disk.
The tape version only allows input from tape. Select the appropriate device at
this point. If tape is selected and you are using a Model III, the choice of
fast (1500 baud) or slow (500 baud) cassette rate is given. If a disk read is
specified, simply supply the adventure name and the drive number. If the drive
number is not entered, the first occurrence of the file is used. The drive
number is entered by typing a colon followed by the drive number AFTER the
adventure name.

The adventure name may be at uw:>st two characters from 0-9 and A-Z. If two
characters are entered, such as "00", the file name will be "ADVENT/DOO".

Examples of good adventure names are:

Characters

A: 1
OA
ZD:O

Resulting file name

ADVENT/DA: I
ADVENT/DOA
ADVENT/DZD:O

If an error occurs while reading a data base, an appropriate error message is
displayed and control returns to the main menu.

If bad data somehow gets into the data base, a "*BAD SECURITY*" message is
displayed. The data base will have been read in, but the accuracy of the data
can not be guaranteed.

The READ comm.and will zero out any data base currently tn nie=ory before reading
in the specified data base. This is done so no information frOlll a previously
read adventure carries over.

Note that the tape version of the program does not support named adventure
files. Adventures may be distinguished by writing a name on the cassette label
the data base is on.

The READ command DOES NOT respect the high memory value. If an extremely large
data base is read in, it may load into high memory drivers if they are present.
If this happens, load ADVEDT again without the high memory driver. It is very
doubtful that a data base will load in over the high memory pointer however.
The only possible way of this happening is you wrote an extremely large
adventure with no high memory drivers in place. Then you tried to read it back
in with high aemory drivers in place.

•

The Adventure System Page 4 - 3

Suppose we wanted to load an adventure data base titled "Al" with the disk
version of ADVEDT. The command flow would go something like this (user inputs
are underlined):

Do you want to READ, LIST, PRINT, XREF, WRITE, MODIFY, INSERT,
CLEAR. or END
R, L, P, X, W, M, I, C or E ? R

(Pressing the "R• key initiates the READ command)

The following message is displayed after pressing the "R" key:

Tape or Disk
T or D ? D

(Press "D" for Disk input)

The following message is displayed after pressing the "D" key:

Adventure name and drive I ? Al<ENTER)

After pressing the (ENTER) key, ADVEDT will proceed to read the adventure in.
After the adventure is read in, the program returns to the main menu.

vall OCT ii ijij

The WRITE command will store an adventure data base
disk version of ADVEDT, a data base can be saved on
version allows output only to a cassette recorder.
BAUD rate (1500 or 500) may be specified.

on disk or tape. With the
tape or disk. The tape
If using a Model III, the

If the adventure being written out was previously read in, pressing <ENTER) for
the adventure name and drive rwmber will write the adventure out with the same
adventure name and drive number. This way you do not have to continuously
reenter the adventure name.

The adventure name entered must be in the same format as in the READ command.
If a bad adventure name is entered, an error message will be displayed and
another adventure name will be requested.

Before writing the data base, AlJVEDT verifies that the HEADER is holding the
correct limiting values of the number of actions, messages, rooms, vocabulary
and objects. For example, suppose you entered 50 messages but the HEADER said
there were only 40. Writing the data base out without checking the limits would
result in some lost data (messages 41-50). ADVEDT makes a check and will write
out all 50 messages.

The Adventure System Page 4 - 4

Suppose we wanted to save an adventure data base just typed in to disk. We have
chosen to call this adventure "Zl". The procedure would be:

Do you want to READ, LIST, PRINT, XREF, WRITE, MODIFY, INSERT ,
CLEAR or END

R, L, P, X, W, M, I, C or E ? W

(Press "W" for the WRITE corlllland)

Tape or Disk
T or D ? D

(Presa "D" for Disk input)

The following message is displayed after pressing the "D" key:

Adventure name and drive 0 ? Zl<ENTER)

This nd is used to li t ny part of the data base on the CRT. After ''L" is
entered from the main nu, a LIST ub-m nu is displayed. That LIST sub-menu
is:

Which section of the data base do you want to LIST:
HEADER, ACTIO S, VOCAB, ~ MS, SSAG S or OBJECTS
H, A, V, R, Mor 0 ?

'nte section to be listed is selected by pressing the first letter of its name.
For example, if "A" i pres ed, the Action entries are to be listed. If the
(BREAK) key is pressed, the LIST sub-menu is exited and the program returns to
the main enu.

After a section of the data base is selected, the lower and upper limits to be
displayed are input (except for the HEADER which lists all of its variables) .
If the <ENTER> key is pressed as the response to this inquiry, all of that data
base section will be listed. If ju t one number is entered, that number is
taken as the lo er and upper 11 its. Wh t results is that only that one item
will be listed.

The listing will automatically pause ter sere n full of lines have been
displayed. To continue the listing, press any key except <BREAK> or <CLEAR>.

The nWllber of ite s in each data base section is kept in the HEADER. This value
is the upper limit used by ADVEDT when the <ENTER> key is depressed on the limit
inquiry (lower and upper bounds). The MODIFY com nd will allow input past this
value without changing the HEADER value. As a result, all items of a data base
section may not be reviewed on a LIST, PRINT or MODIFY if (ENTER) is pressed to
the limits query. To fix this, just make sure the HEADER points to at least the
highest value of t e data base section in question.

I

I

I
• •
I
I
I

The Adventure System Page 4 - 5

To LIST Action entries 5 through 65, input the following (user inputs are
underlined):

L (Press the "L" key from the main menu to enter the
LIST sub-menu)

The computer will display the following:

Which section of the data base do you want to LIST:
Header, Actions, Vocab, Rooms, Messages or Objects

Type: H, A, V, R, M or 0 ?

To select a data base section, press the first letter of that section. In our
example this would be the "A" key:

A (To select the Action entries)

The computer will display:

Lower Limit, Upper limit (ENTER is All) ?

Now type in the limits (5 and 65):

5,65<ENTER>

The action entries will be listed starting at entry 5. After six have been
listed, the display will pause. Press any key except <BREAK> or (CLEAR> to
continue the listing. Pressing the <BREAK> key will return the program to the
main menu.

Suppose we want to LIST the HEADER section. From the main menu, press the "L"
key for LIST.

L (Select the "L" or LIST command from the main menu).

The LIST sub-aenu will be displayed:

Which section of the data base do you want to LIST:
HEADER, ACTIONS, VOCAB, ROOMS, MESSAGES or OBJECTS
H, A, V, R, M, or 0 ?

Press the "H" key to LIST the HEADER:

H (Select the "H" or HEADER data base section).

The HEADER will be LISTed as follows (the data presented here is just an
example):

Adventure A Version 1 • 22
Bytes under 16Ka -3274
#OBJ #ACT #VOC #RM MAX BEG
60 224 120 50 4 23

5784 bytes free

#TR WI.EN
7 4

TIME #MSG TR-RM
30000 99 33

The Adventure System Page 4 - 6

The first line of the HEADER list is the name of this adventure ("A"), the
version number (1.22) and the bytes free. The bytes free are the number of text
characters which may be added before the high memory pointer is overflowed. It
is analogous to the free string space left in BASIC.

The "Bytes under 16K= -3274" line gives the number of bytes under the top of
memory in a 16K machine. If the adventure is to fit in a 16K machine, this
number must be gre4ter than zero. In this case, the adventure uses 3274 bytes
more than a 16K machine has.

The next line gives the number of objects (#OBJ), action entries (#ACT),
vocabulary words (#VOC), rooms (#RM), carry limit (MAX), starting room number
(BEG), number of treasures (#TR), word length (WLEN), time limit (TIME),
messages (#MSG) and treasure room (TR-RM) of this adventure in that order. For
example, the number of treasures is 7.

PR.I.NT COUD81t41

The PRINT command will give a hardcopy listing of any one data base section or
all of the data base. Pressing the "P" key while at the main menu will enter
the PRINT sub-111enu.

The PRINT sub-meriu appears as follows:

Do you want to print everything or
just the Header, Actions, Vocab, Messages, Rooms or Objects
E, H, A, V, R, Mor 0 ?

The PRINT sub-menu gives the option of printing any or all of the data base.
Pressing the <BREAK> key while a section is being printed will return control to
the main menu and stop the printing.

The PRINT command, like the LIST command, gives options for upper and lower
limits of the data base section to be printed. After pressing any of the PRINT
sub-menu options, except Everything or HEADER, the limits to be printed are
input. Again, pressing the <ENTER> key will cause all of that data base section
to be printed. The section to be printed is selected by pressing the first
character of its name.

When the "p" key is pressed from the main menu, the computer will display the
following:

Do you want to print Everything in the data base
or just the Header, Actions, Vocab, Messages, Rooms or Objects

Type: E, H, A, V, R, M or 0 ?

If any section of the data base has been entered past its limiting value (the
value held in the HEADER), then all of the data will not be printed. To fix
this, make sure the HEADER points to at least the highest value of the data
base section being PRINTed.

If the printer is not ready when the command is started, ADVEDT will display an
appropriate message and return to the main menu.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I

I

I

I

The Adventure System Page 4 - 7

If either the "everything .. or the "actions" data base se.;tion is selected,
ADVEDT will ask for "Small (80) or Wide (132) column out ut". If you have a
printer which is capable of printing on 132, columns, yo~ may want to select the
Wide column output. If the "Small (80) column output is selected. action
entries will print on 2 lines for each action entry. If the "Wide (132) column
output• is selected, action entries are printed one per line. If you have ma~l
action entries in an adventure, choosing the Wide (132) column ouput will sa'le
paper and speed up the printing of the adventure; you will probably find it
easier tD ead and interpret, ae well.

The MODIFY c01DID8nd is used to edit/create an adventure. To enter the MODIFY
sub-menu, press the "M" key tilbile at the main menu.

The computer will display the following:

Which section do you want to MODIFY:
Header, Actions, Vocab, Rooms, Messages or Objects

Type: H, A, V, R, Mor 0 ?

To modify a section of the data base, simply key in the first letter of its
name. If the option selected is anything other than the HEADER, an inquiry is
made for the lower and upper limits of the data base section to be modified.
Pressing <ENTER) here will let the user modify all elements of that section.
One note however. the user can MODIFY past the limit value held in the HEADER
for each data base section. If (ENTER> is pressed for the lower and upper
bounds inquiry, any elements above the upper limit in the HEADER will be missed.
The fix is to make sure the HEADER points to at least the last item in each data
base section.

When modifying any section of the data base, pressing the <ENTER> key as the
response will leave the item as is.

When an Action is modified, and all conditions and commands have been entered,
an inquiry is made for "Y or N". Pressing "Y" means the modified action was
correct. If "Y" is pressed, all changes to that action, if any, are stored and
the next action entry is displayed until the upper limit specified earlier is
reached. If the ·1r key was pressed, the action entry may be modified again to
correct any problems incurred while modifying it the first time.

When modifying actions, the conditions are entered with a space between the word
and the number. For example, "AVL 50" and "ORIG 5" are legal inputs.

Verbs and nouns must also be entered separated by a space (VERB NOUN). Verbs
and nouns input into actions must match exactly with ones found in the
vocabulary data base section or an error message will be printed. For example,
1f .. EXAMINE" was the entry in the verb vocabulary list, "EXAMINE" would have to
be the verb entry in the action ("EXAM" would not work).

The Adventure System Page 4 - 8

Suppose an action entry was to have "LIGHT TORCH" as its verb-noun. The
conditions were that object 10 must be being carried (object 10 is an unlit
torch) and the commands would be to switch the location of the lit torch (object
9) with the unlit one. The entry of the action would go as follows (underlined
entries are input by the user):

M (from the ma.in menu to enter the MODIFY sub-menu)

Which section do you want to modify:
Header, Actions, Vocab, Rooms, Messages or Objects

Type: H, A, V, R, M, 0 or - ? A

{Select the Actions)

Lower Limit, Upper limit (ENTER is All) ? 123
(Select Action 123)

Action 123: Verb, Noun ? LIGHT TORCH <ENTER)
PAil 0 Cond, Value 1 HAS 10
PAR 0 Cond, Value ? PAR 10
PAR 0 Cond, Value ? PAR 9
PAil 0 Cond, Value 1 <ENTER> (Pressing (ENTER) leaves it the same)
PAR 0 Cond, Value ? <ENTER)

0 Cmd or Msg # ? EXX,X
0 Qnd or Msg I 1 <ENTER>
0 Cad or Msg I 1 <ENTER>
0 Cmd or Msg I 1 <ENTER>
Title ? <ENTER>

OK? Type: Y or N ? Y

See chapters 2 and 5 for more information on what the conditions and commands
entered here actually do. The "PAR O" and "O" preceding the inputs are the
previous values of those entries. A "PAR O" may be entered to delete an
unnecessary condition. A "O" is entered to delete a command. When listed, a
"PARO" will be displayed as just a "O". Since a lot of conditions in the
action entries are not used, this shorthand display is used to ease make the
display less cluttered. Likewise, a "O" command will be listed as a " "

To enter a room called "CLOAK ROOM" with a NORTH exit to room number 10, the
following would be entered:

M (from the main menu to enter the MODIFY sub-menu)

Which section do you want to modify:
Header, Actions, Vocab, Rooms, Messages or Objects

Type: H, A, V, R, M or 0 1 R

(Select the ROOMs)

Lower Limit, Upper limit (ENTER is All) ? 5

(Select room. number 5)

I
I
I
I

I

I

I

I
I

The Adventure System

Room 5: 0 N 0 S 0 E 0 W
Room description:

N,S,E,W,U,D rooms ? 10,0,0,0,0,0
Description ? Cloak room

Page 4 - 9

0 u 0 D

The numbers preceding the letters (N, S, E, etc.) are the previous adjacent room
numbers.

When entering the adjacent room numbers, these values must be less than or equal
to the number of rooms specified in the HEADER. For example, if the header says
there are 10 rooms in this adventure, legal adjacent room numbers would be from
O to IO. If you typed in a room number of 50, ADVEDT would give you an error
message.

Also, when entering the adjacent room numbers, you do not have to enter all six
room directions. Suppose you only wanted to change the third direction (East).
You would only have to enter the first three directions. The forth through
sixth room directions would be left unchanged. If the room modified above is
taken as an example, you would not have to enter "10,0,0,0,0,0" as the room
directions. You could simply enter just a "10". In this case, the second
through sixth room directions (South through Down) would be left unchanged.

The MODIFY command, unlike the READ command, respects the high memory value.
For example, if there are only 10 characters of string space left, and you try
to add a string of a length greater than 10, ADVEDT will give you an out of
string space message.

At times some of the text messages in an adventure have typos or other mistakes.
To correct these errors, the offending text can be simply overtyped. This means
MODIFY the appropriate text string and reenter it.

For example, suppose the following message was in the data base:

Msg# Message text

5 Look out for faling rocks!!!

The incorrect word is "faling" which should read "falling". To correct this
word, we could MODIFY messge 5 and retype the message using the correct spelling
of "falling". The commands would go as follows:

Do you want to READ, LIST, PRINT, XREF, WRITE, MODIFY,
CLEAR or END
R, L, P, W, M, I, C or E ? M

Press "M" for MODIFY.

Which section do you want to MODIFY:
Header, Actions, Vocab, Rooms, Messages or Objects
H, A, V, R, Mor 0 ? M

Press "M" to modify the messages.

INSERT,

The Adventure System

Lower limit, upper limit (ENTER is all) ? 1

Enter a "5" since we want to MODIFY message S.

Message 5
Message ?

Look out for faling rock!!!
Look out for falling rock!!!

Retype the message using the correct spelling of "falling".

Page 4 - 10

In this example, making the correction was fairly simple since the line to be
retyped was relatively short. However, if the text was long, retyping it could
be very time-consuming.

ADVEDT's editing features can eliminate much of this extra typing. The editing
commands are the same as those used by BASIC, so if you are familiar with those
commands, you will have no trouble using them with ADVEDT.

Not every section of the data base is able to use the editor. The following
data base sections support the use of the string editor:

1) Action entry titles
2) Room descriptions
3) Message descriptions
4) Object descriptions

ltftal'811ll 'EDnOlt

The string editor may be entered when ADVEDT prompts you to enter an Action
title, Room descrption, Message or Object description. The prompts for each of
these, which are displayed when using the MODIFY command, are as follows:

Data base section Prompt

----------------- ------
Action title Title ?
Room description Description ?
Message Message ?
Object description Description ?

If the first character you enter at one of these prompts is a SHIFT UP ARROW,
then the editor is entered. If something other than SHIFT UP ARROW is pressed,
then the standard overtype mode is invoked. The text string is replaced by
whatever you enter when overtype mode is used.

The following are the editing commands available (note that these commnads are
the same as those of the BASIC editor):

<ENTER)

Pressing <ENTER) while in the edit mode cause ADVEDT to record all of the
changes to the string you have made (if any).

The Adventure System Page 4 - 11

nn(SPACE BAR)

While in edit mode, pressing the <SPACE BAR> advances the cursor one character
to the right.

To advance the cursor more than one character at a time, type the number of
characters to move over first, then press the <SPACE BAR). For example, "15
<SPACE BAR> will move the cursor over 15 characters.

nn<BACKSPACE)

Moves the cursor to the left by "nn" spaces. If no number "nn" is entered, the
cursor is backed up one space. For example, typing "3<BACKSPACE)" will ioove the
cursor back three spaces.

(L) IST THE LINE

Pressing the "L" key causes the remainder of the string to be listed on the
screen. The cursor is then brought to a new line and positioned at the first
character of the string. This command is used to list the string on the
display.

SHIFT/UP ARROW

The SHIFT/UP ARROW key is used to exit any of the insert-type commands listed
below: I, X and R. After pressing these keys, you will still be in edit mode
nad the cursor will remain at its last position.

(I)NSERT

Pressing "I" enters the insert mode. This allows you to insert text beginning
at the current cursor position. Use the SHIFT/UP ARROW or <ENTER) key to exit
the insert mode. Pressing SHIFT/UP ARROW exits insert mode, but leaves you in
edit mode. Preosing the <ENTER) key exits both the insert mode and the edit
mode.

X (EXTEND STRING)

Pressing the "X" key causes the rest of the line to be listed, moves the cursor
to the end of the line and puts the editor in insert mode so you can add text to
the end of the string.

(H)ACK LINE

Pressing the "H" key tells the editor to delete the remainder of the line (the
current cursor position becomes the end of the line) and enter insert mode.

A (CANCEL CHANGES AND START AGAIN)

Pressing the "A" key moves the cursor back to th beginning of the string and
cancels any editing changes made. For example, if you hvae added, deleted or
changed something in a string and wish to cancel the changes, press the "A" key.

The Adventure System Page 4 - 12

(O)UIT EDITING

Pressing the "O" key tells the editor to end editing anrl cancel all changes made
in the current editing session. If you have decided to not change a line, press
"O" to cancel changes and exit the edit mode.

(E)XIT EDITING

Pressing the "E" key tells the editor to end editing and save all changes made.

nn(D)ELETE

Tells the editor to delete the specified
the cursor. The deleted characters will
show you which characters were affected.
the five characters following the cursor.

nn(C)HANGE

number "nn" charactes to the right of
he enclosed in exclamation marks to
For example, typing "SD" will delete

Tells the editor to allow you change the specified number "nn" characters
following the cursor. Pressing "C" with no number lets you change the next
character. When "nn" characters have been entered, you are returned to edit
mode.

nn(S)EARCHc

Tells the editor to search for the "nn"th occurrence of the character "c" and
move the cursor to that position. If "nn" is not specified, the editor will
search for the next occurrence of the specifieci character. If the character "c"
is not found, the cursor is moved to the end of the line. For example, typing
"2Sa" findes the second occurrence of the character "a" after the cursor.

nn(K)ILLc

Tells the editor to delete all characters up to the "nn"th occurrence of the
character "c" and moves the cursor to that position.

An example of using the editor would be very helpful at this point. Let's use
the example described above. If you like, you can actually input message 5 as
shown above and follow along. The message appeared as follows:

Msg/I Message text

5 Look out for faling rocks!!!

Previously, we retyped the entire message to fix the misspelled word "faling".
Let's use the string editor to fix the offending word. The command flow would
go as follows:

Do you want to READ, LIST, PRINT, XREF, WRITE, MODIFY, INSERT,
CLEAR or END
R, L, P, X, W, M, I, C or E ? M

Press "M" for MODIFY.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I
I
I

The Adventure System Page 4 - 13

Which section do you want to MODIFY:
Header, Actions, Vocab, Rooms, Messages or Ohjects
H, A, V, R, Mor 0 ? M

Press "M" to modify the Messages.

Lower limit, upper limit (ENTER is all) ? 5

Enter a "S" since we want to MODIFY message 5.

Message 5 Look out for faling rocks!!!
Message ? (SHIFT/UP ARROW)

Press (SHIFT/UP ARROW) to enter the edit mode. The "Message ?" line will now
be:

Message ?

The editor is waiting for your command. We want
"faling". Before we can add this character, the
the point where the character is to be inserted.
continually pressing the <SPACE BAR) to move the

Pressing the (SPACE ~AR> once yields:

Message ? L_

to add an "l" to the word
cursor must be positioned to
This can be done by

cursor over.

The cursor moved over one space. Let's move it five more spaces over. Do this
by typing "S <SPACE BAR)". The line is now <lisplayed as:

~essage ? Look o

NOTE: When "S <SPACE BAR)" was typed in, nothing was displayed on the screen.
This is normal for edit mode.

You can move the cursor back and forth with the <SPACE BAR> and <BACKSPACE)
keys. Experiment with these keys moving the cursor forward and backward until
you get the disp]ay:

Message ? Look out for fal

We can now insert an "l" at this point to fix the typo. Enter the insert mode
by pressing the "I" key. Note that the display did not change. Now type an
"l". The display should be:

Message ? Look out for fall

Press the <SHIFT/UP ARROW> keys to exit the insert mode. You can experiment
with the commands available in the edit mode at this point. When you hve
finished experimenting, press the <ENTER> key to save the change.

The Adventure System Page 4 - 14

Let's look at some of the other editor commands. Suppose we want to change
message 5 to "Look out for falling stones". This can easily be done. Position
the cursor so it is at the position shown below:

Message ? Look out for falling

Now press the "H" key for Hack off line. This command deletes everything after
the cursor position and puts you in insert mode. Now type in the word "stones":

Message ? Look out for falling stones_

We are still in insert mode. To exit insert mode press the SHIFT/UP ARROW keys
as done before. The cursor is at the end of the line now. To bring the cursor
to the beginning of the line press the "L" key (List command). The display will
now be:

Message ? Look out for fal ling stones

If we were to press the (ENTER) key now, the changes we have 1118.de would be saved
and message 5 would be shown immediately above. Let's change the word "stones"
to "boulders". Again, we must move the cursor over to the "s" in "stones"
before any changes are made. We' 11 move the cursor over with the "S" (Search)
command this time. Pressing "Ss" will give:

Message ? Look out for falling

There are six characters in the word "stones". To delete that word we type
"6D". This yields:

Message ? Look out for falling !stones!_

The exclamation marks delimit the characters deleted. To enter the word
"boulders", first enter insert mode by pressing the "I" key and then type in the
word:

Message ? Look out for falling !stones!boulders_

Let's save the changes this time by pressing the <ENTER) key. Message 5 will
now read:

Look out for falling boulders

If you have used BASIC's line editor before, just keep in mind that all commands
with ADVEDT's string editor are the same. the only difference is the way the
editor is invoked. In BASIC, the editor is called up by typing:

EDIT • or,
EDIT (line number>

With ADVEDT, press the <SHIFT/UP ARROW> keys when asked to input the string.

I
I
1
I
I
I
I
I
I
1
I
I
I
1
l
l
l
l
l

I

I
I
I
I
I
I
I

I

I
I
I

I
I

I
I
I
I
I

The Adventure System Page 4 - 15

IHSERTc~

The INSERT command will insert blank lines into certain data base sections.
Press the "IH key from the main menu to enter the INSERT sub-menu.

Insertions can be made into actions, verbs and nouns. To select a section, type
in its first letter. Next, indicate the number of blank lines to be inserted.
Lastly, respond with the item number the blank lines are to be inserted after.

The number of blank lines to be inserted must be a positive number. If it is
not, an error message is displayed and control returns to the INSERT sub-menu.

A couple of applications of INSERT are given below:

At times, the user would like to add a synonym to an existing verb or noun in
the vocabulary list. If there is not a blank line for the synonym after the
primary verb or noun, the vocabulary words have to be moved around to make room
for the synonym. This can be a real hassle since the action entries will
probably have to be modified also. For example, if verb number 20 is moved to
verb number 58, then all occurrences of verb 20 in the actions will have to be
changed to verb 58. The actions do not actually contain the text verb, noun
combination, just their position in the vocabulary list. If the order of the
vocabulary is changed, the affected action entries must also be changed. This
would be done by modifying the affected actions and retyping the verb-noun
combination. An easy way to find all occurrences of a verb or noun is use the
XREF command (discussed below) to find which actions they are used in.

Suppose the word EXAM was in the verb list and the synonym *HIT was to be put in
its place. Every action entry with the verb EXAM would now have *HIT in its
place. The easy way to add the synonym would be to insert a blank line before
the EXAM verb and type the synonym in. The INSERT command could be used to put
one blank line before EXAM (actually the blank line would be inserted after the
verb just before EXAM) so *HIT could be entered, thus saving a lot of modifying.
What really happens is that the INSERT command goes through and does all of the
action entry modi fying described above for you. Inserting into nouns is done
the same way.

There are some rules which must be followed however. No insertions may be made
before verb 18 (DROP). Since an insertion before the DROP verb would 100ve it
from its predefined position, an insertion before verb 18 is not allowed.

No insertions are allowed before noun 6. Nouns 1-6 are the predefined room
directions and they can not have any synonyms so no insertions may be done in
them.

Another application of INSERT involves the action entries. At times, a few
blank lines may be needed between two action entries. For example, maybe an
action entry has to be lengthened to the point where a CONT command in the
action entry must be added. If another action entry directly follows the entry
to be CONTinued, at least one of them will have to be moved and retyped. The
INSERT command will allow one or more blank lines to be inser ted so the
CONTinued action entry may be entered with no retyping.

The Adventure System Page 4 - 16

Another use of the INSERT command on actions is for making more space for the
automatic actions. The automatic action entries must precede all player input
actions. If there is no more room for auto-actions, the INSERT command can make
room by inserting some blank lines before the player input actions.

An example of INSERTing follows. Suppose you have the following partial noun
list:

23: SHELF
24: *BOOK
25: CASSETT
26: DIS KETT
27: DOG

If you wanted to add the synonym "*TAPE" to the noun "CASSETT", the INSERT
command could be used. The procedure goes as follows (all user input is
under 11 ned) :

Press the "I" key from the main menu to enter the INSERT sub-menu. This message
will be displayed:

What section of the data base do you want to insert into:
Actions, Verbs or Nouns

Type: A, V or N ? N

(The "N" was pressed to select the nouns)

The computer will resoond with:

How many blank lines ? 1

(We need to insert only one blank line)

The computer will inquire:

After what noun # ? 25

After a few seconds, the insertion will be completed. After the task is
finished the nouns will be listed as follows:

23: SHELF
24: *BOOK
25: CASSETT
26:
27: DIS KETT
28: DOG

Now the MODIFY command could be used to place the noun synonym "*TAPE" at noun
26.

As you can see, noun 26 (DISKETT) was moved to noun 27 (all nouns following the
selected noun are moved down). The INSERT command changes all action entries
affected by this operation (instead of referring to noun 26, refer to noun 27).

I

I

I

I

I

I
I

I
I

I

I
I
I

The Adventure System Page 4 - 17

One warning about INSERT. When an insertion is made, the highest item in the
data base section selected will be D:>ved up in the list. The limiting value in
the HEADER is not updated however. A check should be made to determine if this
i~ the ~ase.

The XREF co111111and returns the number of every action entry a noun, verb, room,
message, object, bit flag or counter appears in. To use this command, type "X"
from the main menu.

The XREF sub-menu will be displayed on
the section the XREF is to be run on.
example, which object number). ADVEDT
input.

the screen. Press the first letter of
Enter the item number for the XREF (for
will not allow illegal values to be

Output may be routed to the screen or printer by typing an "S" for screen or "p"
for printer when asked.

Finally, the limits of the actions the XREF is to be run on is entered. For
example, you may want to see which actions from action entry 5 through action
entry 134 reference object 34.

There are a few oddities about the XREF command. An XREF can not be done on
message o. It may also give strange results on nouns. XREF can find every
occurrence of a noun number. However, no distinction is made from nouns and
auto action probabilities. Just list the actions after the references are given
so a distinction between the word nouns and the probabilities can be made.

When an XREF is run on the verbs, nouns or messages, a match is displayed by the
message "ACTION: n" where "n" is the action number that particular item was
found in.

When an XREF is run on an object, room, bit flag or counter, one of two messages
will be displayed:

The first one is "CONDITION - ACTION: n". This message is displayed if the
item found was referenced in the conditions of the action. For example, "BIT
30", "HAS 10'' and "IN 3" are references in the conditions.

The second one is "COMMAND - ACTION: n". This message is displayed if the item
found was referenced in the commands of the action. For example, "GOTOY" with
the associated parameter in the conditions of "PAR 3" references room 3 or
"AGETX" with a "PAR 10" in the conditions references object 10.

When displaying matches, XREF does not pause the output. Therefore, if there
are more than 15 or so matches, the first ones may be hard to read. In this
case, select a smaller range of actions to be scanned and do the XREF in 100re
than one part. Another solution is to send the output to the printer.

The Adventure System Page 4 - 18

The following table tells which conditions are checked when doing an XREF on the
appropriate data base section:

OBJECTS

HAS
IN/W
AVL

-IN/W
- HAVE
- AVL
-RMO

RMO
ORIG

- ORIG

ROOMS

IN
-IN

BIT FLAGS

BIT
-BIT

The following table tells what commands are checked for when doing an XREF on
the appropriate data base section:

OBJECTS

GETX
DROPX
X-RMO
X-)Y
EXX, X
AGE TX
BYX-) X

ROOMS

GO TOY
X-)Y

BIT FLAGS

SETZ
CLRZ

COUNTERS

EXM,CT

As you can see by the above table, the only command searched for when doing an
XREF on a counter is the "EXM,CT" command. The reason for searching for only
this command even though others may affect the counter (that is, CT-1) is that
there i s no way of checking if the other commands (such as CT-1) are affecting
that particular alternate counte~.

It should also be noted that for every "EXM,CT" command of a particular counter,
there wil l almost certainly be another "EXM,CT" command to switch it back in
either t he same action or in one closely following the first one. This
situation should be considered.

Suppose you wanted to find which actions referenced object number 25. The
procedure would go as follows (user inputs are underlined):

From the main menu, press the "X" key to enter the XREF sub-menu:

What section of the data base do you want an XREF
Verbs , Nouns, Rooms, Messages, Objects, Bit flags

Type: V, N, R, M, O, B or C ? 0

(Select an Object XREF)

of:
or Counters

I

I
I

I

I

I

I
I

The Adventure System

The computer will inquire:

Object fl ? ±2

(Select object 25)

Screen or Printer output: Type S or P ? S

(Direct all output to the screen)

Actions scanned:
Lower Limit, Upper limit (ENTER is All) ? <ENTER)

(Scan all of the actions)

CONDITION - ACTION:6
COMMAND - ACTION:45
CONDITION - ACTION:123

Page 4 - 19

The output in this example was contrived, so don't be surprised if your results
are different. These messages indicate that object number 25 is referenced in
the conditions of actions 6 and 123 and is referenced in the commands of action
45.

If the <ENTER> key is pressed for the range of actions scanned, the upper limit
scanned will be the upper limit held in the HEADER. If the HEADER value is not
high enough to encompass all actions, any actions above the HEADER value will
not be checked.

CLEAR command:

Pressing the "C" key from the main menu causes the CLEAR command to be entered.
This command is used to zero out a data base currently in memory.

After pressing "C" from the main menu, the program will respond with "Are you
sure ? ". Typing a "Y" will zero out the data base. If you respond with a
lower case "y", the data base will not be cleared (it must be an upper case
.. y ..).

Suppose you were looking at a finished adventure and decided to start typing in
a new one. This command would be used to clear out the finished adventure so
you could type the new one into "cleared" memory. It's comparable to typing
"NEW" in BASIC before entering a program.

END colliiand :

Pressing the "E" key from the main menu causes the END command to be executed.
The program will respond with "Are you sure ?". Typing in a "Y" (must be an
upper case "Y") will cause the program to exit to DOS or BASIC (depending on
which version of the program is being run - disk or tape).

The Adventure System Page 4 - 20

If the RESET button is pressed or the editor is accidentally exited, entering
t he program again will leave your data base intact. However, if memory were
destroyed, the data base would not be intact.

To reenter the tape version of the program, type in SYSTEM followed by "/20992".

For a disk system, simply type "ADVEDT" from DOS and your data base will be
intact provided memory was not garbled.

ADVENTURE DRIVER ROUTINE

To ease the debugging of adventures, the adventure driver program, ADV, is built
in to ADVEDT. The driver portion of the editor is called up by pressing the
<CLEAR> key.

Upon pressing the (CLEAR> key, the program will display "Play a 'SAVED' ~ame
Respond with a "Y" or "N " . This adventure driver allows only one saved game
with the file name "SAVED" (if using the disk version of the program).

Pressing the (CLEAR) key a second time will return control to the editor with
your data base in tact. This greatly increases the speed of debugging
adventures.

?" . .

Suppose you are finished typing in your adventure and want to play it. Pressing
the <CLEAR> key will enter the adventure driver routine. Suppose after a few
move s you find a problem with the adventure. Pressing the (CLEAR> key again
will reenter the editor portion of ADVEDT. The fix could be made and the game
play ed again by another press of the (CLEAR) key.

It is even possible to play the adventure up to a certain point and save the
game t o disk or tape. After saving the game out, the editor can be reentered by
pressing the (CLEAR> key. A change could be made and the adventure driver
started again by another press of the (CLEAR) key. This time say "Y" to the use
a saved game question. The saved game will be read in and the adventure can be
continued from the point at which it was saved.

One caution if using this method of debugging. When a game is saved, the
location of all objects is written out. If the editor is reentered and the
number of objects in the READER has changed, the saved game can not be read in
aga in.

ADVTT UTILITf PROGRAM

Both t he tape and disk versions of TAS have the utility ADVTT included. This
program will read in an adventure data base saved to tape and write out a tape
ver sion of the adventure game. The tape version of the adventure game is a
combina t ion of the driver and data base. These tapes are loaded via the BASIC
command SYSTEM. This program is similar to the utility program ADVTAPE, except
this program reads in tape data bases, not disk data bases as ADVTAPE does.

To run t he tape version of the ADVTT program, enter BASIC and type SYSTEM. The
file name is "A". When you are prompted again, type "/(ENTER)". The program is
self prompting.

l
I

l

-1

1
I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

The Adventure System Page 4 - 21

To run the disk version of the ADVTT program, type "ADVTT" from DOS.

To play the adventure tapes created by ADVTT, go to LEVEL II BASIC if using a
Model I computer or LEVEL III BASIC if using a Model III computer. Type
"SYSTEM" and press the (ENTER) key. The file name of the tapes created by ADVTT
is "A", so type in that file name and press <ENTER). When prompted again, type
"/<ENTER>" and the adventure will be started.

PROGRAM COMPATIIILIT'f

ADVEDT, ADV'IT and ADV have been used with NEWDOS/80 version 2.0, TRSDOS 2.3,
NEWDOS/21, DOSPLUS, LOOS, Model III TRSDOS and NEWDOS/80 version 1.0 with
success. The only problem noticed was that some DOSes do not recognize the
BREAK key as a legal character. Thus, in this case, the SHIFT RIGHT ARROW
keyboard combination is used. Other that that, there should be no problems with
any of the current popular noses.

The same programs work with both the Model I and Model III computers. That is,
ADV, ADVTT and ADVEDT all work on both Model I and Model III computers with no
modification.

ADVEDT LIKITATIONS

The following limitations are imposed on data entered via the ADVEDT program:

1) Maximum number of action entries is 500 (0-499).
2) Maximum number of vocabulary entries is 150 (0-149).
3) Maximum number of rooms is 100 (0-99).
4) Maximum number of messages is 99 (1-99).
5) Maximum number of objects is 250 (0-249).
6) Maximum characters in the description of sm object, room or message is 255.
7) Maximum word length of vocabulary words is 7 characters.
8) Maximum length of action titles is 20 characters.

Another limitation of ADVEDT is that only integer numbers may be entered of the
range +32767 to -32768. Typing numbers outside this range will produce strange
results.

SIJIGGESTED ADVINTUH !HTRY WITH ADvtDT

The first step in using ADVEDT is writing the adventure on paper. It is sort of
like writing a story. Just the basic idea of the adventure is needed. After
the basic idea is down on paper, some of the finer details should be considered.

After the finer details are done, start writing down the rooms, vocabulary and
objects on paper. After most of these are entered, start writing the actions
and messages. The reason for writing the actions and messages last is so you
know what objects and rooms you have to work with and can add more when needed.

After the adventure is roughly down on paper, start entering it into the ADVEDT
program. The HEADER should be modified first. The values input here do not
have to be exact, just approximate.

The Adventure System Page 4 - 22

A big decision has to be made at this time. That is the word length of the
adventure. The word length is significant because the length of the object
names (identifier between slashes for objects to be picked up and dropped) must
match this value or be shorter. After the HEADER is entered, the order of
section entry does not matter (except that the actions must be entered after the
vocabulary).

Now comes the time consuming part, debugging the adventure. The way to do this
is check every possible thing you can think of to see if the actions are
performing the way you intended them to. If they don't, take notes on which
ones aren't working and continue playing your ADVENTURE. After finishing with
this procedure, return to the adventure editor to fix any problems. This
process takes longer than writing the adventure in most cases. But after much
hard work you should have an adventure you can be proud of. Remember, The
Alternate Source will market any adventures of quality. See Appendix B for more
details.

You can also reference Chapter 6 - Getting Started, for more information on
this subject. Chapter 6 goes through all of the steps of writing an adventure:
coming up with an idea, writing the adventure, entering the adventure into
ADVEDT and debugging the adventure.

I

I

I
I
I
I
•
•
I

This chapter explains, in depth, a short adventure entitled ''MINI-VEN'IDRE." It
is included on your master cassette or diskette as adventure "Z". This
adventure uses most of the conditions and commands available in TAS. Every
significant part of the data base is explained. But first here's a listing of
the data base:

Adventure Z Version 1.01 14500 bytes free
Bytes under 16K• 7523
#OBJ #ACT #VOC #RM MAX BEG ITR WLEN TIME #MSG TR-RM
14 41 22 8 5 1 1 4 999 16 7

I - V N COND 1
CMDl CMD 2

O: AUTO 100 -BIT 1
MSG! SETZ

1: AUTO 100 -IN 2
EXM,CT CT<-N

2: AUTO 100 IN 2
EXM,CT CT-1

3: AUTO 0 CT• 0
MSG2 PEAD

4: AUTO 0 PAR 1
EXM,CT

5: AUTO 100
DAY

6: AUTO 100
NIGHT

7: LIGH MATC
AGE TX

8: AUTO 0
DELAY

9: AUTO 0

-IN 2
DSPRM
IN 2
DSPRM
HAS 13
DSPRM
PAR 9
DELAY

0

COND 2 COND 3 COND 4 COND 5
CMD 3 CMD 4 ACTION TITLE

PAR 1 0 0 0

PAR 1 PAR 4
EXM,CT

PAR 1 0
CONT

0 0
FINI

0 0

BIT 15 0

-BIT 15 0

PAR 9 0
MSG3 CONT

0 0
X-)RMO DSPRM

0 0

INTRO
PAR 1 0
SET MUG CNTR

0 0
MUGGED?

0 0

0 0

0 0
IN LIGHT?

0 0
IN DARK?

0 0
LIGHT MATCH

0 0

0 0
MSG4

10: GET KEY
MSG5

11: GET KEY
GETX

12: DROP KEY
DROPX

13: EXAM KEY
MSG6

IN 1 RMO 12 PAR 12 0 0

14: GO DOOR
GO TOY

15 : UNLO DOOR
MSG7

16: EXAM DOOR
MSG8

17 : EXAM WHEE
MSG12

AGE TX
IN/W 12 PAR 12 0
MSG5
HAS 12 PAR 12 0
MSG5
AVL 12

IN 2
MSG5
BAS 12

IN/W 3
MSG9
IN 1

0 0

PAR 3 0

IN/W 3 0

0 0

RMO 12 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

The Adventure System Page 5 - 2 I
ACTIONS(con.~ I
18: GO ELEV I N/W 4 PAR 4 0 0 0

GO TOY MSG5 I 19: GO ELEV IN/W 6 PAR 4 0 0 0
GO TOY MSG5

20: EXAM PANE IN/W 5 0 0 0 0
MSG13

21: PUSH 1 I N 4 PAR 2 0 0 0
CLRZ MSG5

22: PUSH 2 I N 4 PAR 2 0 0 0
SETZ MSG5

23: GO ROOM IN 4 -BIT 2 PAR 3 0 0
GO TOY MSGS

24: GO ROOM I N 4 BIT 2 PAR 5 0 0
GO TOY MSG5

25: UNLO DOOR IN/ W 7 HAS 12 0 0 0
MSG7

26: EXAM DOOR IN/ W 7 0 0 0 0
MSG8 MSGl O

I 27: EXAM DOOR IN/W 8 0 0 0 0
MSG8 MSGll

28: EXAM DOOR IN/W 10 0 0 0 0
MSG8 MSG l l I 29: UNLO DOOR HAS 12 IN/W 8 PAR 8 PAR 10 0
EXX,X MSG5

30: LOCK DOOR HAS 12 IN/W 10 PAR 8 PAR 10 0
EX:X,'IC MSG5

31: GO DOOR IN/ W 10 PAR 7 0 0 0
GO TOY MSGS

32: SAVE GAME 0 0 0 0 0
SAVE

33: QUIT ANY 0 0 0 0 0
FINI

34: SCOR ANY 0 0 0 0 0
SCORE

35: INVE ANY 0 0 0 0 0
INV

36: EXAM ANY 0 0 0 0 0
MSG14

37: HELP ANY 0 0 0 0 0
MSG15

38: GO CAR IN 2 PAR 1 0 0 0
GO TOY MSG5

39: PUSH BUTT 0 0 0 0 0
MSG16

40: TURN ANY. 0 0 0 0 0
MSG5

41: AUTO 0 0 0 0 0 0

I

The Adventure System

I -- VERBS NOUNS ---
0: AUTO ANY
1: GO NORTH
2: *ENTE SOUTH
3: *WALK EAST
4: EXAM WEST
5: *LOOK UP
6: LIGH DOWN
7: HELP DOOR
8: UNLO KEY
9: LOCK *KEYS

10: GET ROOM
11: *TAKE BUTT
12: *PULL CAR
13: PUSH 1
14: INVE 2 .
15: QUIT ELEV
16: SAVE PANE
17: TUR...'i GAME
18: DROP WAtL
19: SCOR WHEE
20: MATC
21:
22:

ROOMS

-- N s E w u
0: 0 0 0 0 0
1: 0 0 2 0 0
2: 0 0 0 0 0
3: 0 2 0 0 0
4: 0 0 0 0 0
5: 0 0 6 0 0
6: 0 0 0 5 0
7: 0 0 6 0 0

•
8: 0 0 0 0 0

• ---

D
0
0
0
0
0
0
0
0
0

ROOM DESCRIPTION ~
Storeroom. Can't get here
car with an open door
*I'm on the curb
hallway

Page 5 - 3

*I'm in an elevator next to a room
hallway
hallway
*I'm in my apartment
hospital

The Adventure System

MESSAGES

-- MESSAGE TEXT ---
0:
1: Welcome to "MINI-VENTIJRE" by Bruce Hansen
2: I was MUGGED!!
3: The match flares up
4: and goes out.
5: OK
6: The number "201" is s t amped on one of them
7: The key won't fit
8: There's a plate with
9: 101 on it

10: 200 on it
11: 201 on it
12: There's a set of keys i n the ignition
13: There are two buttons marked " l" and "2"
14: I see nothing special
15: ROW?
16: Say again with which button

0

, -- START OBJECT DESCRI PTION
0: -1 *MY WALLET* / WALL/
l: 1 Steering wheel
2: 2 Apartment complex main door
3: 3 Locked apartment door
4: 3 Elevator
5: 4 Elevator panel
6: 5 Elevator
7: 5 Locked apartment door
8: 6 Locked apartment door
9: 0 Lighted artificial light source

10: 0 Open apartment door
11: 7 Sign saying "LEAVE *TREASURES* HERE"
12: 0 Keys/KEY/
13: -1 Matches/MATC/
14: 2 Car

WHAT DO!S 1t•m•

Page 5 - 4

The data base will be explained one section at a time. First the HEADER:

"Adventure Z" is the adventure name. The version# is 1.01 and the adventure
leaves 14,500 bytes free. This value may vary depending on your computer's
configuration and if high memory drivers are present. The bytes under 16K~
7523. This means if the adventure uses 7523 more bytes, a tape version of the
adventure won't fit in a 16K t ape machine. IOBJ•l4 means there are 14 objects,
#ACT•41 means there are 41 actions, #VOC=22 means there are 22 verbs and 22

I

I

The Adventure System Page 5 - 5

nouns, #RM•8 'means there are 8 rooms, MAX•5 means the adventurer can carry a
maximum of 5 objects, BEG•l means the player begins in room 1, #TRal means there
is only 1 treasure, WLEN•4 means the number of significant letters in the nouns
and verbs is 4, TIME•999 means the light limit is 999 moves, #MSG•16 means there
are 16 messages and TR-RM•7 means the treasure room is room 7.

The automatic actions must be placed before player input actions. The AUTO verb
signifies an auto action. The noun is the probability of this action being
considered. When the player inputs his verb, noun, not all player input actions
are scanned, just until it finds a true one (if one exists). All auto actions
are considered even if a previous one is true.

This description does not tell what the messages, objects and rooms are (that
is, their word description) in most cases so refer to the above data base
listing for that information.

0: AUTO 100
MSG 1

-BIT 1
SETZ

PAR 1 0 0
INTRO

0

The 0: means this is ACTION O. The "AUTO 100" means this auto action is
considered 100 percent of the time. The "-BIT l" means if bit flag 1 is
cleared, this condition is true. When the adventure is started, all bit flags
are cleared so on the first pass of the auto actions this condition will be
true. This iG useful for printing introductions. The "PAR 1" is a parameter to
be passed to the commands if all conditions are met. Remember, it is the same
as a "DAT.A l" in BASIC. If all conditions are met, the commands are executed.
In this case, message 1 would be printed and bit flag 1 would be set (SETZ).
Bit flag 1 is set since the first parameter in the conditions was a 1. The
"SETZ" command acted like a BASIC "READ Z" command. The word "INTRO" is an
optional action title. Message l is the introduction message.

1 : AUTO 100
EXM,CT

-IN 2
CT<-N

PAR 1 PAR 4
EXM,CT

PAR 1 0
SET MUG CNTR

This is an automatic action used to set a counter. In this adventure, if the
player is outside his car and not in the apartment building for 4 consecutive
moves, he is mugged and killed (he loses). This action is executed 100 percent
of the time (AUTO 100). The condition "-IN 2" will be true if the player is in
any room other than room 2 • . "PAR l", "PAR 4" and "PAR 1" are parameters used by
the commands if all conditions are true. If all conditions are true, the CT
(counter) value is exchanged (EXM,CT) with alternate counter 1 since the first
parameter in the conditions was a 1. The command "CT<-N" will set the counter
to 4 (4 is the next parameter). And finally CT is exchanged back with alternate
counter 1 (EXM,CT). The reason for this switching is that ADVENTURE can only
operate directly on the CT variable. ADVENTURE can operate on a maximum of 9
additional alternate counters however. "SET MUG CNTR" is the optional action
title.

2: AUTO 100 IN 2
EXM,CT CT-1

PAR 1 0
CONT

0 0
MUGGED?

The Adventure System Page 5 - 6

This action is considered 100 percent of the time. The condition "IN 2" passes
if the player is in room 2. "PAR 1" is a parameter used in the commands. If
all conditions are true, the commands are executed. In this case, CT is
exchanged with alternate counter 1 (EXM,CT) since the first parameter found in
the conditions was a 1. Then CT is decremented (CT-1). "CONT" means to
continue considering all following AUTO O's until an AUTO 1-100 or a player
input action is found. In this case, the next two actions are AUTO O's. They
are as follows:

3: AUTO 0
MSG 2

4: AUTO 0
EXM,CT

CT• 0 0
DEAD

PAR 1 0

0
FINI

0

0 0

0 0

In action 3, CT is tested to see if it is equal to 0 (CT= O). If it does, then
message 2 (MSG 2) is printed, the player is killed (DEAD) and the game is
finished (FINI). If the counter was not equal to zero, action 4 is considered.
It would normally be considered regardless of the pass/no pass status of action
3. But in this case the DEAD command was issued and the player was moved to the
last room and killed. The FINI command then halted the game. This also halts
the auto actions. Since action 4 has no conditions it is always true and "PAR
1" is passed to the commands. In this case, CT is exchanged with counter 1
again thus putting the counters back in their original positions. There is a
good reason for making these two actions separate. Two tasks need to be done,
check if the counter is equal to zero and switch CT back with alternate counter
1. If these two were put in the same action and the counter (CT) did not equal
zero, then the commands would not be performed. In this case, the "EXM,CT"
command would not be done so the counters would not be returned to the right
place.

5: AUTO 100
DAY

-IN 2
DSPR..'f

BIT 15 0 0 0
IN LIGHT?

This auto action is considered 100 percent of the time. The conditions are "-IN
2" and "BIT 15". "-IN 2" is true if the player is not in room 2. "BIT 15"
passes if it is dark (bit flag 15 is defined by ADVENTURE for light/dark
status). If the conditions are true, then the commands "DAY" and "DSPRM" are
executed. The "DAY" command makes it day and "DSPRM" displays the current room.
The reason for this action is to make it day after the player is off the curb
(where it is dark). The "BIT 15" condition is included so it is made DAY only
when it was just NIGHT. The reason for this is that the DSPRM command makes the
screen "flicker" when it is executed.

6: AUTO 100
NIGHT

IN 2 -BIT 15
DSPRM

0 0 0
IN DARK?

This action is considered 100 percent of the time. If the player is in room 2
(IN 2) and bit flag 15 is cleared (-BIT 15) then the commands are performed •
.,NIGHT" makes it dark out (if the player is not holding the artificial light
source) and "DSPRM" displays the room. This action makes it dark when the
player is on the curb (room 2) and only does a NIGHT and DSPRM if it was
previously DAY. The reason for not doing a DSPRM every time is that it causes
the screen to be redrawn, which makes it look like the screen just glitched.

I
I
I
I

The Adventure System

7: LIGH MATC BAS 13
AGE TX DSPRM

PAR 9
MSG3

Page 5 - 7

0 0 0
CONT LIGHT MATCH

This is the first player input action. If the player types in "LIGHT MATCH"
then this action is considered. If even one of the conditions of this action
are not met, ADVENTURE continues searching the actions for another "LIGHT
MATCH". If it finds another, it considers that one also, and so on until it
finds a true one. If no other "LIGHT MATCH" is found, then the message "I can't
do that ••• yet!" is printed and the player is asked to respond again. The
condition in this action is "HAS 13". So if the player "HAS 13" (has the
matches - object 13) the commands are performed. "AGETX" will make object 9
(from PAR 9 in the conditions) be carried by the player regardless of the carry
limit. "DSPRM" will make it day if it is currently light out or object 9 is
available (the a!rtificial light source). Since an "AGET 9" was just executed,
the DSPRM will 11111ke it light if it was dark out or leave it light if it was
light. Message 3 is then printed (MSG 3) and the CONTinue flag is set. All
following AUTO 0 actions will be considered. These actions are as follows:

8: AUTO 0
DELAY

9: AUTO 0
MSG 4

PAR 9 0
DELAY

0 0

0
X-)RMO

0

0
DSPRM

0

0

0

Action 8 has no conditions so its commands are executed every time action 7 is
true. A "DELAY" command makes the program stall for about 1 second. After two
such stalls, the "PAR 9" object is put back in RMO (X->RMO - PAR 9 is the first
parameter from the conditions). After the artificial light source is removed
from the room, another "DSPRM" is executed. This will make it dark again if it
was dark before the match was lit or light if it was light before the match was
lit. Action 9 is considered next. Since it has no conditions its commands are
performed. In this case message 4 is printed. Since ADVENTURE found a matching
player input action it does not consider any following player input actions and
now goes back and checks the automatic actions (ones at the beginning of the
actions).

10: GET KEY
MSG 5

IN 1
AGE TX

RMO 12 PAR 12 0 0

If the player types in "GET KEY" this action is considered. It passes if the
player is in room 1 (IN 1) and object 12 is in room 0 (RMO 12). If these
conditions are true, then message 5 is printed (MSG 5) and the player is forced
to pick up object 12 (AGETX - PAR 12 passed from conditions). The logic of this
action is simple. The player must be in the car (IN 1) and not have already
gotten the keys some time before (RMO 12) for the player to be able to get the
keys.

11: GET KEY
GETX

IN/W 12 PAR 12
MSG 5

0 0 0

If action 10 failed for any reason then this action is considered since they
both have the same verb-noun combination. In this action, the player is allowed
to pick up object 12 if he is in with, but not carrying, object 12 (IN/W 12).
If true, a "GETX" command is performed and message 5 is printed (MSG 5). A
"GETX" checks to see if the carry limit is exceeded. If not, the player picks

The Adventure System Page 5 - 8

up object 12 (GETX - PAR 12 from the conditions). This action would not be
needed if action 10 was not included. Objects which are named (/name/ at the
end of the object description) can normally be picked up and dropped without
this type of action. But by having a GET action for object 12, the automatic
GET feature for that particular object is disabled. In this case, GET has to be
included in the actions.

12: DROP KEY
DROPX

HAS 12
MSG 5

PAR 12 0 0 0

If the player is carrying object 12 (HAS 12) then object 12 is dropped (DROPX -
PAR 12 from the conditions). Note that this action is really not required. It
is the only DROP action for this object. If deleted, the automatic DROP feature
would work. However, the automatic GET feature would still not work because of
action 10.

13: EXAM KEY AVL 12 0
MSG6

0 0 0

If object 12 is either being carried or is in the same room as the player (AVL
12), then message 6 is printed (MSG6). This type of action is very common for
such things as examining, reading, etc.

14: GO DOOR IN 2 PAR 3 0 0 0
GOTOY MSG5

If the player is in room 2 (IN 2) then the player is sent to room 3 (GOTOY - PAR
3 from the conditions) and message 5 is printed (MSG5). This is a common action
for GOes without a direction. For example, GO CAVE, GO TUNNEL, etc.

15: UNLO DOOR HAS 12 IN/W 3 0
MSG7

0 0

If the player types "UNLOCK DOOR" this action is
doors in this adventure and the player has a key
them. If the player has object 12 (HAS 12), and
(IN/W 3) then message 7 is printed.

16: EXAM DOOR IN/W 3 0 0 0 0
MSG8 MSG9

considered. There are three
which will open only one of
is in the same room as object 3

This is a common type of EXAMINE action. A message is printed when the object
is examined, provided the player is by the object. The IN/W condition is
usually used for an object which can not be carried. The AVL condition is used
for an object which can be carried. In this case, if the player is in with
object 3 (IN/W 3), then messages 8 and 9 are printed (MSG8 and MSG9). Note tha
message 8 contains only the first half of the EXAM message. The second half is
message 9 for this door. Message 10 and message 11 are used for the second
halves of the two doors which can not be opened by the player (all three use the
same first half of the EXAM message).

17: EXAM WHEE IN 1
MSG12

RMO 12 0 0 0

I

I

I
I

I

I
I
I

I

I
I
I
I

I
I

I

The Adventure System Page 5 - 9

This EXAMINE action has two conditions. If the player is in room 1 (IN 1) and
object 12 is in room 0 (RMO 12) then message 12 is printed (MSG12). The logic
for this action is as follows: if the player examines the wheel and the keys
(object 12) are still there (RMO 12) then an appropriate message is printed.
However, if the keys had been previously picked up then this EXAMINE would fail
and ADVENTURE would search for another matching "EXAM WHEE" (or "EXAM ANY").

18: GO ELEV
GO TOY

19: GO ELEV
GO TOY

IN/W 4 PAR 4
MSG 5

IN/W 6 PAR 4
MSG 5

0 0 0

0 0 0

These two actions are described together since they are very similar. There are
2 objects called "ELEVATOR" in this adventure. One is on the top floor, the
other on the bottom floor. These actions check if the player is in with an
elevator (IN/W 4 or IN/W 6) and if so sends the player to room 4 (GOTOY - PAR 4
from the conditions).

20: EXAM PANE IN/W 5 0
MSG13

0 0 0

If the player is in with object 5 (IN/W 5), then message 13 is printed (MSG13).
If the player is not in with object 5, ADVENTURE searches for another EXAM PANE.

21: PUSH 1
CLRZ

IN 4
MSG5

PAR 2 0 0 0

This action uses a bit flag. If the player is in the elevator (IN 4) then bit
flag 2 is cleared (CLRZ - PAR 2 from the conditions). When this adventure was
writ ten, it was decided to use bit flag 2 cleared for floor "1" and bit flag 2
set for floor "2." Since the elevator would initially be at floor "l .. , this was
logical because all bit flags are cleared at the start of ADVENTURE. The status
of the bit flag is tested so ADVENTURE knows which floor of the apartment
complex to send the player when he leaves the elevator. There are two different
rooms adjacent to the elevator so this condition must be checked.

22: PUSH 2
SETZ

IN 4
MSG5

PAR 2 0 0 0

This action is very similar to the above action except the bit flag is set, not
clear ed. This tells ADVENTURE to put the player on the 2nd floor when he leaves
the elevator instead of the 1st floor.

23: GO ROOM IN 4 -BIT 2 PAR 3 0 0
GOTOY MSGS

If the player is in room 4 (IN 4) and bit flag 2 is cleared (-BIT 2), then the
player is sent to room 3 (GOTOY - PAR 3 from the conditions) and message 5 is
printed (MSG 5). In words, if the player is in the elevator, and he last pushed
"l", then he is sent to the 1st floor. If bit flag 2 is set, however, then this
action will fail.

24: GO ROOM IN 4 BIT 2 PAR 5 0 0
GOTOY MSGS

The Adventure System Page 5 - 10

If the player is in room 4 (IN 4) and bit flag 2 is set (BIT 2), then the player
is put in room 5 (GOTOY - PAR 5 from the conditions) and message 5 is printed
(MSG 5). In words, if the player is in the elevator, and he last pushed "2",
then he is sent to the 2nd floor exit or room S.

25: UNLO DOOR IN/W 7 HAS 12
MSG7

0 0 0

This action is the same as action 15 except this action is for a different door
(object 7, not object 3).

26: EXAM DOOR IN/W 7 0 0 0 0
MSG8 MSGlO

27: EXAM DOOR IN/W 8 0 0 0 0
MSG8 MSGll

28: EXAM DOOR IN/W 10 0 0 0 0
MSG8 MSGll

These three actions are included together since they are very similar (the only
difference is that they refer to different objects). Actions 27 and 28 really
refer to the same thing. In action 27, the examine refers to a closed door in
room 6. In action 28, the examine refers to the same door except it has now
been opened so object 10 is in the room (open door) instead of object 8 (locked
door). These actions are very similar to action 16.

29: UNLO DOOR HAS 12 IN/W 8 PAR 8 PAR 10 0
EXX,X MSGS

This is the only door the player can unlock. The door may be unlocked if the
following conditions are true: the player is holding object 12 (HAS 12 - the
keys) and he is in with object 8 (IN/W 8 - locked door). If these conditions
are met, the room locations of object 8 and object 10 are exchanged (EXX,X - PAR
8 and PA;R 10 from the conditions) and MSGS is printed.

30: LOCK DOOR HAS 12 IN/W 10 PAR 8 PAR 10 0
EXX,X MSGS

This action is very similar to the previous one except this one locks the door.
To lock the door, these conditions must be met: the player is carrying object
12 (HAS 12 - the keys) and he is in with object 10 (IN/W 10 - open door). If
the conditions are met, then object 8 and object 10 are exchanged (EXX,X - PAR 8
and PAR 10 from the conditions) and MSGS is printed.

31: GO DOOR
GO TOY

IN/W 10 PAR 7
MSG5

0 0 0

If the player wants to go through the door, this condition must be met: the
player is in with object 10 (IN/W 10 - an open door). If that condition was
met, the player is put in room 7 (GOTOY - PAR 7 from the conditions).

32: SAVE GAME 0
SAVE

0 0 0 0

This action lets the player save the game. No conditions need be met so the
SAVE command is always executed.

I

I
I
I

I

I

I

I

The Adventure System

33: QUIT ANY
FINI

0 0

Page 5 - 11

0 0 0

This action lets the player stop the game. The "ANY" noun means that the action
is considered if the player's input noun was any of the nouns in the vocabulary
list. This action requires no conditions to be met and performs a "FINI"
cotmnand.

34: SCOR ANY
SCORE

0 0 0 0 0

This action will print the player's score. This message gives the number of
treasures stored in the treasure room and the percent stored. No conditions are
needed so the "SCOR" command is always performed.

35: INVE ANY
INV

0 0 0 0 0

This command tells the player the name of every object he is currently carrying.
The "INV" command is directly executed since no conditions are present.

36: EXAM ANY
MSG14

0 0 0 0 0

This action will print message 14 (MSG14) if the object being examined was not
referred to in a previous true EXAMine action. It is usually present in every
adventure. The message is typically something like "I see nothing special."

37: HELP ANY
MSG15

0 0 0 0 0

This is another common action. If the player types "HELP", message 15 (MSG15)
is printed provided no previous HELP action was found to be true.

38: GO CAR IN 2 PAR 1 0 0 0
GOTOY MSG5

If the player is in room 2 (IN 2) then he is put in room 1 (GOTOY - PAR 1 from
the conditions) and message 5 is printed (MSGS).

39: PUSH BUTT 0
MSG16

0 0 0 0

If the player PUSHes BUTTon then message 16 (MSG16) is printed. Since the
player is supposed to "PUSH 1" or "PUSH 2" this action is used to tell him so.

40: TURN ANY
MSG5

0 0 0 0 0

If the player tries to TURN any legal object, message 5 (MSG5) is printed.

41: AUTO 0 0 0 0 0 0

This action is not used.

The Adventure System Page 5 - 12

VOCABULARY

The user must refer to the VOCABULARY words in the data base list for this
explanation. Notice that the predefined verbs and nouns are in their proper
places (AUTO, GO, GET, DROP, ANY, NORTH, SOUTH, EAST, WEST, UP and DOWN). The
only thing special about the vocabulary words is the synonyms. Part of the
vocabulary appears as follows:

0: AUTO
1: GO
2. *ENTE
3: EXAM
4: *LOOK

Synonyms are required to directly follow their primary noun or verb in the list
and must be preceded by an asterisk. In this case, *ENTE is a synonym of GO and
*LOOK is a synonym of EXAM. There may be more than one synonym for a certain
noun or verb (see verb 10 - GET). Any action entries using the nouns or verbs
must refer to a primary noun or verb, not a synonym.

An example of two
, __ N S E W U

6: 0 0 0 5 0
7: 0 0 6 0 0

rooms follows:
D ROOM DESCRIPTION
0 hallway
O *I'm in my apartment

The 6: and 7: are the room number (6 and 7). The next six numbers are the rooms
which the player will move to if he goes in that corresponding direction. For
example, if the player is in room 6 and he types "GO WEST", ADVENTURE will send
him to room 5. If in room 7, typing "GO F.AST" will put the player in room 6.
The zeros mean the player can't go in that. direction.

The ROOM DESCRIPTIONs "hallway" and "*I'm in my apartment" are examples of the
default room message. For example, if the player is in room 6, the room is
described as "I'm in a hallway." If in room 7, the room is described as "I'm in
my apartment." Putting an asterisk before the room description disables the
automatic prefix message "I'm in a."

Tile messages ar<? just text strings. There is nothing unusu'll about this data
base section.

Notice that message O is not used. It should be null. Since message 0 can not
be displayed via the action commands, typing any text for it wastes memory.

I
l
~I

l

I
I
•
II
II
IJ

The Adventure System Page 5-13

Oh_iects

Each ob_iect has a starting room and A description. Ob.1ects which have a name,
for example "Keys/KEY/" may be automatically picked up anrl dropped (the name is
KEY in thia case). If the starting room is -1 (like it is for *MY WALLF.T*)
then the object is carried hy the player when the adventure is started. Any
other number is the room numher in which that ohject can he found. A room
number of zero means the ohiect has not heen found yet and is in the storeroom.

Notice that oh_1ect 9 is titled "Lighterl artificial light source." Oh_iect Q is
prerlefined hy ADVENTURE as the artificial light source in its lighted
condition. In this adventure, ob_1ect q is not used (except for the "LIGHT
MATC" action) so no real name is given to it.

These are the steps needed to win at this adventure:

1) GET the keys from the car (EXAMine WREEl will tell the olayer if they are
there).

2) Get out of the car by tn0ving EAST.
3) To see, light a match.
4) Enter the apartment huilding hy typing GO DOOR.
5) Type GO ELEV and PUSH 2 to go to the second floor.
6) GO ROOM to leave the elevator.
7) GO EAST to the second locked apartment rloor on the second floor.
8) UNLO DOOR to open the locked apartment door.
9) GO DOOR and drop the wallet (the wallet is initially carried hy the player).
10) Type SCORE.

For a more challenging adventure try adventures "X" and "Y" on The Adventure
System master diskette. These adventures are considerably longer than this one
and will pose much more of a challenge.

I
I
I
I

I

I
I

•
I
I
I

Chap r 6

GETTING STARTED

You better be in a comfortable chair for this chapter. It will go through the
whole process of writing an adventure. The steps are listed below:

1) Brainstorming an adventure idea.
2) Writing (Coding) the adventure.
3) Entering the adventure with ADVEDT.
4) Debugging the adventure with ADVEDT.
5) Sending in your adventure for marketing considerations.

BIWNSTOltMIHG AH IDEA

The first step in writing an adventure is coming up with an idea. It is
probably best to write an adventure on a subject you know. If you write on
something you know, it will be easier to make it a full length adventure. For
example, most people do not know much about quantum physics • .Just think how
long an adventure on that subject would be if written by the average person!
However, a physicist could probably write a fairly good adventure on the
subject.

Well, I will brainstorm some ideas and pick from the list. How about one of the
following adventures:

1) A hijacker's adventure in a plane.
2) A spy adventure; steal t~e secret plans.
3) An old west adventure.
4) A jungle adventure.

I've watched enough cowboy movies and r run of "The Wild, Wild West" to know a
little more about the old west than the other three ideas, so I'll use that one.

The next step is to make a list of items or "ituations you might come across in
your adventure. I thought the following could be found in the old west (the
list is practically endless):

1) Indians 11) Lariat
2) Winchester rifles 12) Telegraph
3) Horses 1 '3) Horse drawn carriages
4) Six shooters 14) Trading post
5) Ten gallon hats 15) Jail
6) Spurs 16) Gall w
7) Buffalo 17) Wanted po· ter
8) Outlaws l~) Ra tle!>nake"
9) Marshall l q) Whiskey

10) Saloons 2ri) Go Ld mine

This list has only twenty items in it. You could probably think of at least
twenty more. You need not confine your elf o this list either. Add more to it
when you come up with some ideas. The ll t of things you might come across is
written to ghre a starting place for writing the adventure.

The Adventure System Page 6 - 2

Indian Situations

The first itern in our list is "Indians". The possibilities here are endless.
The Indians could be hostile or friendly. They could be used as guides to the
happy hunting grounds or obstacles to a box canyon. In this example, they will
be friendly Indians.

Indians used "Wampum" for money. This money was usually a string of beads. In
this adventure, I will make the "Wampum" a treasure. Now we must come up with
some way of getting the "Wampum" from the Indians. Since these are friendly
Indians, we won't steal the wampum from them. The Indians liked to trade for
goods they needed. How about trading them "Whiskey" for the wampum? In this
adventure, that will be the only time we use the Indians. After golng through
this chapter, you may want to write some of your own situations using the
Indians.

Buffelo s1tuat1o ..

Let's take the "Buffalo" listed above next. What could you do with or get from
a buffalo? The Indians used buffalo for food, utensils and clothing. In this
adventure, we will make the buffalo's hide a treasure.

Now, what do we have to do to get the buffalo's hide? I would imagine the first
step is to kill the buffalo. Then we would have to skin it. A Winchester rifle
could he used to shoot the buffalo and a knife to skin it. That finishes the
buffalo (sorry).

How about working on some minor things now. So far, we have used a "Winchester
rifle", "Whiskey" and a "Knife" as objects for the situations dreamed up. How
does the player get these objects? We could start the adventure with the player
holding them, but that's too easy. I'll do it this way: start the game with
the player holding 100 dollars. There was a "Trading Post" listed above, so
let's use it in this adventure. The "Trading Post" will have the rifle, knife
and whiskey in it. The player will then buy these objects. As a side event, if
the player tries to "GET" one of the objects without buying it, he will be
arrested by the Marshall and thrown in jail, thus ending the adventure.

OUtlaw Situ tions

Now we'll introduce the "Outlaws" in our adventure, Let's post a wanted poster
on the jail. The poster will say something like:

WANTED: Dead or alive
The Butler Gang

REWARD: Gold Nugget

One thing outlaws commonly did i.n the Old West was rob a bank. So we need to
have a bank in our adventure. For simplicity sake, we wi 11 place the outlaws in
the bank right from the st~rt of the adventure.

I

I
I
I
I
I
I

I
I

I
I

I

The Adventure System Page 6 - 3

Now how will we catch the outlaws? In this adventure, the outlaws will be
cowards. If the player draws a pistol while the outlaws are in the bank, they
will drop their guns. The marshall will come and take the outlaws to jail. You
might ask "Where did the pistol come from ?". Bow abouf: letting the player
carry it at the start of the game?

To simplify the adventure, the pistol will be unloaded. This way we won't have
to write a lot of actions regarding the shooting of the pistol. You may want to
add some actions regarding the pistol after going through this chapter. In
fact, it might be good practice to do that.

Reward Situations

When the outlaws are captured, the player will be given a reward. To get the
r eward, the player will have to go to the jail to claim it. The "Gold Nugget"
reward will be our last treasure. Now we can start writing the actions for this
adventure.

WRITING (CODING) THE ADVENTURE

This section will "code" the situations described above in the format required
fo r The Adventure System. Also, the complete data base for this adventure will
be listed.

The f irst thing you should do is decide on the word length of the adventure. In
t his one, I'll use a word length of three. The three means only the first three
characters of the player's verb and noun are significant. For example, if the
player types in "SHOOT BUFFALO", the adventure driver program will see the input
as "SHO BUF".

lndiM Sltuetionl Coding

The fi rst situation we planned out above was the Indian "Wampum". To get the
wampum , we need to trade for it with the whiskey. Let's start defining our
object s first:

Object If

0
I
2

Start room

I
0
2

Object description

Indians
WAMPUM/WAM/
Whiskey / WHI/

Notice that the Ind i ans start in room I. Suppose the Indians started the
adventure in a teepee. This teepee could be room I. Room I could be described
as f ol lows:

Room II N S E W U D Room Description

I 0 0 0 3 0 0 teepee

The Adventure System Page 6 - 4

Notice that room 1 has a West exit to room 3. Room 3 will be a room on the
outside of the teepeE:. Room 3 will have the ''Teepee" displayed in it as an
object. So, if you are in room 3, one of the visible items will be a "teepee".
The object in room 3 and the room itself could be:

Object If Start Room Object Description
-------- ---------- ------------------

3 3 Teepee

Room fl N s E w u D Room Description
------ ----------------

3 4 0 0 0 0 0 great plain

Note that room 4 is a North exit from room 3. Room 4 will be described later.

Notice that object 2, the "*WAMPUM*" is
storeroom. Since that object is named,
action entries to perform those tasks.
because we don't want the player to get

a named object and starts in room 0, the
it can be picked up and dropped with no
The "*WAMPUM*" starts in the storeroom
it until he trades the whiskey for it.

Notice that the "Whiskey" starts in room 2. Room 2 will be the "Trading Post"
described above. We will detail this room later.

Enough of the data base has been defined to start writing some action entries.
The action entries will not be numbered at this time (like the objects and rooms
were) since we do not know where in the list of actions they will be placed.
After all of the action entries have been written, we can number them. Let's do
our move into the teepee action first.

If the player is in room 3 ("great plain"), he will see object 3 (the "Teepee").
We want the player to be able to enter the teepee by typing "GO TEEPEE". The
conditions will be that the player is in the same room as the "Teepee", or
object 3. If the conditions are true, the commands will send the player into
the teepee or room 1. The action entry to perform this is:

GO TEEPEE IN/W 3
GO TOY

PAR 1 0 0 0

Now that we've given the player a way to get into the teepee, let's write an
action to trade the whiskey for the wampum. The player input for this action
will be "TRADE WHISKEY". The conditions will be that the player is carrying the
whiskey and that he is in the teepee. If those conditions are met, we will take
the whiskey away from the player and drop the wampum in the teepee. The action
entry to perform this is:

TRADE WHISKEY HAS 2
DROPX

IN 1
X-RMO

PAR PAR 2 0

So• if the player types "TRADE WHISKEY" and he is holding object 2 (the whiskey
- HAS 2) and is in the teepee (IN 1), the commands are executed. The first
command will drop object 1 (wampum) in the room. The second command will send
object 2 (whiskey) to the storeroom.

I
I

I

I

I

I

I

I

I

I

I

I
I
I
I
I
I
I
I

The Adventure System Page 6 - 5

Buffalo Sttuatllons Coclng

Now let's write the actions affecting the buffalo. The objects described in our
buffalo scenario above are listed here:

Object fl Start Room Object Description
-------- ---------- ------------------

4 3 Buffalo
s 0 Dead Buffalo
6 0 *BUFFALO HIDE*/BUF/
7 2 Winchester rifle/RIF/
8 2 Knife/KN!/

Notice that the "Buffalo'', object 4, starts in room 3. Room 3 w~s described
above as a "great plain". This is a logical place for buffalo to hang out. It
just happens to be the same room that the teepee is in. There is no problem
having more than one object per room, so we'll put the buffalo in room 3.

To kill the buffalo, the player's verb, noun combination should be "SHOOT
BUFFALO". The conditions of this action are that the player is in the same room
as the live buffalo (object 4) and that the player is holding onto the rifle
(object 7). The commands of this action will be to remove the live buffalo from
the room and place the dead one (object 5) there. Let's use a message in this
action. How about displaying "BANG!! I" and "Got em!!!" when the player shoots
the buffalo. The messages and action are:

Message II Message
--------- -------

1 BANG!!!
2 Got em!!!

SHOOT BUFFALO HAS 7 IN/W 4 PAR 4 PAR 5 0
EXX,X MSGl MSG2

So, if the player types "SHOOT BUFFALO" and he has object 7 (the rifle) and is
in with object 4 (the live buffalo), the commands are performed. The first
command will exchange the locations of object 4 (live buffalo) and object 5
(dead buffalo). We want to send the live buffalo to the storeroom and drop the
dead buffalo in the room. By switching the location of the live buffalo and the
dead buffalo we accomplishes this. Messages 1 and 2 are also displayed.

Continuing with our buffalo scenario, the next step is to skin it. The player's
verb, noun should be "SKIN BUFFALO". The conditions for this action are that
the player is holding onto the knife (object 8 - HAS 8), is in the same room as
the dead buffalo (object S - IN/W 5) and the buffalo hide is in the storeroom
(object 6 - RMO 6).

Why should the buffalo hide be in the storeroom? At the beginning of the
adventure, the buffalo hide starts in the storeroom. Once the player skins the
buffalo, the buffalo hide will be removed from the storeroom and dropped into
the player's room. If the player tries to skin the buffalo a second time, the
buffalo skin will no longer be in the storeroom and the conditions of this
action will fail. Suppose the player skins the buffalo a first time and carries

The Adventure System Page 6 - 6

the skin off to the jail. For some reason the player returns to the "great
plain" and tries to skin the buffalo a second time. If the check for the
buffalo hide being in the storeroom was not made, the buffalo hide could be
removed from the jail and dropped in the "great plain" again. This is a common
check which must be performed in many similar cases. When debugging an
adventure, you should catch most of these types of conditions. When you get
more experienced at writing adventures, these types of conditions are considered
at the initial writing of the action.

The commands of this action will drop the buffalo hide into the player's room.
This action is:

SKIN BUFFALO HAS 8
DROPX

IN/W 5

Trdng Post Situations Coding

RMO 6 PAR 6 0

Our next set of actions will involve the "Trading Post". As shown before, the
trading post is room 2. The trading post will have a "Counter" and a
"Mean-looking storekeeper" in it. These objects are:

Object fl

10
11

Start Room

2
2

Object Description

Counter
Mean-looking storekeeper

Note that object 9 was not used since it is reserved for the artificial light
source. We don't use it in this adventure, but you may want to add it in later.
One possibility would be to add a gold mine to the adventure that is only lit
when a torch is present. This torch would be object 9.

The room description of the "Trading Post" is:

Room !I N S E W U D Room Description

2 0 0 5 0 0 0 Trading Post

Note the East exit to room S. This room will be described later on.

Earlier in this chapter we decided to make the player buy the knife, whiskey and
rifle. The amount of money the player has will be kept in the CT counter. When
he buys one of these goods, the price of the item will be subtracted from his
money.

What will the player keep his money in? How about a wallet. This wallet will
be carried by the player at the start of the adventure. This object is:

Object If Start Room Object Description

12 -1 Wallet/WAL/

I
I
-,

I

I
I

The Adventure System Page 6 - 7

The initialization action(s) of this adventure will place the player's starting
money in his wallet, or set the CT counter to 100 (for 100 dollars). For this
adventure, let's make the rifle cost $50, the knife $10 and the whiskey $3. The
initialization action to set the player's initial money will be written later
on.

The action to tell the player how much money he has will be written now. The
verb, noun for this action will be "EXAM WALLET". The condition will be that
the player is carrying his wallet (object 12 - HAS 12). If this is true, we
will display a message like "It has ", followed by a "DSPCT" command, and a
"dollars in it" message. The messages and act ion entry are:

Message fl Message

--------- -------
3 It has
4 dollars in it

EXAM WALLET HAS 12 0 0 0 0
MSG3 DSPCT MSG4

Now let's write the actions which let the player buy the rifle, knife and
whiskey. Earlier we said if the player tried to get any of those items without
buying them first, the marshal! will arrest him and the game will be over. So
how do we flag when the player has bought an item? How about a bit flag. We
could use one bit flag to mark (or flag) when the player has bought an item. In
this case, we will let the following bit flags flag the appropriate item:

BIT FLAG

0
1
2

Item flagged as bought

Winchester rifle - object 7
Knife - object 8
Whiskey - object 2

Since the bit flags are all cleared at the start of the adventure, we will use
the cleared state as the "haven't bought it ye.t" status. If the bit flag is
set, then the appropriate object has been purchased. For example, when the
player buys the rifle, bit flag 0 will be set. If the player tries to GET the
rifle, and bit flag O is not set (meaning he has not purchased the rifle), the
player will be arrested. But if the player tries to GET the rifle, and bit flag
O is set (meaning he has bought the rifle), the player will not be arrested and
will be able to pick up the gun.

The "BUY" actions will all be very similar. We wil 1 make the verb, noun
combination to buy the rifle "BUY RIFLE". The conditions will be that bit flag
O is cleared (the player hasn't bought the rifle yet), the player is holding
onto his wallet (object 12 - HAS 12) and the player is in the same room as the
rifle. This second condition could be written at least two ways. One would be
"IN/W 7" or in with the rifle. Another would be "IN 2" which would work since
the rifle starts the adventure in room 2. In this example, we' 11 use the "IN/W
7" condition. It does not matter which one you use though.

The commands of this action will be to subtract 50 (the price of the gun) from
the CT counter and set bit flag 0 (showing that the player has bought the
rifle). To let the player know the gun cost him $50, we'll display the message
"That'll be $50 partner. It's yours."

The Adventure System Page 6 - 8

Similar messages and action entries will be used to buy the knife and whiskey.
The only differences between the purchases is the bit flag set, the number
subtracted from the CT counter, the object of the "IN/W" condition and the
message displayed. The messages and action entries to buy the rifle, knife and
whiskey are:

Message I Message
-------- ------

5 That'll be $50 partner. It's yours.
6 That'll be $10 partner. It's yours.
7 That' 11 be $3 partner. It's yours.

BUY RIFLE IN/W 7 HAS 12 -BIT 0 PAR 0 PAR 50
MSGS SETZ CT-N

BUY KNIFE IN/W 8 HAS 12 -BIT 1 PAR 1 PAR 10
MSG6 SETZ CT-N

BUY WHISKEY IN/W 2 HAS 12 -BIT 2 PAR 2 PAR 3
MSG7 SETZ CT-N

Now we'll write the actions which allow the player to pick up the rifle, knife
and whiskey. First, the "GET" actions which do not arrest the player will be
written. These "GET" actions will check if the player is in the same room as
the object and if the appropriate bit flag was set. If this was the case, the
player will be allowed to pick up the object.

Let's take the knife for example. The player's verb, noun will be "GET KNIFE".
The conditions will be that the player is in the room with the knife (object 8 -
IN/W 8) and that bit flag 1 is set (the player has already bought the knife).
If this is true, the player will be allowed to pick up the knife. When the
adventure driver picks up or drops an object with the automatic pick up/drop
feature, the message "OK" is displayed after the object is picked up or dropped.
For the "OK" message to be displayed in this case, the action entry must display
the message. The actions to pick up the rifle and whiskey are very similar to
the knife act ion, except a different bit flag and object are checked. The "OK"
message and "GET" actions read:

Message II Message
--------- -------

8 OK

GET RIFLE IN/W 7 BIT 0 PAR 7 0 0
GETX

GET KNIFE IN/W 8 BIT 1 PAR 8 0 0
GETX

GET WHISKEY IN/W 2 BIT 2 PAR 2 0 0
GETX

Now we will write the "GET" actions for when the player has not previously
bought the item being picked up. We stated earlier that if the player tries to
"GET" the rifle, knife or whiskey without buying them first, he will be arrested
and thrown in jail. The actions to be written here will perform this task.

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I

I
I
I

The Adventure Sys tem Page 6 - 9

In the above actions , if the player bought the rifle, for example, bit flag 0
will be set. If the player has not yet purchased the rifle, bit flag O will be
cleared. We will make use of that when writing these actions. The verb, noun
combination of this get action will be the same, "GET RIFLE". The conditions
for this action are that bit flag O is cleared and the player is in the room
with the rifle (object 7).

The commands for this action and the whiskey and knife actions will be the same,
tell the player he is arrested for stealing, send him to jail and end the
adventure. Instead of putting all of these commands in all three actions, why
not set a bit flag to signify that the player is to be arrested?

In a previous chapter, it was stated that after the player input actions are
scanned, the automatic actions are then scanned. So, if we set a flag in the
player input actions, an automatic action could be written that will check if
the same flag is set. If the flag is set, the player will be told he has been
arrested and will be sent to jail. For your information, setting a bit flag to
signify the end of a game can be very u6ef ul if there are many ways to end the
game.

For example, in this adventure the player will be arrested if he gets the rifle,
knife or whiskey without buying them first. We could add a horse in this
adventure. If the player got on the horse and started riding it without first
buying the horse, he could be arrested and sent to jail for that also.

In this adventure, bit flag three will be set if the player "GET" s one of the
objects without buying it first. The actions controlli ng this are:

GET RIFLE IN/W 7 -BIT 0 PAR 3 0 0
SETZ

GET KNIFE IN/W 8 -BIT 1 PAR 3 0 0
SETZ

GET WHISKEY IN/W 2 -BIT 2 PAR 3 0 0
SETZ

Now we need to write an automatic action which will arrest the player. This
automatic action should be checked every time the auto actions are scanned so
the probability should be 100. The condition will check if bit flag 3 is set.
If set, the player will be given the message "Storekeeper cries 'STOP,
THIEF'!!!". We will pause the display for a second so the player can realize
what has happened . Then the message "Marshall arrests me for stealing!!!" will
be displayed. Then we will send the player to a room called "jail cell" and end
the game. The "jail cell" will be assigned to room 6. The room and messages
are:

Room If

6

Message #

9
10

N S E W U D Room Description

0 0 0 0 0 0 jail cell

Message

Storekeeper cries "STOP, THIEF!!!"
Marshall arrests me for stealing!! I

The Adventure System Page 6 - 10

Notice that the jail cell has no exits to other rooms. Since the game will be
ended, there is no need for exits from that room. It might make the jail more
"homey" if there were a couple of objects there. We will place the two objects
listed below in the jail cell:

Object Ii

13
14

Start Room

6
6

Object Description

Bars
Gallows being built in the street

With objects 13 and 14 in the jail cell with the player, he will know for sure
he is in trouble! The automatic arrest action is:

AUTO 100

AUTO 0

BIT 3
MSG9

0
MSGlO

PAR 6
DELAY

0
DSPRM

0
GCTOY

0
FINI

0
CONT

0

0

0

If the player has been arrested, bit flag 3 will be set. If set, this auto
action will be executed. The first actlon will display the storekeeper message
and pause for about one second. The player is then sent to room 6, the jail
cell. The CONTinue flag i~ set next.

The second action (AUTO 0) is a continued action from the first one (AUTO 100).
There are no conditions in this action so its commands are executed whenever the
first action's conditions are true. The first command will display the message
which tells the player the marshall arrested him. The second command displays
the player's current room (DSPRM). The third command, FINish, ends the game.

Since these are automatic actions, they will have to be placed in front of the
player input actions. We will make sure of this when the ordering of action
entries ls finally done.

Let's take care of those nasty outlaws now. First, we'll need to post the
Wanted Poster mentioned earlier. This poster is placed on the outside wall of
the jail. This means a "Jail" object must be added. This "Jail" object must be
placed in some starting room. In the "Trading Post Situations Coding " section,
the trading post was given an East exit to room S. Let's define room S now as a
"City Street". The "Jail" object is placed in room S, or the "City Street".
The "Jail" object and room S cire:

Object II Start Room Object Description
------- ----------

15 s Jail

Room II N s E w u D Room Description

5 0 0 0 4 0 0 *I'm on a city street

I

I
I
I

The Adventure System Page 6 - 11

Note the West exit to room number 4. Room 4 will be used to connect the
player's movements together. All rooms the player will enter in an adventure
must be linked together in some manner. Room 4 will be used for this:

Room f1 N S E W U D Room Description

4 0 3 5 0 0 0 *I'm on a trail

I
Note the South exit to room 3 and East exit to room s.
given a North exit to room 4. It makes sense to have
to room 3. The same thing goes for room s. There is
room 4. So room 4 is given an East exit to room s.

Previously, room 3 was
a South exit from room 4
a West exit from room 5 to

The outlaws are to be placed in a bank. The inside and outside of the bank must
be described. The outside of the bank will be an object called "Bank" placed in
room 5, the city street. The inside of the bank will be a room we need to add.
Inside the bank, we could find the outlaws and some people with their hands up.
The "Bank" room and objects are:

Room If N

7 0

Object #

16
17
18

s E w u

5 0 0 0

Start Room

5
7
7

D

0

Room Description

Bank

Object Description

Bank
Outlaws
Townsfolk with their hands up

Note the South exit to room 5 from room 7. This is the exit the player takes to
leave the "Bank".

The wanted poster mentioned earlier is to be placed on the jail. If the player
examines the jail, a message will be displayed telling him there is a wanted
poster there. If the player then reads the poster, he will get the poster
message. Note the <DOWN ARROW)s in the message description below. You can have
one message print on several lines of the screen by pressing the down arrow key
where you want new lines.

The verb, noun combination of the first action is "EXAM JAIL". The condition
will be that the player is in the same room as the "Jail" object. If this is
true, a message like "There's a wanted poster on it" will be displayed.

The verb, noun combination of the second act ion is "READ POSTER". The condition
of this action will also be that the player is in the same room as the "Jail"
object. The command will display the '"Wanted: Dead or Alive" wanted poster
message. These two messages and actions are:

Message II

11
12

Message

There's a Wanted Poster on it
WANTED: DEAD OR ALIVE

The Butler Gang
REWARD: A Gold Nugget!

<DOWN ARROW)
(DOWN ARROW)

The Adventure System

EXAM JAIL IN/W 15
MSGll

READ POSTER IN/W 15
MSG12

0

0

Page 6 - 12

0 0 0

0 0 0

The actions to catch the dreaded "Butler Gang" are next. I' 11 add a twist at
this point. Suppose the player enters the bank and comes upon the "Outlaws".
On the next move, if the player does not draw his gun, he is shot by the "Butler
Gang". Let's write that action first.

An automatic action will be used to set bit flag 4 if the player is in the bank
room. If the player draws his pistol immediately after he enters the bank, the
outlaws will be arrested. When arrested, the outlaws will be sent to the
storeroom and an object called "Outlaws behind bars" will be placed in the jail
room.

An automatic action will be used to check if the player has been shot by the
outlaws. The conditions for this one are to check if bit flag 4 is set and if
the outlaws (object 17) are not in room O. If the outlaws are not in room 0,
then the player has gotten the "draw" on them.

A "Jail" room must be defined also. Room 8 will be used for this room. This is
where the outlaws and reward will be sent when the outlaws are arrested. The
player will be able to enter the "Jail" (room 8). Therefore, there must be an
exit from the jail. The outside of the jail is object 15, which starts in room
5. This means an exit from the jail (room 8) should be back to room 5 (city
street). The "Jail" room is:

Room fl N S E W U D Room Description

8 5 0 0 0 0 0 jail

Notice the North exit back to room 5.

The verb, noun combination for the action the player uses to get the "draw" on
the outlaws is "DRAW PISTOL". The conditions will check if the player has the
pistol and is in the bank with the outlaws. The commands will remove the
outlaws from the bank, put the outlaws behind bars in the jail room, put the
reward (gold nugget) in the jail, swap some happy townspeople for the ones with
their hands up and display a message about the marshall catching the outlaws.
The objects, message and associated actions for this are:

Object I!

19
20
21
22

Message ll

13

Start Room

-1
0
0
0

Message

Object Description

Pistol/PIS/
Outlaws behind bars
GOLD NUGGET/GOL/
Happy Townsfolk

The outlaws dropped their guns
and the marshal! arrested them!

1

'

I

I

I

The Adventure System Page 6 - 13

DRAW PISTOL PAR 21 IN/W 17 PAR 17 PAR 20 PAR 8
X-RMO X-)Y CONT MSG13

AUTO 0 PAR 21 PAR 8 PAR 22 PAR 18 0
X->Y EXX,X

We are going to need an automatic action which sets bit flag 4 when the player
enters the bank. We will also need an automatic action to check if the player
has been shot by the outlaws. Earlier, we decided if the player did not draw
his pistol at first contact with the outlaws, the outlaws would shoot him.

The first action is fairly simple. The only condition is if the player is in
room 7, the bank.

The second action checks if bit flag 4 is set (the player is in the bank) and if
the outlaws are not in the storeroom (they are in the bank). If this is true,
then a message indicating he has been shot is displayed and the game is ended.
The message and action are:

Message # Message
-------- -------

14 The outlaws got the drop on me! I'm dead!!

AUTO 100 BIT 4 -RMO 17 0 0 0
MSG14 DEAD FINI

AUTO 100 IN 7 PAR 4 0 0 0
SETZ

Notice that the first action uses the "DEAD" command. This command will send
the player to the last room as defined in the HEADER. Therefore, we must
describe the "DEAD" room. This room will be the last entry in the room list.
To be safe, we should leave a few empty positions between the last room
described above and the "DEAD" room. The "DEAD" room is described as:

Room fl N S E W U D Room Description

12 0 0 0 0 0 0 *I'm at Boot hill (six feet under)

The order of the above automatic actions is very important. The first one must
precede the second one. When the adventure is being played, the automatic
actions are scanned from the lowest numbered one to the highest numbered one.
After the auto actions are scanned, the player inputs his verb, noun
combination. This is followed by a scan of the player input actions. The
process repeats itself by the automatic actions being scanned again. -
Look closely at the first action. It tests to see if bit flag 4 is set. Now
look at the second action. It sets bit flag 4. If the actions are left in the
order they are now, the following will happen when the player is playing the
adventure. First, the player will enter the bank. Then, the automatic actions
will be scanned, The first one will be false since bit flag 4 has not been set
yet. However, the second action will be true (the player is in room 7) and this
action will set bit flag 4. After the rest (if any) of the automatic actions
are scanned, the player is asked for his verb, noun. If the player types in
"DRAW PISTOL", the outlaws will give up. If the player does anything else, the
outlaws will not give up and will remain in the bank (they are not placed in the
storeroom). The automatic actions will be scanned again, and this time the
first action will be true and the player will be shot.

The Adventure System Page 6 - 14

If the order of these two actions were reversed, the player would never be given
a chance to draw his pistol. One of the auto actions would set bit flag 4. The
other action would be checked next. If bit flag 4 was set, the player is shot
and the game ends. There would be no chance for the player to input a verb,
noun between these two automatic actions.

For the player to claim his reward, he must return to the jail (this is where
the gold nugget was placed). The gold nugget is a named object so it may be
picked up and dropped with no actions.

MOVING TO AMO FROM ROOMS

We have described the inside and outside of the jail and bank. Room 8 and
object 15 describe the jail, room 7 and object 16 describe the bank. For the
trading post, however, we have only described the inside of it with room 2. We
need to place an object describing the trading post in the adventure. The jail
and bank outside descriptions were placed in room S, so we might as well be
consistent and put the trading post there also. The outside of the trading
post is:

Object ti Start Room Object Description

23 s Trading Post

So far we have given an exit from the trading post, jail and bank. But we have
not given a way to enter the trading post, jail or bank. If you look at the
room descriptions described so far, none of them has an exit to room 2 (the
trading post) or room 7 (the bank) or room 8 (the jail). We must somehow let
the player enter these rooms.

The outside of each of these rooms is described by an object in room S. Put
yourself in the player's shoes. If you saw the object "Jail" in a room, you
might try to enter the room with a "GO JAIL" verb, noun combination. This is
exactly what we'll do to allow the player to enter the trading post, jail and
bank.

The verb, noun combination for these actions is "GO room", where "room" is
"TRADE" for the trading post, "JAIL" for the jail and "BANK" for the bank. The
condition for each of these actions is the same - check if the player is in room
S (since that is where the objects describing the outsides of these rooms are).
If the condition is correct, the player will be sent to the appropriate room via
the "GOTOY" command. These actions are:

GO JAIL IN S PAR 8 0 0 0
GO TOY

GO BANK IN S PAR 7 0 0 0
GO TOY

GO TRADE IN 5 PAR 2 0 0 0
GO TOY

I
II
I
I

I

•
II

The Adventure System Page 6 - 15

USER FRIENDLY ACllOHS

There are a few actions which should be in every adventure. These will let the
player save the game, get an inventory, quit the game, etc. There is usually a
"HELP" action in every adventure. The "HELP" action could only respond with
"Try EXAMining thing", or anything else you can dream up.

There is usually an "EXAM ANY" action also. This action is used if there is not
a "specific" EXAMine action for a particular object.

These "User Friendly" actions and messages are:

Message fl Message

--------- -------
15 Try EXAMining things
16 I see nothing special

HELP ANY 0 0 0 0 0
MSGlS

EXAM ANY 0 0 0 0 0
MSG16

SAVE GAME 0 0 0 0 0
SAVE

QUIT ANY 0 0 0 0 0
FINI

INVEN ANY 0 0 0 0 0
INV

GET INVEN 0 0 0 0 0
INV

SCORE ANY 0 0 0 0 0
SCORE

These "User Friendly" actions are usually placed at the end of the player input
actions. This is especially true for the "HELP ANY" and "EXAM ANY" actions. If
the "EXAM ANY" action preceded the "EXAM JAIL" action described earlier, the
"EXAM JAIL" action would never be executed since the "EXAM ANY" action will
always be true.

The initialization action entry will be executed at the very start of the
adventure, and never again. In a previous chapter, it was pointed out that
testing a bit flag for its cleared state and then setting the same bit flag in
the action would perform this function. In this initialization action entry, we
will use bit flag 31. An opening message will be displayed and the CT counter
will be set to 100. CT is set to 100 since the player starts the adventure with
$100. The opening message and auto action are:

Message II

17

AUTO 100

Message

Welcome to the "Old West" adventure by Bruce G. Hansen

-BIT 31
SETZ

PAR 31
CT<-N

PAR 100 0 0

The Adventure System Page 6 - 16

This ends the coding of the action entries. The order of the actions is not
critical except where noted. Just remember to place the automatic actions
before the player input actions. This adventure is listed later in this
chapter.

F1HISHIHG UP THE CODING

So far we have described the actions, the rooms, the messages and the objects.
That leaves one data base section, the vocabulary. The actions and objects
written above really hold all of the vocabulary words we need. But we might
want to add some synonyms to certain verbs and nouns.

For example, the verb "GET" could have the synonyms "TAKE" and "GRAB". The
trading post could be described as "TRADE" or "POST".

When writing the vocabulary lists, start with the verbs and nouns in the
actions. Add syr1onyms to them as you see fit. Do not forget to make sure the
list contains the object names (name between slashes at the end of the object
descriptions). The object names should be primary nouns, not synonyms. The
complete list of vocabulary words (plus synonyms that I selected) is given
below. Refer to that listing for more details.

OLD WIST ADVEMl'UM DATA BASE USTIHG

The following is a listing of the Old West adventure described above. This is
really a collected listing of the actions, vocabulary, rooms, messages and
objects listed separately above. The only things different about this listing
is that the actions and vocabulary have been ordered. The order of action
entries is not generally critical, except where previously noted. Placing the
automatic action entries before the player input actions is the only
requirement.

You will note that sone synonyms have been added to the vocabulary words. These
are self-explanitory. For example, the player might use the noun "TRADE" or
"POST" for the trading post.

Action Entria

Acft Verb Noun Cond 1 Cond 2 Cond 3 Cond 4 Cond s
Act Title Cmd 1 Cmd 2 Cmd 3 Cmd 4

0 : AUTO 100 BIT 3 PAR 6 0 0 0
Player arrest MSG9 DELAY GO TOY CONT

l AUTO 0 0 0 0 0 0
MSGlO DSPRM FINI

2 AUTO 100 BIT 4 -RMO 17 0 0 0
Outlaw kill MSG14 DEAD FINI

3 : AUTO 100 IN 7 PAR 4 0 0 0
In Bank? SETZ

4 : AUTO 100 -BIT 31 PAR 31 PAR 100 0 0
Initialize SETZ CT(-N

5 GO TEEPEE IN/W 3 PAR 1 0 0 0
GO TOY

6 TRADE WHISKEY HAS 2 PAR 1 PAR 2 0 0
DROPX X-RMO

I

I

I
I
I
I

The Adventure System Page 6 - 17

Action E.ntrtcs (con'\)

7 SHOOT BUFFALO HAS 7 IN/W 4 PAR 4 PAR 5 0
EXX,X MSG! MSG2

8 SKIN BUFFALO HAS 8 IN/W 5 RMO 6 PAR 6 0
DROPX

9 EXAM WALLET HAS 12 0 0 0 0
MSG3 OS PCT MSG4

10 BUY RIFLE IN/W 7 HAS 12 -BIT 0 0 PAR 50
MSG5 SETZ CT-N

11 BUY KNIFE IN/W 8 HAS 12 -BIT 1 PAR 1 PAR 10
MSG6 SETZ CT-N

12 BUY 'WHISKEY IN/W 2 HAS 12 -BIT 2 PAR 2 PAR 3
MSG? SETZ CT-N

13 GET RIFLE IN/W 7 BIT 0 PAR 7 0 0
GETX

14 GET KNIFE IN/W 8 BIT 1 PAR 8 0 0
GETX

15 GET 'WHISKEY IN/W 2 BIT 2 PAR 2 0 0
GETX

16 GET RIFLE IN/W 7 -BIT 0 PAR 3 0 0
SETZ

17 GET KNIFE IN/W 8 -BIT 1 PAR 3 0 0
SETZ

18 GET 'WHISKEY IN/W 2 -BIT 2 PAR 3 0 0
SETZ

19 EXAM JAIL IN/W 15 0 0 0 0
MSGl 1

20 READ POSTER IN/W 15 0 0 0 0
MSG12

21 DRAW PISTOL HAS 19 IN/W 17 PAR 17 PAR 20 PAR 8
X-RMO X-)Y CONT MSG13

22 AUTO 0 PAR 21 PAR 8 PAR 22 PAR 18 0
X-)Y EXX,X

23 GO JAIL IN 5 PAR 8 0 0 0
GO TOY

ii
24 GO BANK IN 5 PAR 7 0 0 0

GO TOY
25 GO TRADE IN 5 PAR 2 0 0 0

I
GO TOY

26 EXAM ANY 0 0 0 0 0
MSG16

27 HELP ANY 0 0 0 0 0

I MSG15
28 SAVE GAME 0 0 0 0 0

SAVE

I
29 QUIT ANY 0 0 0 0 0

FINI
30 INVEN ANY 0 0 0 0 0

INV

I 31 GET INV EN 0 0 0 0 0
INV

32 SCORE ANY 0 0 0 0 0

I
SCORE

The Adventu r e System

Voaibulary En1rta

Voci! Verb Noun
0 AUTO ANY
l GO NORTH
2 *WALK SOUTH
3 *ENTER EAST
4 EXAM WEST
5 *LOOK UP
6 DRAW DOWN
7 HELP TEEPEE
8 SAVE WHISKEY
9 QUIT *FIRE
10: GET BUFFALO
11: *TAKE *HIDE
12: *GRAB RIFLE
13: INVEN *WINC
14: TRADE KNIFE

Room Entrta

Rm/! N s E w u D
0 0 0 0 0 0 0
l 0 0 0 3 0 0
2 0 0 5 0 0 0
3 4 0 0 0 0 0
4 0 3 5 0 0 0
5 0 0 0 4 0 0
(i 0 0 0 0 0 0
7 0 5 0 0 0 0
8 5 0 0 0 0 0
9 0 0 0 0 0 0
10: 0 0 0 0 0 0
11 : 0 0 0 0 0 0

Voci! Verb
15: SHOOT
16: SKIN
17: SCORE
18: DROP
19: *LEAVE
20: BUY
21: *PURCH
22: READ
23:
24:
25:
26:
27:
28:

Room Description
Storer oom. Can't get here
teepee
Trading Post
great plain
*I' m on a trail
*I' m on a city street
Jail Cell
Bank
Jail

Page 6 - 18

Noun
COUNT
JAIL
POSTER
PISTOL
BANK
TRADE
*POST
OUTLAW
GAME
INVEN
WAMPUM
WALLET
GOLD
*NUGGET

12: 0 0 0 0 0 0 *I'm a t Boot Hill (six feet under)

Mn199c Entrla

Ms g#

0
l
2
3
4
5
6
7
8
9
10:

Message

BANG!!!
Got em!!!
It has
dollars in it
That'll be $50 partner .
That'll be $10 partner.
That'll be $3 partner.
OK

It 's yours.
I t's yours.

It 's yours.

Storekeeper qies "STOP, THIEF!!! "
.Marshall arrests me for steali ng ! !

I
I
I
I

The Adventure System

Message Entries (con't)

11: There's a Wanted Poster on it
12: WANTED: DEAD OR ALIVE

The Butler Gang
REWARD: A Gold Nugget!

Page 6 - 19

13: The outlaws dropped their guns and the marshal! arrested them!
14: The outlaws got the drop on me! I'm dead!!
15: Try EXAMining things
16: I see nothing special
17: Welcome to the "Old West" adventure by Bruce G. Hansen

Object Entries

Obj/I

0
1
2
3
4
5
6
7
8
9
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20 :
21:
22:
23:

Start Room

1
0
2
3
3
0
0
2
2
0
2
2

-1
6
6
5
5
7
7

-1
0
0
0
5

Object Description

Indians
WAMPUM/WAM/
Whiskey/WHI/
Teepee
Buffalo
Dead Buffalo
BUFFALO HIDE/BUF/
Winchester rifle/WIN/
Knife/KN!/
Lighted artificial light source
Counter
Mean-looking storekeeper
Wallet/WAL/
Bars
Gallows being built in the street
Jail
Bank
Outlaws
Townsfolk with their hands up
Pistol/PIS/
Outlaws behind bars
GOLD NUGGET/GOL/
Happy Townsfolk
Trading Post

If you look closely at the data base above, you will notice one data base
section is not listed, the HEADER. We shall assign the HEADER values now.

The Adventure System Page 6 - 20

So far we have determined the following HEADER values:

Number of objects = 23
Number of actions = 32
Number of vocabulary words = 28
Number of rooms = 12
Number of messages = 17
Number of treasures "' 3
The Word Length = 3

Where did these values come from? Look at the data base listing. In it you
will see 23 objects, 32 actions, 28 vocabulary words, 12 rooms, 17 messages and
3 treasures. We set the word length to 3 at the start of writing the adventure.

The remaining HEADER items are the carry limit, starting room, time limit and
the treasure room.

Let's set the "carry limit" to 5. This means the player will not be able to
carry more than 5 objects at one time. This value can be changed to a greater
or smaller number later on if need be. It should not be set to less than 2
since the player is carrying two objects at the start of the adventure.

Let's start the player in room 5, or in the city street. This is arbitrary at
this point and can be changed later if the need arises.

The time limit can be set to any value. This value is normally the number of
moves that the artificial light source lasts. Since the light source is not
used in this adventure, we do not care what this value is. In this case, we
will set it to 100.

For the treasure room, I chose room number 2 or the "Trading Post". This also
could be changed later. To win at this adventure, the player will have to store
the treasures in room 2.

Now all of the HEADER values have been defined. In the ADVEDT format for
listing the HEADER, it appears as follows:

#OBJ /IACT #voe llRM MAX
23 32 28 12 5

BEG
5

llTR WLEN
3 3

TIME
100

/!MSG TR-RM
17 2

The whole adventure data base has been listed. The next step is to start typing
the adventure in with the adventure editor, ADVEDT.

ENTEltlNG THE ADWH1URE WITH ADVEDT

I will assume by this point you know how to boot up your system and load the
adventure editor, ADVEDT. If not, consult Chapter 4 for instructions on doing
so.

The first step after loading ADVEDT is to clear out any previous adventure from
memory. This is done with the CLEAR command. From the main menu of ADVEDT, the
procedure goes as on following page (your inputs are underlined):

I
I
I
I
I
I
I
I
I
I
I

I
I
I

The Adventure System Page 6 - 21

Do you want to READ, LIST, PRINT, XREF, WRITE, MODIFY, INSERT,
CLEAR or END
R, L, P, X, W, M, I, C or E ? C

(Press the "C" key for the CLEAR command)

The program will respond with:

Are you sure ? Y <ENTER)

(Press "Y" for yes and press the (ENTER> key)

After a short pause, the main menu will be displayed again. We first issued a
CLEAR command to erase the adventure data base memory. If an adventure had
previously been read in, we should erase it before entering the "Old West"
adventure.

The next step is to set the HEADER to the values listed above. To change the
HEADER, and the other data base sections, we use the MODIFY command. To set the
HEADER to the appropriate values listed above, perform the following steps
(again, your input is underlined):

R, L, P, X, W, M, I, C or E ? M

(Press the "M" key for MODIFY from the main menu)

ADVEDT will respond with:

Which section do you want to MODIFY:
Header, Actions, Vocab, Rooms, Messages or Objects
H, A, V, R, Mor 0 ? H

(Press "H" to MODIFY the HEADER)

ADVEDT responds with:

O Actions Now -- How many do you want ? ~
18 Vocabulary Now -- How many do you want ? 28
1 Rooms Now -- How many do you want ? 12
O Messages Now -- How many do you want~ .!2.
9 Objects Now -- How many do you want ? 23
O Carry Limit Now -- How many do you want"'"? S
O Start Room Now -- How many do you want ? S
O Treasures Now -- How many do you want ? 3-
0 Word length Now -- How many do you want ? 3
0 Light duration Now -- How many do you want-? 100
0 Treasure room Now -- How many do you want ? 2~-

The Adve ntu r e System Page 6 - 22

The values en t ered here were t he same as those listed for the READER above. The
value at the beginning of a line i s the current value of that item. For
example:

18 Vocabulary Now -- How many do you want ?

The HEADER value for the number of vocabulary words is currently "18". That
means there are up to 18 verbs and 18 nouns defined at this point. If we were
to type a number, such as the "28" i nput above, the HEADER value for the number
of vocabulary words would change t o that inputted number. If you were to press
the "(ENTER)" key without typing in a number, the number of vocabulary words
would remain at the current value or "18". The same goes for the other HEADER
items.

After all of the HEADER has been modi fied, ADVEDT returns to the MODIFY
sub-menu. The order of the data base sections to be modified is not critical,
except the vocabula~y words must be entered bef ore the action entries. When an
action entry is entered, you will ty pe in a verb and a noun. ADVEDT will scan
the list of vocabulary words for a match . If no match is found, you are told
that the inputted verb and/or noun i s not in the vocabulary. When entering this
adventure data base into ADVEDT, we wi l l MODIFY the data base sections in this
order: Vocabulary, Rooms, Mes sages, Objects and Action entries.

To MODIFY the vocabulary, we must pr ess the "V" key from the MODIFY sub-menu.
The procedure goes as follows (your inputs are underlined):

Which section do you want to MODIFY :
Header, Actions, Vocab, Rooms, Mess ages or Objects
H, A, V, R, Mor 0 ? V

(Press "V" for Vocabulary)

Lower limit, upper limit (ENTER is all) ? <ENTER>

(Press (ENTER> so we can MODIFY a ll vocabulary words)

Modify
Verbs or Nouns V or N ? V

(Press "V" to modify the verbs)

Verb 0
Verb 1
Verb 2
Verb 3
Verb 4
Verb s
Verb 6
Verb 7
Verb 8
Verb 9
Verb 10
Verb 11
Verb 12
Verb 13

AUTO
GO

GET

New
New
New
New
New
New
New
New
New
New
New
New
New
New

verb ? (ENTER>
verb ? (ENTER>
verb ? *walk
verb ? *enter
verb ? exam
verb ? *look
verb ? draw
verb ? help
verb ? save
verb ? quit
verb ? <ENTER>
verb ? *take
verb ? *grab
verb ? inven

I

The Adventure System Page 6 - 23

Verb modification (con't)

Verb 14 New verb ? trade
Verb 15 New verb ? shoot
Verb 16 New verb ? skin
Verb 17 New verb ? score
Verb 18 DROP New verb ? <ENTER>
Verb 19 New verb ? *leave
Verb 20 New verb ? buy
Verb 21 New verb ? *purch
Verb 22 New verb ? read
Verb 23 New verb ? "'(ENTER>
Verb 24 New verb ? <ENTER>
Verb 25 New verb ? <ENTER)
Verb 26 New verb ? <ENTER)
Verb 27 New verb ? <ENTER)
Verb 28 New verb ? <ENTER>

After the 28 verbs are entered, ADVEDT returns to the MODIFY sub-menu. Note
above that the verbs were input in lower case letters. The adventure driver
program requires them to be in upper case letters. ADVEDT will convert them
from lower case to upper case automatically. I set my keyboard to lower case
(the method of doing so depends on your computer set up) since room
descriptions, messages and object descriptions contain mostly lower case
letters.

Now we can modify the nouns. The nouns are part of the vocabulary, so we must
MODIFY that section of the data base:

Which section do you want to MODIFY:
Header, Actions, Vocab, Rooms, Messages or Objects
H, A, V, R, Mor 0 ? V

(Press "V" for vocabulary again)

Lower limit, upper limit (ENTER is all) ? <ENTER>

(We want to MODIFY all of the nouns so we press (ENTER> to do so)

Modify Verbs or Nouns V or N ? N

(Press "N" to MODIFY the Nouns)

Noun 0 ANY New noun ? (ENTER)
Noun 1 NORTH New noun ? <ENTER)
Noun 2 SOUTH New noun ? <ENTER)
Noun 3 EAST New noun ? <ENTER)
Noun 4 WEST New noun ? <ENTER>
Noun s UP New noun ? <ENTER>
Noun 6 DOWN New noun ? <ENTER)
Noun 7 New noun ? teepee
Noun 8 New noun ? w'fiisk:ey
Noun 9 New noun ? *fire
Noun 10 New noun ? buffalo
Noun 11 New noun ? *hide

The Adventure System

Noun modification (con't)

Noun 12 New noun ? rifle
Noun 13 New noun ? *Winc
Noun 14 New noun ? knife
Noun 15 New noun ? count
Noun 16 New noun ? jail
Noun 17 New noun ? poster
Noun 18 New noun ? pistol
Noun 19 New noun ? bank
Noun 20 New noun ? trade
Noun 21 New noun ? •post
Noun 22 New noun ? out law
Noun 23 New noun ? game
Noun 24 New noun ? inven
Noun 25 New noun ? wampum
Noun 26 New noun ? wallet
Noun 27 New noun ? gold
Noun 28 New noun ? *nugget

After all of the nouns have been modified, ADVEDT returns to
sub-menu . The next data base section to be modified

Which section do you want to MODIFY:
Header, Actions, Vocab, Rooms, Mess age s or Objects
H, A, V, R, Mor 0 ? R

(Press ·~" to MODIFY the rooms)

Lower limit, upper limit (ENTER is all) ? <ENTER>

(Press (ENTER> to MODIFY all of the rooms)

Room 0 0 N 0 s 0 E 0 w 0 u 0
Room description: Storeroom, can't ge t he re
N, S, E, W, U, D rooms ? <ENTER)
Description ? <ENTER>

D

is the

Page 6 - 24

the MODIFY
rooms:

(Note: the current values for the rest of the r ooms will be left off here to
save space. The room number being modified wi ll be inside paranthesis to
identify the room. Because the CLEAR command was issued above, all of their
room direction data will be zeros. The room desc riptions will be blanks.)

(room 1) N, s, E, w, U, D rooms ? 0 0 0 3 0 0
Description ? teepee

(room 2) N, s, E, w, U, D rooms ? 0 0 5
Description ? Trading Post

(room 3) N, s, E, w, U, D rooms ? 4
Description ? great plain

(room 4) N, S, E, w, u. D rooms ? 0 3 5
Description ? *I ' m on a trail

I

I
I
I
I
I
I

The Adventure System

Room modification (con't)

(room S) N, S, E, W, U, D rooms ? 0 0 0 4
Description ? *I'm on a city street

(room 6) N, S, E, W, U, D rooms ? <ENTER>
Description ? Jail Cell

(room 7) N, S, E, W, U, D rooms ? O S
Description ? Bank

(room 8) N, s, E, w, U, D rooms ? 5
Description ? Jail

(room 9) N, s, E, w, U, D rooms ? <ENTER>
Description ? <ENTER)

(room 10) N, s, E, w, U, D rooms ? <ENTER>
Description ? (ENTER>

(room 11) N, s, E, W, u, D rooms ? <ENTER)
Description ? <ENTER>

(room 12) N, S, E, W, U, D rooms ? <ENTER>
Description ? *I'm at Boot Hill (six feet under)

Page 6 - 25

After these rooms are modified, ADVEDT returns to the MODIFY sub-menu.

If you were following along by actually entering this adventure with ADVEDT, you
probably noticed that all previous room directions were set to zeros (like room
0 above). For some of the rooms, such as room 2, we did not input all six
directions for North, South, East, West, Up and Down. Let's take room 2 as an
example. The following table details room 2's adjacent room directions:

Previous room directions
Desired room directions
Room directions entered

N

0
0
0

s

0
0
0

E

0
5
5

w

0
0

u

0
0

D

0
0

When the room directions are typed in with ADVEDT, only the number of room
directions typed in are changed. For example, with room 2, we typed in only
three room directions. So ADVEDT only changed the first three. We could have
typed in three zeros separated by a space after the "5" room number, but we
didn't have to since the West, Up and Down room numbers were already zero, the
desired room direction. This can save a lot of typing.

The next section of the data base to be modified is the messages. Modifying
them goes as follows:

Which section do you want to MODIFY:
Header, Actions, Vocab, Rooms, Messages or Objects
H, A, V, R, Mor 0 ? M

(Press "M" for the messages)

The Adventure System Page 6 - 26

Lower limit, upper limit (ENTER is all) ? <ENTER)

(Press <ENTER> because we want to modify all of the messages)

Message 0
Message ? <ENTER)
Message 1
Message ? BANG!! I
Message 2
Message ? Got em!!!
Message 3
Message ? It has

Continue to enter the messages as listed previously. The only "special"
message is message 12. This message entry is:

Message 12
Message

The
? WANTED: DEAD OR AL I VE<DN ARROW)
Butler Gang(DN ARROW>

REWARD: A Gold Nugget!

The "(DN ARROW)" above signifies the "DOWN ARROW" key. Pressing this key lets
you continue with the message on the beg i nning of the next line.

After all of the messages ar e entered, ADVEDT returns to the MODIFY sub-menu.
The next data base section to be modified is the objects:

Which section do you want to MODIFY:
Header, Actions, Vocab, Rooms, Messages or Objects
H, A, V, R, Mor 0 ? 0

(Press "O" to MODIFY the objects)

Lower limit, upper limit (ENTER is all) ? <ENTER>

(Press <ENTER> to MODIFY all of the objects)

Object O O Start
Starting room = ? 1
Description ? Indians
Object l 0 Start
Starting room = ? 0
Description ? *WAMPUM*/WAM/
Object 2 0 Start
Starting room = ? 2
Description ? Whisl<ey/whi/
Object 3 0 Start
Starting room = ? 3
Description ? Teepee

Continue entering the objects as listed above . Remember to press the <ENTER>
key for the starting room and des cript ion of obj e c t 9, the lighted artificial
light source. Since this object is not used in this adventu r e, we can leave its
description and starting room as is .

I

I

The Adventure System Page 6 - 27

Notice that the object name of object 2, the whiskey, was entered in lower case
("whi") letters. ADVEDT will automatically convert the lower case "whi" to the
required upper case "WHI". This feature makes typing object names easier for
upper/lower case users.

After entering all of the objects, ADVEDT will return to the MODIFY sub-menu.
The last section of the data base to be modified is the action entries:

Which section do you want to MODIFY:
Header, Actions, Vocab, Rooms, Messages or Objects
H, A, V, R, Mor 0 ? A
(Press "A" to MODIFY the actions)

Lower limit, upper limit (ENTER is all) ? <ENTER>

ACTION 0 AUTO 0
VERB NOUN ? auto 100
PAR 0 COND, VALUE ? bi": 3
PAR 0 COND, VALUE ? pa;r 6

PAR 0 COND, VALUE ? (ENTER)
PAR 0 COND, VALUE ? <ENTER)
PAR 0 COND, VALUE ? <ENTER)

Cmd or Msg#
Cmd or Msgfl
Cmd or Msgtl
Cmd or MsgH

Title ? Player arrest
Y or N ? Y

? 9
? delay
? go toy
? cont

Continue typing in the rest of the action entries in this fashion. Notice above
how the verb "auto" was entered in lower case letters. ADVEDT automatically
converts the "auto" to "AUTO" for you. The same goes for the conditions and
commands. Also note that the first command was entered as simply the number
"9". This means "Message 9". When entering a message as a command, you enter
only the message number. In this case, this was a "9 ...

After all of the actions have been
sub-menu. It might be a good idea
to dis~ (or tape for tape users).
and return to the main menu. This
RIGHT ARROW keys:

entered, ADVEDT returns to the MODIFY
at this point to save our adventure data base
First, we need to exit the MODIFY sub-menu
is done by pressing the (BREAK> key or SHIFT

Which section do you want to MODIFY:
Header, Actions, Vocab, Rooms, Messages or Objects
H, A, V, R, Mor 0 ? <BREAK)

Do you want to READ, LIST, PRINT, XREF, WRITE, MODIFY, INSERT,
CLEAR or END
R, L, P, X, W, M, I, C or E ? W

(Press "W" for the WRITE command)

The Adventure System Page 6 - 28

Tape or Disk ? E_

(Press "D" for a disk write. Note that tape users do not have a choice, they
can only write to tape.)

Adventure name and drive # ? OW:O <ENTER)

(We will save this adventure data base out with the name "OW" on drive/I O. The
drive number is optional. If writing the data base to tape, no adventure name
can be specified.)

After a few seconds, ADVEDT will return to the main menu. Now we can continue
the adventure writing procedure ~~th the debugging prcedure.

DDUGGIHG THE ADVENTURE WITH ADVEOT

Now that our adventure has been typed in ADVEDT, we can debug it. To debug an
adventure, we must play it and try just about every conceivable thing. Since we
have saved our adventure to disk, we could exit ADVEDT and play the adventure
with the driver program, ADV/CMD (tape users do not have ADV/CMD). A much
simplier method is to press the <CLEAR) key.

Pressing the <CLEAR) key while running ADVEDT will call up the adventure driver
built into ADVEDT. Let's press the <CLEAR) key now.

You should have gotten the message:

Use old "SAVED" game ?

If you did not get this message, run through this chapter again to see where you
went wrong. Since we have not previously saved an "Old West" game in progress,
we can not read one in. The WRITE command done previously saved the whole data
base to disk. This inquiry lets you continue a game from some point you had
saved out earlier.

We do not want to read in a "SAVED" game, so we respond with:

Use old "SAVED" game ? N <ENTER)

The screen will clear and display:

ADVEDT DRIVER ROUTINE

Press the "CLEAR" key at any time to return to the editor.

Hit ENTER to start the ADVENTURE

This messages says if you press the (CLEAR) key will running the adventure
driver, you will be returned to the editor with your adventure data base intact.
This makes debugging much simplier.

I

I

I

I

The Adventure System Page 6 - 29

Press the <ENTER> key now to start the adventure. You should see the following
on the screen:

I'm on a city street. Visible items:

Jail. Bank. Trading Post.

Obvious exits are: WEST
<-->

Tell we what to do -->

This is the type of display you get while playing an adventure. Remember how we
told the HEADER that the player was to start the adventure in room 5? If you
look at the room description for room 5, you will see that it is displayed at
the top of the screen, "I'm on a city street".

Also, remember that we set the ~tarting ro0t1t for object 15, (the "Jail"), object
16 (the "Bank") and object 23 (the "Trading Post") to room S? Sure enough, we
have started the adventure in room 5 and those objects are in room S.

Now look at the room directions for room S. The only exit from this room is to
the West, which will move us to room 4. Now look at the sample adventure screen
above. Notice how the only obvious exit is to the West?

All of that information is called the "Ro0t1t Display" because it displays a
description of the room, the objects in the room and the exits from the room.
Now let's move to the West. This can be done by typing "GO WEST" or by the
shorthand '1J". We will use the "GO WEST" method (your inputs are underlined
from now on):

Tell me what to do --> GO WEST

The screen will now have the following display:

I'm on a trail

Obvious exits are: SOUTH EAST
<--->

Tell me what to do --> GO WEST
Tell me what to do -->

We have just moved West from room S to room 4. Let's do an INVENTORY command
now. This command will tell us what, if anything, we are carrying. This can be
done by typing "INV" or "GET INV" or the shorthand "I". We wrote the actions to
perform the "INV" and "GET INV" functions:

Tell me what to do --> INV

The Adventure System

The screen will appear as:

I'm on a trail

Obvious exits are: SOUTH EAST
<-->

Tell me what to do --> GO WE ST
Tell me what to do --> INV
I'm carrying the following:
Wallet. Pis t ol.
Tell me what to do -->

Page 6 - 30

Let's return to the city street now. We do this by moving to the East (we
previously moved to the trail by mJving West, so we are backtracking).

Tell me what to do --> E

The screen will be:

I'm on a city street. Visible items:

Jail. Bank. Trading Post.

Obvious exits are: WEST
<-->

Tell me what to do --> GO WE ST
Tell me what to do --> INV
I'm carrying the following:
Wallet. Pistol.
Tell me what to do --> E
Tell me what . to do-->

To ease the reading of the displ ay , we will ignore the previously "Tell me what
to do" lines. You will notice after enough player inputs are done, that only
the lines below the dashes scroll. This leaves the "Room Display" in tact.

Now we'll go into the "Trading Pos t ", We enter this room by typing "GO TRAD" or
"GO POST". The act ion entry which allows us to enter the trading post reads "GO
TRADE". But in the nouns, we made "POST" a synonym of "TRADE", so either should
work. We will enter the tradi ng post with a "GO POST" verb, noun combination:

Tell me what to do --> GO POST

But we got back the message:

I'm sorry, but I don't understand what you mean.

This is our first "bug". There is a pr oblem with the nouns which does not let
"POST" act as a synonym of "TRADE". We will look for the specific cause in a
bit. Let's play the adventure a litt le more to see if there are any other
problems. Let's continue by goi ng i nto the trading post:

II

I
I

)

)

I
I

I

I

The Adventure System

Tell me what to do --> GO TRADE

The room display will be:

I'm in a Trading Post. Visible items:

Whiskey. Winchester rifle. Knife. Counter.
Mean-looking storekeeper.

Obvious exits are: EAST
<--->
Tell me what to do -->

Page 6 - 31

When debugging an adventure, you need to test every one of your action entries.
In this adventure, if the player tries to get the whiskey, rifle or knife before
buying it, he is arrested. Arresting the player will end the adventure, so we
will save the game at this point. Then we can see if the arrest actions work.
If they do, we can restore the saved game and continue debugging from this
point. The room display does not change on a "SAVE GAME" verb, noun so we won't
redisplay it:

Tell me what to do --> SAVE GAME

Now we'll get the rifle without buying it first:

Tell me what to do --> GET RIFLE

The following display will be seen:

I'm in a Jail Cell. Visible items:

Bars. Gallows being built in the street.

<-->
Tell me what to do --> SAVE GAME
Saving game.
Tell me what to do --> GET RIFLE
Storekeeper cries "STOP, THIEF!!!"
Marshall arrests me for stealing!!
This game is over. Play again ?

It looks like the arrest action works. Now let's say we do want to play again
(type "Y" and press (ENTER)). The adventure driver will ask if we want to play
a saved game. This time we do:

Use old "SAVED" game ? !

The saved game will be read in. The <ENTER) key should be pressed to start the
game. Notice that the game did not start at room S, the normal starting room
of the adventure. The game is being continued from the point where we saved it
above.

The Adventure System Page 6 - 32

Now let's buy the "Winchester rifle". We do this by typing "BUY RIFLE":

Tell me what to do --> BUY RIFLE

We get the following room display:

I'm in a Trading Post. Visible items:

Whiskey. Winchester rifle. Knife. Counter.
Mean-looking storekeeper.

Obvious exits are: EAST
<--->
Tell me what to do --> BUY RIFLE
That'll be $50 partner. It's yours.
Tell me what to do -->

Now that we have bought the rifle, let's try to pick it up. Hopefully, our
"arrest the player" actions will let us pick it up without sending us to jail.

Tell me what to do --> GET RIFLE

The room display will be:

I'm in a Trading Post. Visible items:
Whiskey. Knife. Counter. Mean-looking storekeeper.

Obvious exits are: EAST
<--->
Tell me what to do --> GET RIFLE
Tell me what to do -->

Notice that the "Winchester rifle" is no longer in the room display. This is
because we are carrying it. Take an inventory now, you will see the rifle there
which means we are carrying it. Let's try to drop the rifle. We type:

Tell me what to do --> DROP RIFLE

But we got back the message:

Tell me what to do --> DROP RIFLE
It's beyond my power to do that

There is some sort of problem or "bug" here. We should be able to drop the
rifle since it is a named object and there are no "DROP RIFLE" actions.

Now that we have a few "bugs", let's try to find what is causing them. First,
we must return to the editor. This is done by pressing the (CLEAR> key. After
you press the (CLEAR> key, the main menu of ADVEDT should be on the screen:

Do you want to READ, PRINT, XREF, WRITE, MODIFY, INSERT,
CLEAR or END
R, L, P, X, W, M, I, C or E ?

l

I
I

The Adventure System Page 6 - 33

We will fix the "GO POST" bug first. We need to study the list of nouns
tabulated previously. As you scan through the list, take a close look at noun
17 ("POSTER").

The word length of this adventure is three, so "POSTER" is interpreted by the
adventure driver to be "POS" (three letters long). When we typed in "GO POST",
the "POST" was truncated to three letters also, or "POS". When the adventure
driver scanned the nouns for a match of "POS", a match was made with noun 17
("POSTER") and noun 21 "*POST" was never reached.

The easiest way to fix this "bug" is to add an action with the verb, noun
combination of "GO POSTER". If the player then types "GO POST", the "POST" will
be truncated to "POS" and the "GO POSTER" action will be considered. This
action should have the same conditions and commands of the "GO TRADE" action.
This action would be:

GO POSTER IN 5
GO TOY

PAR 2 0 0 0

Before we add this action, let's fix the "DROP RIFLE" action. Again, we refer
to the "Old West" adventure listing given above. Object 7 is described as:

Obj# Start room Description

7 2 Winchester rifle/WIN/

The possible causes for us not being able to pick up the rifle are:

1) There is a "DROP RIFLE" action and it's
conditions are not true.

2) The object name "WIN" is not in the nouns.
3) The object name ''WIN" is not a primary noun.

The first case is not true. There are no action entries to drop the rifle. If
there were, the automatic get/drop feature would be disabled.

We need to look at the nouns to determine if our problem is case two or case
three. Look at noun 12 and noun 13. They are:

Noun#

12
13

Noun

RIFLE
*WINC

It looks like case three is our problem; the object name is not a primary noun,
it is a synonym. The solution for this problem is simple, change the object
name of object 7 from "/WIN/" to "/RIF/".

We can fix both of our problems now. Let's fix the "GO POST" problem first. We
first need to modify the HEADER. Since we are going to add an action entry, we
will have to increase the number of actions in the HEADER from 32 to 33.

The Adventure System

From the main menu, press the "M" key (for MODIFY):

Do you want to READ, PRINT, XREF, WRITE, MODIFY, INSERT,
CLEAR or END
R, L, P, X, W, M, I, C or E ? M

Which section do you want to MODIFY:
Header, Actions, Vocab, Rooms, Messages or Objects
H, A, V, R, Mor 0 ? H

32 Actions Now -- How many do you want ? 13
28 Vocabulary Now -- How many do you want? (BREAK>

Page 6 - 34

We changed the HEADER from 32 to 33 actions. We pressed the (BREAK) key since
it was not necessary to change any of the other HEADER values. Now, reenter the
MODIFY sub-menu by pressing the "M" key and modify the actions. We want to add
an action entry 13:

Do you want to READ, PRINT, XREF, WRITE, MODIFY, INSERT,
CLEAR or END
R, L, P, X, W, M, I, C or E ? M

Which section do you want to MODIFY:
Header, Actions, Vocab, Rooms, Messages
H, A, V, R, Mor 0 ? A
Lower limit, upper limit (ENTER is all)

ACTION 33 : AUTO
VERB NOUN ? GO POSTER
PAR 0 COND, VALUE ?
PAR 0 COND, VALUE ?
PAR 0 COND, VALUE ?
PAR 0 COND, VALUE ?
PAR 0 COND, VALUE ?

Cmd or Msg#
Cmd or Msg#
Cmd or Msgll
Cmd or Msg#

Title ? <ENTER>
Y or N ? Y

0

in 5
par 2
<ENTER)
(ENTER)
<ENTER)

? GOTOY
? <ENTER)
? (ENTER)
? <ENTER>

or Objects

? 33

Now the "GO POSTER" act ion has been added. To fix the "DROP RIFLE" program, we

need to MODIFY the objects and change the object name of object 7, the rifle:

Which section do you want to MODIFY:
Header, Actions, Vocab, Rooms, Messages or Objects
H, A, V, R, Mor 0 ? 0
Lower limit, upper limit (ENTER is all) ? 7
Object 7 2 Start Winchester rifle7WIN/
Starting room 2 ? <ENTER)
Description ? Winchester rifle/rif/

I

I

I
I
I

I

I

I

I

I
I

I

I

I
I
I
I
I
I
I
I

The Adventure System Page 6 - 35

Now that we have fixed the two bugs, we should save the data base to disk again.
First we must press the <BREAK> key to return to the main menu. Then we will
use the WRITE command:

Which section do you want to MODIFY:
Header, Actions, Vocab, Rooms, Messages or Objects
H, A, V, R, M or 0 ? <BREAK>

Do you want to READ, LIST, PRINT, XREF, WRITE, MODIFY, INSERT,
CLEAR or END
R, L, P, X, W, M, I, C or E ? W
Tape or Disk
T or D ? D
Adventure-name and drive # ? <ENTER)

We pressed <ENTER) for the adventure name and drive number so the data base
would be written out with the same name as before. We could have manually
entered the name too, but I chose not to.

Now you should continue to play the adventure to see if there are any other
"bugs". You can continue to play the adventure by first pressing the <CLEAR)
key to enter the adventure driver.

In the HEADER, we said that the "Treasure room" was room 2, the "Trading Post".
If you go into the trading post, there is no indication that you should leave
your treasures there. We should add an object to room 2 which tells the player
to leave the treasures there. This object could be:

Obj6 Start room Description

24 2 Sign saying "Leave *TREASURES* here"

Before we can add this object, the HEADER should be told that there are now 24
objects in this adventure instead of 23. The procedure for adding this object
would be:

Do you want to READ, PRINT, XREF, WRITE, MODIFY, INSERT,
CLEAR or END
R, L, P, X, W, M, I, C or E ? M

Which section do you want to MODIFY:
Header, Actions, Vocab, Rooms, Messages or Objects
H, A, V, R, Mor 0 ? H
33 Actions Now -- How many do you want ? <ENTER>
28 Vocabulary Now -- How many do you want ? <ENTER)
12 Rooms Now -- How many do you want ? <ENTER>
17 Messages Now -- How many do you want ? <ENTER)
23 Objects Now -- How many do you want ? 24
5 Carry limit Now -- How many do you want"""? <BREAK>

Do you want to READ, PRINT, XREF, WRITE, MODIFY, INSERT,
CLEAR or END
R, L, P, X, W, M, I, C or E ? M

The Adventure System

Which section do you want to MODIFY:
Header, Actions, Vocab, Rooms, Messages or Objects
H, A, V, R, Mor 0 ? 0
Lower limit, upper limit (ENTER is all) ? 24
Object 24 : O Start
Starting room • ? 2 <ENTER>
Description ? Sign saying "Leave *TREASURES* here"

Page 6 - 36

Now that object 24 has been added, the data base should be saved out again. It
is good practice to regularly save your data base out. It is very frustrating
to make a lot of changes to a data base and turn off your computer without
having saved the changes! You may have noticed that the opening message was not
displayed when the adventure was started. This message (message 17) should be
displayed by the initialization action (action 4). I'll let you fix this bug!

You can continue to play the adventure to find any other "bugs". If you want,
you can add some actions to this adventure. At the beginning of this chapter we
listed twenty items the player might come across in the "Old West". You could
add to this adventure by writing about some of those unused items/situations.

The same procedure presented in this chapter could be used to write your own
original adventures. After you have written an adventure, it really isn't that
fun to play. Since you wrote it, you should be able to solve it. That leads us
to the next step of adventure writing.

The most important step here is to get the adventure as "bug" free as possible.
People can get a low opinion of an adventure if they find a lot of problems with
it.

After the adventure is finished, write down the steps needed to solve it. This
can be a list of verb, noun combinations which must be typed in to solve the
adventure.

OK, the only thing left is to get your adventure to market. Refer to Appendix B
for more details.

I
I

I

I

I
I
I
I

I

I

I
I

I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I

I

.• Jl I 7

This chapter will briefly describe a method for solving adventures using the
ADVEDT program. To effectively use this chapter, a good understanding of TAS is
recommended.

There are two basic types of adventures: mission ana treasure.

In mission adventures, the object of the game is to accomplish a task. In
treasure adventures, the object of the game is to collect treasures and store
them in the treasuTe room. Yhen all of the treasures are stored, the game is
over.

SOLVIHG "MISSl()H• TYPE ADVENTURES

Mission type adventures typically end with a winning message. The first step in
solving these types of adventures is to list the messages and find the winning
message number. This should be an obvious message. The winning message number
should be noted.

Next, do an XREF for that message number in the actions. This procedure will
tell you which actions display the winning message. The number(s) of these
action(s) should be noted.

Now, list the action(s) which will display the winning message. Note what the
conditions are. These conditions must be true before the winning message will
be displayed.

The XREF command can be used to find where the objects needed in the winning
action are referenced. This will tell you how to get them if they are not
simply laying in a room (where they could be picked up). If a bit flag needs to
be set before the winning message is displayed, an XREF can be done on that
particular bit flag to find out what must be done to set the flag.

The procedure continues in this fashion. It may take a while to get it down
pat, but it is basically a simple procedure. It's really solving the adventure
in reverse.

SOLVING "TREASURE" TYPE ADVENTURES

These types of adventures are very similar to mission type adventures when
solving them.

The first step in solving treasure type adventures is to list the OBJECTS. Note
which objects are treasures. Treasures will be the objects with an asterisk as
their first descriptive character.

The Adventure System Page 7 - 2

Treasures that have a non-zero starting room number are simply laying in a room.
The only potential problem here is that some actions may need to be taken to get
into the room. For example, a locked door may block the entrance of the room.
By looking at the room descriptions, it can be determined if this room can be
moved into from another room (for example, "GO EAST" from another room moves you
into the one in question). If not, do an XREF on the room to find what
conditions must be true to enter the room.

If the treasure has a starting room number of zero, then some action must take
place to drop it in a room. By doing an XREF on the treasure, it can be
determined what conditions must be met for the treasore to enter a room so it
may be picked up.

The procedure continues for all of the treasures. Again, it's simply solving
the adventure in reverse.

However, the best way to solve an adventure is to play it through. If you get
stuck, look at the data base as little as possible unless you're fed up with the
adventure. Remember, adventures are meant to be brain-teasers.

I
I
I
I
I

PAR
HAS
IN/W
AVL
tN
-IN/W
-HAVE
-IN
BIT
-BIT
ANY
-ANY
-AVL
- RMO
RMO
CT(2
CT>
ORIG
-ORIG
CT•

Passes a number to the commands.
True if holding the object.
True if ln same room as object (not holding it).
True if in same room or ho l ding object.
True if in room.
True if holding object or if object is ln another room.
True if not holding object.
True if not in room.
True if bit flag set.
True if bit flag cleared.
True if holding any object s.
True if not holding any objects.
True if object in ano ther room.
True if object not i n room zero.
True if object in room zero.
True if counter less than or equal to number.
True if counter greater than number.
True if object in or iginal starting room.
True if object not i n or iginal starting room.
True if counter equal to number.

COMMAHDS:

GETX
DROPX
GO TOY
X-)RMO
NIGHT
DAY
SETZ
CLRZ
DEAD
X->Y
FINI
DSPRM
SCORE
INV
SETO
CLRO
PILL
SAVE
EXX,X
CONT
AGE TX
BYX-)X
CT-1
DSPCT

Pick up object X.
Drop object x.
Move player to room Y.
Send object X to room zero.
Make it night (set bit flag 15).
Make it day (clear bit fl ag 15).
Set bit flag Z.
Clear bit flag z.
Tell player he's dead, make DAY, move to last room, end game.
Send object X to room Y.
Stop game and ask for ano ther game.
Display current room and account for DAY, NIGHT.
Compute and display the score.
Tell the player what he i s carrying.
Set bit flag 0.
Clear bit flag O.
Fill artificial light source (clear bit flag 16).
Save the game.
Exchange room location of object X with object x.
Continue to next action/a.
Always get object X regardless of carry limit status.
Move first object X to same place as first object x.
Decrement counter.
Display the counter.

The Adventure System Appendi>e A - 2

COM.tt...+H>S (con1)

Set counter equal to N. CT<-N
EXRMO
EXM,CT
CT+N
CT-N
SAYW
SAYWCR
SAYCR
EXC,CR
DELAY

Exchange current room ~ith room held Ln alternate room register O.
Exchange counter and alternate cnunter M.
Add N to counter.
Subtract N from counter.
Say the player's input noun.
Say the noun of the player's input noun and a carriage return.
Start a new line.
Exchange current room with room Ln alternate room register C.
Pause for about 1 second.

In' RAGS:

VOik

15 SET•dark outside
16 SET=artificial light source has run out

0 AUTO
1 GO

10 GET
18 DROP

HOUHS:
0 ANY
1 NORTH
2 SOUTH
3 EAST
4 WEST
5 UP
6 DOWN

ROOMS:
0 is reserved as the STOREROOM

MESSA~
0 must not be defined (it is not used)

OBJECTS:
9 Lighted Artificial Light Source

MAXIMUMS FOR EACH DATA BASE SECTION:
ACTIONS = 500 (0-499)
VOCABULARY = 150 (0-149)
ROOMS • 99 (1-99)
MESSAGES • 99 (1-99)
OBJECTS • 250 (0-249)
TEXT CHARACTERS = 255 MAXIMUM
ACTION TITLE CHARACTERS • 20 MAXIMUM
WORD LENGTH z 7 MAXIMUM
TIME LIMIT (MOVES) • 32767 MAXIMUM
BIT FLAGS D 32 (0-31)
COUNTERS • 8 (0-7)

I
I
I

I

I
I

I

I
I
I

I
I
I
I
I
I
I

I
I
I

Appendix I

All you need to do is send a diskette or tape with the adventure data base(s)
to:

THE ALTERNATE SOURCE
704 Pennsylvania Avenue

Lansing, MI 48906

Please tell us if the adventure is being submitted for printing in AUGMENT or
for general distribution (or both). AUGMENT is the "Adventure Users' Group
Newsletter". We are always seeking adventures for AUGMENT. Payment varies.

The Alternate Source will review the adventure for originality and general bugs.
The adventure may not be acceptable because it is not original (a copy of
someone else's) or is thought not to be in good taste. Or, heaven forbid, it
just may not be up to standards! Would YOU buy the adventure? We recommend
that you "play test" adventures thoroughly! Give a few friends a copy and let
them wring out some bugs.

The diskette or tape may be returned with some suggestions for improvement. We
accept no responsibility for unsolicited programs. Your media will be returned
if you include a postpaid mailer with your submission. TAS also reserves the
right to make simple changes to the data base to improve its play.

If your adventure is accepted, you will be notified. A contract will be sent to
you upon acceptance detailing the royalty payment.

You may decide to market the adventure without going through TAS. [f you so
choose, remember that the adventure driver program "ADV" is copyrighted and can
not be sold with your adventures unless written permission is given by the
author.

Please allow at least 4 weeks for the selection process. The selection process
is greatly speeded up if you include the steps needed to solve your adventure.
This is not required, but it is HIGHLY recommended.

-,
l
l

I
I
I
I
I
I
I

I
I
I

I

I

I

EXRMO
EXX,X
False actions
FILL
FINI
GETX
GOTOY
HAS
-HAVE
Header
IN
-IN
IN/W
-IN/W
Included adventures
INSERT comnand
INV
LIST comnand
Marketing adventures
MODIFY command
Messages
NIGHT
Nouns
Object names
Object rules
Objects
ORIG
-ORIG
PAR
Parameters
Pl ayer input
Player input actions
PRINT COllllland
READ comnand
Referencing data base components
RMO
-RMO
Room rules
Rooms
SAVE
SAY CR
SAYW
SAYWCR
SCORE
SETO
SETZ
Shorthand entry
Starting room
Synonyms
Text editor
Time limit
Trailer
Treasure room
Treasures

2-1, 2-20'

2-1,

2-1, 2-20'

2-1, 2-27'

2-12
2-10' 2-14

2-4
2-10' 2-31

2-9
2-9
2-9
2-6
2-6

2-1, 5-1' 5-4, 6-20
2-6
2-6
2-6
2-6

1-1, 1-2
• 4-15

2-10
4-4

P-1, 6-36, B-1
4-7, 6-21

2-28' 5-4, 5-12, 6-26
2-9, 5-6

2-4, 2-26' 4-15, 6-23
2-29, 5-13 . 3-2

2-29, 3-2, 5-4, 5-13
2-7
2-7

2-6' 2-8, 2-15
2-6' 2-8, 2-13. 5-5

1-1
2-3, 5-5' 6-3

4-6
4-2

2-1, 4-5
2-7
2-7
3-2

3-2, 5-3, 5-12' 6-24
2-10' 6-15

2-12
2-12
2-12
2-10
2-10
2-9
1-2
2-2

2-24' 2-27
4-9

2-3, 5-5
2-1, 2-32

2-3
2-29, 5-13

I
ItllEX

0 2-7 t 2-28
1-99 2-9, 2-14
Action entries 2-1, 2-3, 2-20. 3-1, 4-16, 5-1. 5-5, 6-27
Action entries, Initialization 2-17. 5-5, 6-15
Action entry conwnands 2-4, 2-8, 2-15, A-2
Action entry rules 3-1
AfJV program P-1, 1-1. 1-1, 4-20 t 6-28
AfJVEDT commands 4-1
AfJVEDT instructions 4-1
AfJVEDT program 1-1, 1-1, 4-1, 6-20
Adventure driver instr..ictions 3-1
Adventure screen display 1-2 -AfJVTT program 1-1, 1-1, 4-20
AGETX 2-11
Alternate room registers 2-12, 2-22, 2-23

I ANY 2-7
-ANY 2-7
Artificial light source 2-31
Automatic actions 2-5, 5-5, 6-10 t 6-13 I AVL 2-6
-AVL 2-7
BIT 2-6 I -BIT 2-6
Bit flags 2-6 t 2-9, 2-17, 5-5
BYX->X 2-11
Carry 1 imi t 2-2
CLEAR command 4-19, 6-20
CLRO 2-10
CLRZ 2-9
CLS 2-10
Commands, Action entry 2-4, 2-8 t 2-15, A-2
Conditions 2-3, 2-5, 2-15, A-1
CONT 2-11, 2-21
Continuing actions 2-11, 2-21 t 5-5
Counters 2-7 t 2-11, 2-18, 5-5
CT+N 2-12
CT-1 2-11
CT-N 2-12
CT<-N 2-12
CT<= 2-7
CT= 2-7
CT> 2-7

I DAY 2-9, 5-6
DEAD 2-9
DELAY 2-12
DROPX 2-9 I DSPCT 2-12
DSPRM 2-10
END conwnand 4-19 I EXC,CR 2-12
EXM,CT 2-12

I
1

True actions
Verbs
Vocabulary
Vocabulary rules
Word length
WRITE command
Writing actions
X->RMO
X->Y
X-RMO
XREF command

2-4
2-1, 2-4, 2-25, 4-15, 6-23
2-1, 2-24, 3-1, 5-3, 5-12

3-1
2-3, 2-26, 6-3

4-3
6-3
2-9
2-9
2-9

4-17

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

;=--:
=;;;;;;::~~~===-

--~~- ..

= .;;::_

•.:: ..

-:~ --=-
~= -

"""""' ..;;===-;.....~
~

-- =:

- : - .. :..::..

::::: ==

=-=
= - i;:-

=

-~

;;:

--=-

~-- =

-==-=

= ""

;.:;::.- ...

·-

